

The Shortcomings of Cost Estimating Templates

Meagan Gadreault, Faye Kim June 7, 2017

Purpose

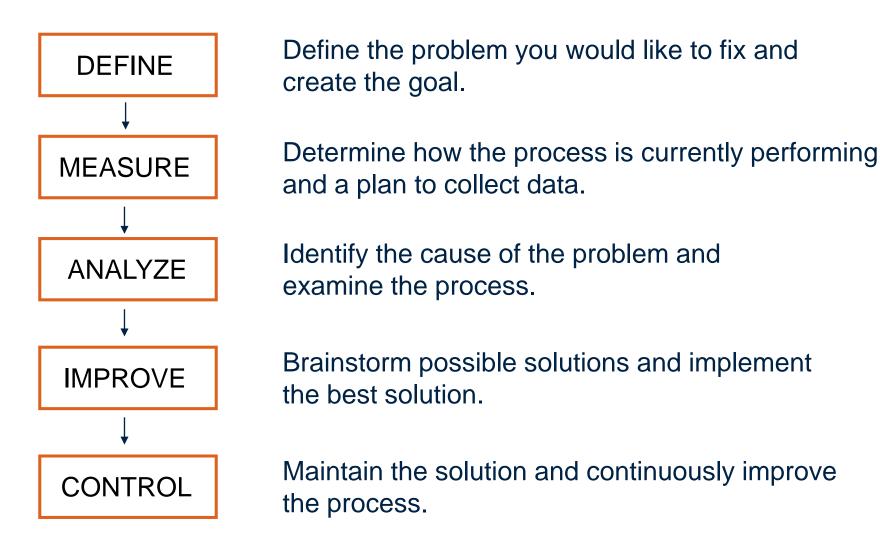
Estimates are created inefficiently, and Lean Six Sigma techniques can be used to:

- Identify the causes of inefficient cost estimate modeling;
- Propose a method to improve efficiency;
- Discuss future efforts incorporating the recommendations outlined in this paper.

www.iceaaonling.com/portland2017 HERREN

Introduction

Standardization DoD


www.iceaaonline.com/portland2017 HERREN

The cost estimating process can take a long time and has many steps???

The DMAIC process can be used to improve the cost estimating process.

The cost estimating process is inefficient.

Poorly defined assumptions

No supporting documentation

Poor data collection

Inadequate or irrelevant data

Bad Excel techniques

Loss of institutional knowledge with changes

There is a high degree of variation in the cost estimating process.

Number of requirements

Complexity of program

Type of estimate

Ideally, the data collection process would measure performance.

1

What kind of data will be captured?

- Feedback
- Qualitative metrics

2

From who will this data be captured?

Cost estimators

3

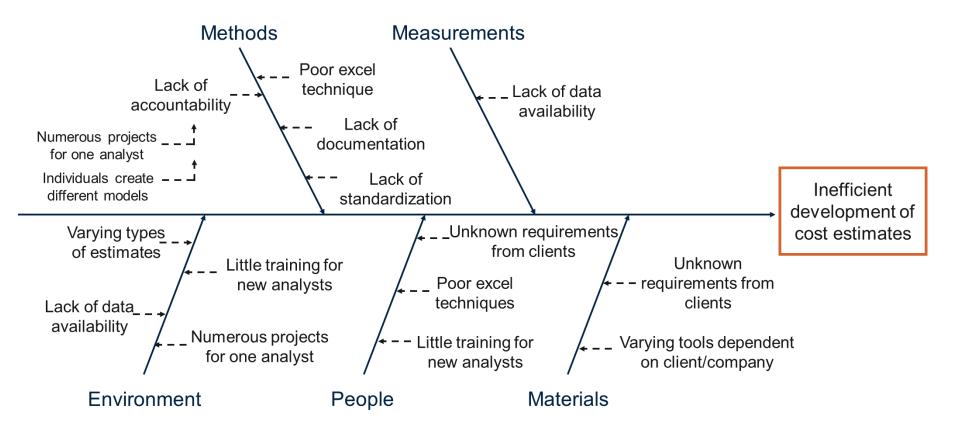
How will the data be captured?

