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Abstract 

Nonlinear equations are commonly used in cost estimating relationships (CERs) for 

government projects. Three primary methods commonly used in the cost estimating 

community for calculating nonlinear CERs from historical data are log-transformed 

ordinary least squares (LOLS), iteratively reweighted least squares/minimum unbiased 

percentage error (IRLS/MUPE), and minimum percent error with zero percent bias 

(MPE-ZPB). Of these three, LOLS is the oldest, since it is not computationally intensive. 

Indeed, the parameters can be calculated using a hand calculator. 

 

LOLS involves performing ordinary least squares (OLS) on a log-transformation of a 

power equation. The use of transformations in LOLS has led to several criticisms, such as 

that it is not optimal, and there are issues with transforming the data. Newer methods, 

such as IRLS/MUPE and MPE-ZPB have been developed that do not involve the use of 

transformations. The criticism regarding the use of transformations has some merit. 

However the claim that LOLS is not optimal is not accurate. When the CER residuals are 

lognormally distributed, LOLS is a maximum likelihood estimate of the median.  

 

In this paper we provide theoretical reasons for why the residuals of CERs should be 

lognormally distributed, as well as ample empirical evidence for actual CERs used in 

practice. In addition we provide information about the use of the lognormal to model risk 

in other industries, such as health care and property insurance.  

 

To overcome the issue with transformations we introduce a new method for calculating 

CERs with lognormal residuals using untransformed maximum likelihood estimation. 

This method is also optimal for lognormal residuals. It calculates the mean of the 

distribution directly without need for a correction factor, thus avoiding the drawbacks 

inherent in LOLS. 

 

Introduction 

In 333 B.C., Alexander the Great, early in his conquest of the known world (at that time), 

reached the city of Gordium. When shown an intricate knot with its ends hidden, 

Alexander sliced through the knot with his sword. “Cutting the Gordian knot” is thus a 

direct and simple solution to a complicated problem. In this paper, we present a direct 

approach to developing unbiased, optimal estimates of the mean in the case that the errors 

are lognormally distributed. This avoids the drawbacks inherent in log transformed 

ordinary least squares (LOLS). 
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Nonlinear equations are commonly used in cost estimating relationships (CERs) for 

government projects. Three primary methods commonly used in the cost estimating 

community for calculating nonlinear CERs from historical data are LOLS, iteratively 

reweighted least squares/minimum unbiased percentage error (IRLS/MUPE), and 

minimum percent error with zero percent bias (MPE-ZPB). Of these three, LOLS is the 

oldest, since it is not computationally intensive. Indeed, the parameters can be calculated 

using a hand calculator. 

 

The pedigree and simplicity of LOLS have led to the perception that this method is 

antiquated, and should be replaced by more modern, computationally intensive methods 

such as IRLS/MUPE or MPE-ZPB. In log-transforming the data we are estimating “log-

dollars.” The transformed estimate is unbiased in log-space, but is biased once we 

transform the equation back to unit space. LOLS is estimating the median of a lognormal, 

which is less than the mean, so LOLS is a biased estimator of the mean. The bias is low, 

so if we are trying to estimate the mean, LOLS will underestimate that value. 

 

Dr. Steve Book along with others (Book and Young 1995, 1997; Book and Lao 1996; 

Book 2006), developed MPE-ZPB as an alternative to LOLS.  

 

In this paper we provide theoretical reasons for why the residuals should be lognormally 

distributed, as well as ample empirical evidence for actual CERs used in practice. In 

addition we provide information about the use of the lognormal to model risk in other 

industries, such as health care and property insurance. 

 

We begin by providing a discussion of CER residuals and methods for modeling them 

using maximum likelihood. Each of the methods in wide use today – LOLS, MPE-ZPB, 

and IRLS/MUPE – have a connection to maximum likelihood estimation. We show that 

for the case of lognormally distributed residuals, LOLS is an optimal method for 

estimating the median. We then provide a theoretical foundation for why we should 

expect CER residuals to be lognormally distributed. We further provide empirical 

evidence in support of the lognormal, in the form of analysis of residuals for CERs from 

the NASA/Air Force Cost Model (NAFCOM). We also provide a comparison of 

modeling methods used in other industries, including insurance. 

 

Since there is strong evidence that CER residuals are lognormally distributed, and there 

are issues with LOLS, we use the maximum likelihood method on the non-transformed 

equation to circumvent these issues. We provide three examples comparing the various 

methods. 

 

Model Development and Maximum Likelihood Estimation 

Our goal is to use historical data to predict the cost of future programs and projects. It is 

important when developing models to limit our choices, since given enough models to 

choose from there will be at least one model that appears to fit the data well, but will not 

help us effectively predict future cost.  For example given n data points, we can perfectly 

predict the past by fitting n-1 parameters. However, doing so will capture many 

idiosyncrasies in the historical data that are not likely to be repeated in the future, a 
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phenomenon referred to as over fitting.  Experience is a useful guide in limiting the 

universe of choices.  

 

There are many models from which to choose. The analyst has many decisions to make in 

selecting a model, such as whether to use an explicit equation form, or, for example, a 

decision tree. An example of a decision tree might be something like “if the total dry 

weight of a spacecraft is more than 1,000 lbs., my estimate is $100 million, otherwise it is 

$25 million.” Or the analyst might select a model that estimates the costs based on user 

inputs, such as the NASA/Air Force Cost Model (NAFCOM). Using a mathematical 

equation to estimate the cost using one or more predictive cost drivers, such as weight, is 

a traditional approach. Also, if one selects to use an equation to estimate cost, the analyst 

must also decide what type of equation to use, whether linear or nonlinear. 

 

Through data and experience, it is largely agreed in the NASA and DoD cost community 

that costs do not typically follow a linear pattern. Rather they tend to vary nonlinearly in 

relation to the cost drivers that are typically selected. In particular, the power law 

equation, or some variation of it, has been widely adopted. The power law equation has 

the form  

 

 

In this case Y typically represents cost in $, but can also represent effort (hours, full-time 

equivalents). The variable X typically represents weight or some other performance 

parameter. The equation can also be modified to accommodate multiple cost drivers. The 

value of the b parameter in the power equation is usually less than 1, indicating 

economies of scale in design and production. This model has been found to do a good job 

explaining the relationship between cost and cost drivers, including weight and other 

performance characteristics, for a wide variety of spacecraft and other programs. For 

example, if the equation has the form 

 

 

then as weight doubles, cost is increased by a factor equal to the square root of weight, 

rather than a simple linear relationship. Such equations are so commonly used they are 

referred to as “cost estimating relationships,” or CERs. 

 

 

If an equation form is selected, the form of the residuals between predicted and actual 

costs must also be chosen. For example, given an equation of the form  

 

 

and a set of data                                                  

 

 

the residuals are defined as:  
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This is also referred to as the “error” term since it is the difference between the actual 

cost and the estimated cost. Residuals or “errors” are an important consideration in 

modeling since they often drive the methods used for parameter calculation. For example, 

linear regression finds the “best fit” by finding the parameters a and b that minimize the  

sum of the squares of the residuals 

 

                                                                                                                             . 

 

 

This method was first developed by the mathematicians Legendre and Gauss in the early 

19th century, who used it to predict the orbits of heavenly bodies using observed data. 

Francis Galton later applied this technique to find linear predictive relationships between 

various phenomena, such as the relationship between the heights of fathers and sons. 

Galton found a positive correlation between these heights but found a tendency to return 

or “regress” toward the average height, hence the term “regression analysis” 

 

The residuals of the power equation can either be additive or multiplicative. 