Surveys

4

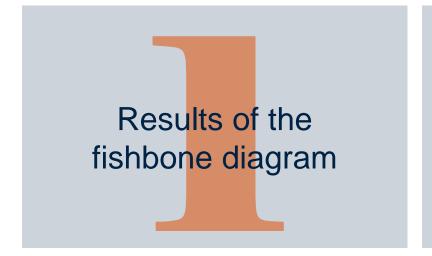
How can we ensure the data is reliable?

- Increase sample size
- Gather comments

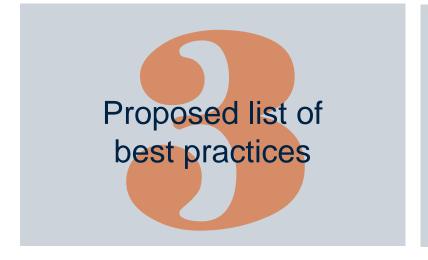

5

What would the data show us?

- Ease of use
- Traceability
- Dynamic capability

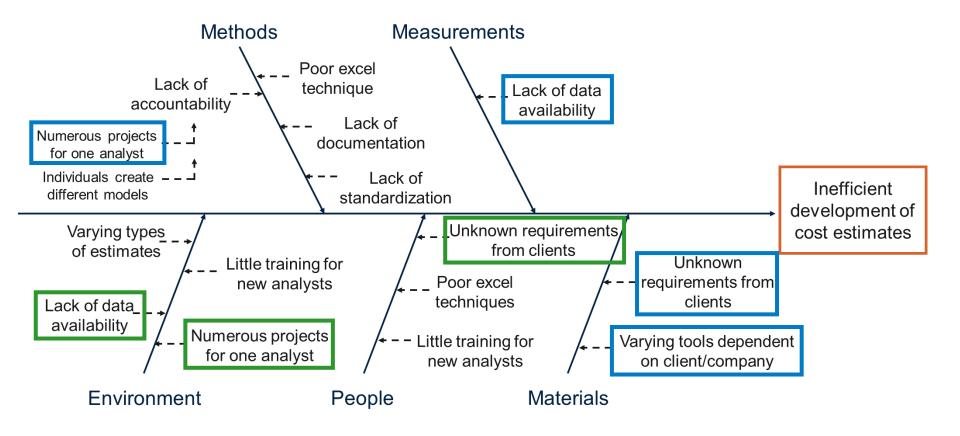

www.iceaaonline.com/portland2017 HERREN

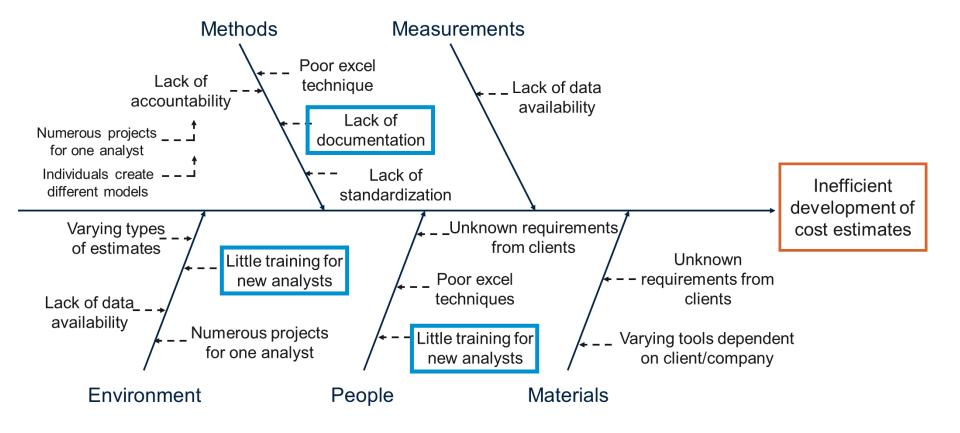

A fishbone diagram can identify "many possible causes for an effect or a problem."