 

Additive residuals have the form 

 

    

while multiplicative residuals have the form 

 

 

Multiplicative residuals are more appropriate for the spacecraft and defense industry in 

most applications because of wide variations in size, scope, and scale of the systems that 

are estimated. For example, if historical data ranges from $50 million to $1 billion, it is 

better to analyze percentage differences, since this provides a more meaningful 

comparison of accuracy than absolute dollar values. As a result we are primarily 

interested in the percentage difference between actual and estimated costs, not the 

absolute difference. See Figure 1 for a graphical comparison of multiplicative and 

additive errors. The commonly-used regression techniques considered in this paper are all 

based on the multiplicative error assumption. 
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Figure 1. Multiplicative Vs. Additive Errors (Eskew and Lawler 1994). 

 

In terms of what works in practice, given that the error is bounded below since neither the 

estimate nor the actual cost can be less than zero, but there is an infinite amount of room 

on the upside, we should expect positive skew in our error distributions. The lognormal 

distribution is a natural choice for modeling positive skew. Don Mackenzie (Mackenzie 

et al. 2008) has given empirical evidence in support of the lognormal for modeling the 

residuals. This is in accordance with what I have found with respect to the NASA/Air 

Force Cost Model, for which the lognormal distribution has been shown fits the CER 

residuals for almost all subsystems which have a sufficient number of data points to 

provide a meaningful test. An example of a CER developed for NAFCOM will be 

discussed in the next section. The gamma distribution also has positive skew, which 

makes it an appealing choice as well.  

 

For the power equation with multiplicative residuals, i.e., 

 

 

  

the estimates vary based on the variation of the residual 

 

 

 

 

It’s also common to adjust this to treat  as a percentage, i.e., set 

 

 

 

 

 

 

In other words the actual cost is equal to the estimate plus or minus a percentage of the 

estimate. If the estimate is greater than the actual cost the residual is greater than zero. If 

the estimate is less than the actual the residual is less than zero. Note the lack of 
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symmetry. For estimates above the actual, the maximum value of the residual is 1, and 

for estimates below the actual, the minimum value has no bound! 

See Figure 2 for an illustration of multiplicative residuals for a subsystem CER in the 

NASA/Air Force Cost Model. 

 

 
Figure 2. Multiplicative Residuals for a Subsystem CER in the NASA/Air Force 

Cost Model (NAFCOM). 

 

For a “good” model, the cost drivers explain all (or most) of the variation in the historical 

data that can be explained. Therefore it is typically assumed that any remaining variation 

is random, either due to non-repeatable random phenomena (e.g., test failures) that are 

truly random phenomena and will not help predict future cost. The multiplicative 

residuals that represent this unexplained variation are thus treated as random variables. 

Thus after choosing the equation, and choosing the type of residual, we have to make yet 

a third choice, namely, the type of distribution that this unexplained variation follows. 

For CER development, residuals are typically assumed to follow normal, lognormal, 

gamma, or they are treated without making such an assumption (non-parametric). 

 

The normal distribution is the most common probability distribution. Many random 

phenomena follow this distribution. It is also known as the “bell curve,” due to its 

symmetry and small tails. If cost is a sum of many random independent phenomena, the 

central limit theorem indicates this may be the appropriate distribution. See Figure 3 for a 

depiction of a normal distribution. 
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Figure 3. Example of a Normal Distribution. 

 

The lognormal distribution is a skewed distribution. If X is lognormally distributed, y = 

ln(x) is normally distributed. The lognormal has a heavier right tail than the normal 

distribution, is bounded below by zero, and unbounded above. If cost is a function of 

multiplicative factors, for example, test failures cause a percentage increase in cost rather 

than a fixed amount increase, project costs are likely to be lognormally distributed. This 

is a multiplicative analogue to the central limit theorem. These aspects make the 

lognormal appealing for cost modeling. See Figure 4 for a graphical depiction of a 

lognormal distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Example of a Lognormal Distribution. 

 

The gamma distribution is a flexible distribution. It can to some extent resemble a 

lognormal, and can also resemble an exponential distribution. Indeed the gamma 

distribution is the sum of independent exponential distributions, so the exponential is a 

special case of a gamma distribution. See Figure 5 for representations of gamma 

distributions. 
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Figure 5. Examples of a Gamma Distributions. 

 

The decision to choose or not choose an underlying distribution for the residuals 

represents another choice. When the data follow an observable pattern, based either on 

preliminary data analysis or through experience, parametric analysis is preferred. For 

example, NASA cost data are skewed, which makes intuitive sense, because cost cannot 

be less than zero, but there is no upper limit. This often leads to the assumption of 

lognormal or gamma residuals. However when the data do not follow an observable 

pattern, or there is no reason to assume an underlying pattern in the data, non-parametric 

analysis may be suitable. This may be the case if data sets are small, or if there is no 

reason to assume similarity with other available data. 

 

However, if non-parametric techniques are used, the analyst must be careful to ensure 

models are valid, since techniques may assume an inherent pattern in the data or be 

similar enough to a parametric technique that the non-parametric version inherits some 

features of the parametric version. 

 

Another issue with non-parametric techniques is the lack of rich techniques for 

developing confidence intervals, prediction intervals, covariance matrices, and other 

useful metrics and methods available for parametric models. Indeed, some statistical 

techniques do not exist for nonparametric problems. As shown by Bahadur and Savage in 

their 1956 paper “The Nonexistence of Certain Statistical Procedures in Nonparametric 

Problems” (Bahadur and Savage 1956), in such cases there is no effective hypothesis test 

for the population mean, no effective confidence interval for the population mean, and no 

effective point estimate for the population mean. They also showed that no confidence 

interval will fit the data well. This makes model validation problematic for non-

parametric methods. However, note that parametric techniques do not necessarily involve 

assuming the residuals follow a particular probability distribution. This assumption can 

be much weaker, such as assuming finite variance. 

 

There are numerous ways to calculate the parameters of a cost-estimating relationship. 

One powerful statistical technique commonly used for parameter calculation is the 

method of maximum likelihood, which is sometimes referred to as maximum likelihood 

estimation (MLE). MLE is a widely used technique that serves as a unifying framework 

k =1, theta = 2

k= 2, theta = 2

k = 5, theta = 1
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for the CER methods we shall discuss in this paper, and is the basis for the new method 

that we present in this paper. Note that MLE is a frequentist approach that requires large 

data sets. Some researchers recommend using a least 50 data points when developing 

CERs using classical methods (Babyak 2004). For smaller data sets we need Bayesian 

methods. This paper only deals with MLE, for smaller data sets you need to consider 

Bayesian applications for CER development (Smart 2014).  

 

Let a1,…, an represent the observed data and x1,…,xn represent random variables where 

ai results from observing the random variable xi. The likelihood function, which 

represents the likelihood of obtaining the sample results, is defined as  

 

 

 

The maximum likelihood estimate of   is the vector that maximizes the likelihood 

function. This technique is appealing because maximizing the likelihood of finding the 

true underlying parameters of this distribution is exactly what we hope to accomplish in 

developing a CER. One major advantage of this technique is that the likelihood function 

is almost always available. Maximum likelihood uses all the available data, unlike other 

methods, such as percentile matching and method of moments. Maximum likelihood 

methods have good statistical properties, like consistency and efficiency. A rich body of 

statistical theory has been developed for maximum likelihood estimation. 

 

An estimator̂ is a uniformly minimum variance unbiased estimator (UMVUE) if it is 

unbiased and for any true value of    there is no other unbiased estimator that has a 

smaller variance. An estimator that is UMVUE is efficient, in that it achieves its 

theoretical lower bound. This means that the estimated coefficient will likely be closer to 

the true coefficient than that calculated with another estimator. A (finite) data set is often 

considered as a random sample from an underlying population. The variance of the 

coefficients is a decreasing function of the sample size, so for small samples, the variance 

can be quite large relative to the coefficient. In these cases, the variance of the 

coefficient, if large, can mean than the estimated coefficient is far away from the true 

coefficient. Smaller variances mean a quicker convergence to the true underlying 

population coefficient as the sample size increases, as long as the estimator is consistent. 