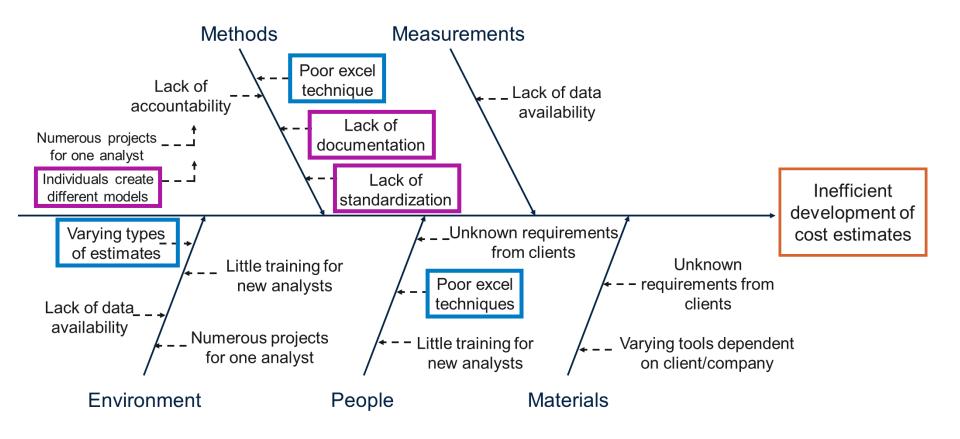
www.iceaaonline.com/portland2017 HERREN

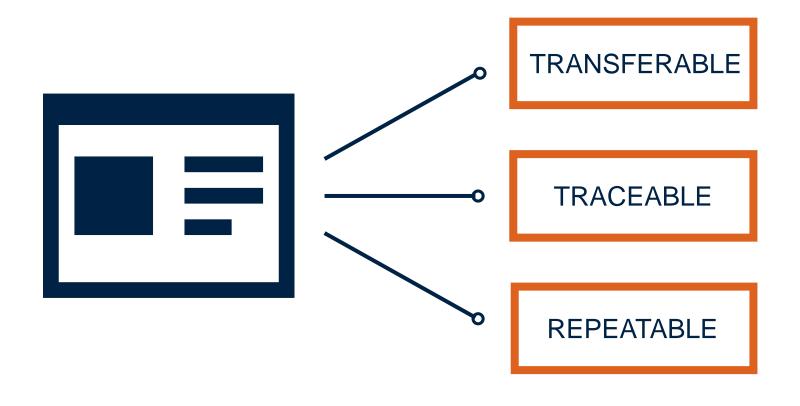
To improve cost estimating, we will identify current waste and define potential solutions.





www.iceaaonling.com/portland2017 HERREN


Some causes are uncontrollable, and we will not be addressing them.


Some causes are critical in developing reliable estimates but not solved using templates.

These causes directly lead estimators towards creating templates for cost estimating.

In theory, templates can be used to standardize the cost estimating process and improve efficiency.

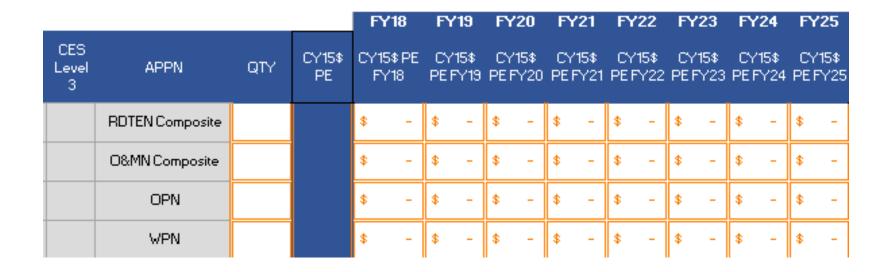
A set of best practices is a solution that can be used for every cost estimate.