Consider for example two consistent estimators for a coefficient, and suppose that one 

has variance equal to 50% of the size of the estimate, and the other has variance equal to 

100% of the size of the estimate. Suppose for the sake of simplicity that the estimator’s 

mean is equal to the true population coefficient. The coefficient for a single data set can 

be viewed as one random sample from a Monte Carlo simulation of the coefficient 

distribution. A single draw drawn for each of these is likelier to be closer to the true 

coefficient for the distribution with smaller variance. For example, a single Monte Carlo 

draw for the distribution with smaller variance is 0.89 while the same random draw for 

the distribution with higher variance results in 1.58. The first estimator is thus 11% below 

the true coefficient, while the second is 58% greater. Thus small variance is a highly 

desirable property. Since maximum likelihood estimates are UMVUE, it is desirable to 

use them whenever their use can be justified. In general parametric models can be seen as 
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more accurate predictors whenever the hypotheses required for their use can be 

supported. 

 

Three popular CER methods are log-transformed OLS, MUPE, and MPE-ZPB. All have 

a connection to maximum likelihood estimation, in the sense that parameter calculation 

for each of the methods considered can be viewed in the context of maximum likelihood. 

Maximum likelihood is used together with an assumption about the underlying residuals 

to calculate the parameters of the CER. Each of the CER techniques we consider has a 

strong connection to maximum likelihood estimation paired with either the lognormal, 

normal, or gamma distribution. 

 

The probability density function of a lognormal is defined as 
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The parameters  and  are the mean and variance (respectively) of the transformed 

lognormal, that is, the associated normal mean and variance. 

 

In log-transformed ordinary least squares, logarithmic transformation is applied to both 

sides of the power equation Y=aXb, which transforms the equation from a nonlinear 

equation to a linear one, i.e.,  

 

 

 

Ordinary least squares is then applied to the transformed data. The parameters a and b are 

chosen so that Xlnbalnˆ  . To get the costs in unit space we exponentiate, to obtain  

𝒆𝝁. However, this is not an estimate of the unit space mean. Rather it is the median.  

 

The three most commonly encountered measures of centrality are the mean, median, and 

mode. The mean is the “expected value,” so for a sample of n data points this is  

 

 

 

The median is the 50th percentile, the point at which half the population is less than this 

value, and half is greater. The mode is the “most likely” point of the density function, that 

is, the peak of the distribution. For a normal distribution, the mean, median, and mode are 

all equal. For a lognormal, the mode is always less than the median, and the median is 

always less than the mean. Thus for a lognormal, the mean is always greater than the 50th 

percentile, and can be any percentile greater than the 50th, such as the 90th or 95th 

percentile. For this reason, the median is a good measure of centrality. That is why it is 

common to report the median rather than the mean as the “average” of skewed data. 

Whenever average income or average house price data are reported in the media for 

example, the average reported is always the median, and for exactly this reason. Some 
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analysts prefer the median over the mean (Foussier 2008).  See Figure 6 for a graphical 

comparison of the mode, median, and mean of a lognormal distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Comparing the Mode, Median, and Mean for a Lognormal Distribution. 

 

For yi=f(xi,b)·i, let  = vector of coefficients of the CER, yi = actual cost of the ith data 

point, xi = vector of cost drivers for the ith data point, and i  = residual of the ith data 

point. The conditional probability density function of Y for each x is                           

𝒑(𝒚|𝑿 = 𝒙;𝜷𝟎, 𝜷𝟏, … , 𝜷𝒑, 𝝈
𝟐). Given any data set the probability density of seeing that 

data is  
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Since the logarithm function is monotonically increasing, we can take the log of the 

likelihood function and maximize that instead, that is,  

 

 

 

 

We ignore constants since they do not affect the maximization. This is the same as 

minimizing the negative of the log-likelihood function, that is, 
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To minimize, we take the partial derivative with respect to  set equal to zero, and solve 

for  Taking the derivative yields 

 

 

 

 

Setting this equal to zero and solving gives 

 

 

 

 

 

Plugging in the value for  into the log likelihood function yields 

 

 

 

 

 

 

Ignoring constants this simplifies to  

 

 

 

which is equivalent to minimizing 

 

 

 

This is the least squares of the log of the differences between the actual and the estimated 

costs. Notice the similarity to linear regression. We can replace 

ipp1i10 Xln...Xlnln    with any arbitrary function 𝒇(𝒙𝒊, 𝜷) and get the same 

result, i.e.,  
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Thus we have derived is a generalization of log-transformed ordinary least squares in the 

context of maximum likelihood.  

 

The parameters can be easily calculated in a spreadsheet. However, note that the 

maximum likelihood median estimator is more general. In the past this method has 

merely been viewed as a simplistic way of converting a nonlinear power equation to 

linear space and applying ordinary least squares to the resulting linear equation (Book 

and Lao 1996). We have proven instead that any equation form may be used as there is 

nothing in the derivation that forces a particular equation type to be used. One simply 

minimizes the sum of the log-squared differences between the actual and the estimated 

costs. Thus equation forms such as y=a+bxc can be calculated with this generalized 
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method, which we term Generalized Maximum likelihood estimation of Lognormal 

Error, or GMLE (pronounced “Gimli” -  apologies to JRR Tolkien).   

 

Although for skewed data, the median is a better representative of a distribution’s 

centrality, the mean is the focus of most statistical estimators. The other two methods we 

will present estimate the mean, rather than the median of the error distribution, and one 

criticism often levied on log-transformed OLS is that it is biased low, since the median of 

a lognormal distribution is always less than its mean. However, this can be corrected, 

since there is a mathematical relationship between the median and the mean. The mean of 

a lognormal distribution is  2/exp
2   and the median is simply  exp , so the 

mean is the quantity  2/exp
2  multiplied the estimate. The only complicating factor is 

that the population variance is not known with certainty and so it must be estimated using 

statistical samples. Several methods for estimating this factor have been proposed. A 

simple one, termed the “Ping” factor (Hu 2005) is 
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where p is the number of parameters, n is the number of data points in the sample, and s2 

is the sample variance. 

 

For the equation yi=f(xi,b)·ui , when the residuals are normally distributed, with mean 1 

and variance , the likelihood function, as demonstrated by Lee (Lee 1997), is 

 

 

 

                                                          .               

 

 

 

The log-likelihood function is thus 
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concentrated log-likelihood function 
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As noted in Goldberg and Tuow (2003), this method is very similar to the minimum 

percent error method developed by Book and Young (1995, 1997), who ignore the final 

term and instead minimize the sum of squared percentage errors. 

 

The minimum percent error method minimizes 

 

 

 

 

 

Thus the minimum percent error method is a pseudo-likelihood estimator in the case of 

normally distributed residuals since it is equivalent to minimizing the first term in the 

concentrated likelihood function. Note that the minimum percent error (MPE) method is 

biased. Instead of being biased below the mean like with log-transformed OLS, the MPE 

method is biased high, since one way to make the error term small is to make the 

estimates large. To correct for this Book and Lao (Book and Lao 1996) introduced a bias 

constraint. The objective function is the same, but now sample bias is constrained to be 

zero, that is 

 

 

 

 

This method is referred to as MPE-ZPB or ZMPE(“Zimpy”). While ostensibly a non-

parametric method, it is similar to the normal MLE.  