Use MIL-STDa 881C to finalize the first two levels of WBS elements. The third level of elements is program-specific.

	MIL-STD-881C APPENDIX D									
D.3 WORK BREAKDOWN STRUCTURE LEVELS										
WBS#	Level 1	Level 2	Level 3	· Level 4						
1.0	Ordnance System									
1.1		Munition								
1.1.1			Airframe							
1.1.1.1				Airframe Integration, Assembly, Test and Checkout						
1.1.1.2		Primary Structure								
1.1.1.3				Secondary Structure						
1.1.1.4		Aero-Structures								
1.1.1.5	Other Airframe Components 1n (Specify)									
1.1.2			Propulsion							
1.1.2.1		Propulsion Integration, Assembly, Test and Checkout								
1.1.2.2				Motor/Engine						
1.1.2.3				Fuel Management						

A set of best practices is a solution that can be used for every cost estimate.

Utilize database structure to organize cost elements in WBS.


#	CES Level 0	CES Level 1	CES Level 2	CES Level 3	CES Level 4	CES Level 5	Fundi ng Sourc e	APPN
1	1.0 Research & Development	1.1 Munition	1.1.1 Guidance and Control (G&C) Section				Intern al	RDTEN Composite
2	1.0 Research & Development	1.1 Munition	1.1.2 Warhead Section				Extern al	RDTEN Composite
3	1.0 Research & Development	1.1 Munition	1.1.3 Fuel Tank Section					RDTEN Composite
4	1.0 Research & Development	1.1 Munition	1.1.4 Afterbody/Tailcone Section					RDTEN Composite
5	1.0 Research & Development	1.1 Munition	1.1.5 On Board Test Equipment					RDTEN Composite
6	1.0 Research & Development	1.1 Munition	1.1.6 On Board Training Equipment					RDTEN Composite
7	1.0 Research & Development	1.1 Munition	1.1.7 Auxiliary Equipment					RDTEN Composite
8	1.0 Research & Development	1.1 Munition	1.1.8 Munition Software Release 1n					RDTEN Composite
9	1.0 Research & Development	1.1 Munition	1.1.9 Munition Integration, Assembly, Test and Checkout					RDTEN Composite

A set of best practices is a solution that can be used for every cost estimate.

Need all cost inputs in the same units and cost elements labeled with appropriations

www.iceaaonline.com/portland2017 HERREN

A set of best practices is a solution that can be used for every cost estimate.

Place all data into a single inputs page and link the rest of the model to this page.

an

www.iceaaonling.com/portland2017 HERREN

A set of best practices is a solution that can be used for every cost estimate.

Cite the source of all assumptions and provide comments and documentation.

A set of best practices is a solution that can be used for every cost estimate.

Use multiple cells to break down formulas into easy parts.

www.iceaaonling.com/portland2017 HERREN

A set of best practices is a solution that can be used for every cost estimate.

Build everything that is needed in the model in the single Excel spreadsheet.

www.iceaaonling.com/portland2017

A set of best practices is a solution that can be used for every cost estimate.

Use standardized template for certain aspects to cut time.

www.iceaaonling.com/portland2017

It is important to determine whether the cost estimating process changed.

Support from the industry and an updated control plan can facilitate continued improvement.

www.iceaaonling.com/portland2017 HERREN

Conclusion

- Process improvement methods that are prevalent in other industries can be applied to the cost estimating industry.
- Lean Six Sigma techniques were used to find the root causes of inefficient cost estimates.
- Solutions to these causes were explored and areas of improvement were identified.
- Process improvement is most likely to be achieved by using a set of best practices as a learning tool.