 

When the residuals follow a gamma distribution, the negative log-likelihood function is 

 

 

 

 

This can be minimized by iteratively minimizing the sum of percent squared errors until 

the estimates converge, that is  

 

 

 

 

where k denotes the iteration number. This method was first developed by Nelder (1968) 

and Wedderburn (1974), who called the method iteratively re-weighted least squares 

(IRLS). It was re-discovered by Hu in the 1990s, who called it minimum unbiased 

percentage error (MUPE) (Hu 2005, 2013). 

 

In the case of gamma residuals, IRLS/MUPE is a maximum likelihood estimate. 

However IRLS/MUPE does not depend upon the assumption of gamma residuals. 
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The likelihood method was generalized by Wedderburn to consider quasi-likelihood, 

which has good statistical properties, but only requires a finite variance. 

 

Thus log-transformed OLS, MPE-ZPB, and IRLS/MUPE all share a common connection 

in maximum likelihood estimation. Log-transformed OLS/GLMLE is a maximum 

likelihood estimator of the median of lognormally distributed multiplicative residuals. 

Thus it is a parametric method. MPE-ZPB is a pseudo-likelihood estimator of the mean 

of normally distributed multiplicative residuals with a bias constraint added. It is not 

directly parametric but it has parametric properties because in my experience it is 

typically a good approximation of the normal MLE solution. IRLS/MUPE is a maximum 

likelihood estimator of the mean of gamma distributed residuals. But it is also more 

general, since it is a quasi-likelihood parametric method. 

 

Theoretical Foundation for the Use of the Lognormal 

We have shown that LOLS is a maximum likelihood estimate when the residuals are 

lognormally distributed. There is evidence in favor of this hypothesis. In this section we 

provide a theoretical argument, and then we provide evidence for the use of the 

lognormal in other applications.  

 

The theoretical argument is that changes in costs over time are proportional to prior costs. 

This makes sense. Cost is more likely to increase than decrease over time, as evidenced 

by numerous studies on cost growth that show that over 80% of government projects 

experience cost growth, and on average increase by over 50% (Smart 2015). So when we 

talk about cost changes, we almost always mean cost increases. Cost increases often do 

not result in funding increases in the short term due to funding constraints. Thus cost 

increases will result in longer schedules. Longer schedules imply a longer period in 

which the personnel devoted to a project will charge to that particular project. Larger 

projects have more personnel assigned to a project, meaning that increases in cost will 

result in a proportional increase in cost. 

 

Mathematically the change in cost from time t1 to time t can be represented as  

 

𝑿𝒕 − 𝑿𝒕−𝟏 = 𝝐𝒕𝑿𝒕−𝟏 

 

where the 𝝐𝒕′𝒔 are mutually independent and independent of 𝑋𝑡−1. Rearranging, we have 

that  
𝑿𝒕−𝑿𝒕−𝟏

𝑿𝒕−𝟏
= 𝝐𝒕. 

Summing over t we find that 

∑
𝑿𝒕−𝑿𝒕−𝟏

𝑿𝒕−𝟏

𝒏
𝒕=𝟏 = ∑ 𝝐𝒕

𝒏
𝒕=𝟏 . 

 

Proportional changes can be approximated as 

∑
𝑿𝒕 − 𝑿𝒕−𝟏
𝑿𝒕−𝟏

𝒏

𝒕=𝟏

≈ ∫
𝒅𝑿

𝑿

𝑿𝒏

𝑿𝟎

= 𝒍𝒏(𝑿𝒏) − 𝒍𝒏(𝑿𝟎) 

Thus 
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𝒍𝒏(𝑿𝒏) − 𝒍𝒏(𝑿𝟎) ≈∑𝝐𝒕

𝒏

𝒕=𝟏

 

Rearranging terms we find that  

 

𝒍𝒏(𝑿𝒏) ≈ 𝒍𝒏(𝑿𝟎) +∑𝝐𝒕

𝒏

𝒕=𝟏

 

 

According to the Central Limit Theorem the sum of many random variables is normally 

distributed. Thus for large values of n, ln(Xn) is normally distributed. Thus by definition 

Xn is lognormally distributed. 

 

The Use of the Lognormal in Other Industries 

The lognormal has been widely used in cost analysis for decades. It is also widely used in 

other industries. The book Statistical Rules of Thumb recommends the use of the 

lognormal in environmental studies (van Belle 2008).   

 

The analogy with cost estimating in insurance is “loss modeling.” In insurance parlance, 

a “loss” is the amount of a loss experienced by a policyholder. Parametric models are 

used to estimate both loss size and claim frequency. As cited in  Modelling Extremal 

Events (Embrechts et al., 2003),  Seal noted that “Types of distributions of independent 

claim sizes are…limited, for apart from the Pareto and lognormal distributions, we are 

not aware that any has been fitted successfully to actual claim sizes in actuarial history.” 

(Seal 1983).  Embrechts and his co-authors note that this is an extreme statement, but also 

state that many years later this point still stands, and cite other studies from the 1990s that 

make similar statements. More recently, the lognormal has also been used in ratemaking 

and reserve setting, a process not unlike cost risk analysis. Fu and Moncher’s 2004 

presentation (Fu and Moncher 2004) reports that the gamma and lognormal are the most 

widely used distributions in loss modeling. They mention 31 recent papers that reported 

the use of lognormal distributions and 37 that reported the use of gamma distributions for 

residual modeling. Fu and Moncher also study the normal distribution, but find the 

lognormal and gamma much better for modeling skewed, positive data, like “loss” and 

“cost.” They recommend against use of normal distribution for modeling skewed data 

because the normal distribution is symmetric. Ismail and Jemain (2009) also report the 

widespread use of the lognormal and gamma distributions in loss modeling as of 2009.  

 

The lognormal has been widely used in loss distribution modeling in studies from the 

1960s through the 2000s, including fire losses, auto losses, hurricane losses, and property 

insurance losses (Kleiber and Klotz 2003).  

 

Costs are modeled parametrically in health care and labor  economics as well (Manning 

and Mullahy 2001; Basu et al., 2004; Manning et al., 2005; Gallin 2004 ). Both log-

transformed OLS and IRLS/MUPE are widely used. No mention was found of a normal 

MLE or MPE-ZPB type method.  
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Empirical Evidence for the Lognormal 

If a maximum likelihood method has been used, we need to check to see if residuals fit 

the assumed shape. Fit is used here in the negative sense. We can never truly prove 

anything statistically. We can use data to disprove conjectures but the best we can hope 

for when we make hypotheses and test them, these tests will fail to disprove or reject our 

hypotheses. As the philosopher of science Karl Popper once remarked “Our knowledge 

can only be finite, while our ignorance must necessarily be infinite.” Three commonly 

used tests for the goodness of fit of a distribution are chi-square, Kolmogorov-Smirnov 

(K-S), and Anderson-Darling (A-D). Chi-square and Kolmogorov-Smirnov are both 

simple and easy to compute. Anderson-Darling is more powerful and considered a good 

test for departure from normality. Anderson-Darling gives more weight to the tails of the 

distribution, while chi-square gives more weight to low probability intervals. 

 

The K-S test statistic D is the maximum difference, in absolute value, between the 

empirical and fitted distributions, 

 

𝒎𝒂𝒙|𝑭𝒏(𝒙) − 𝑭∗(𝒙; 𝜽)| 
 

where 𝐹𝑛(𝑥) represents the empirical distribution, and 𝐹∗(𝑥; 𝜃) is the fitted distribution 

with parameter .  The maximum is evaluated for all sample data points. 

 

The Anderson-Darling test statistic integrates the difference between the empirical 

distribution and the fitted distribution function over the entire range. It weighs the 

difference by the reciprocal of the variance. The formula for the Anderson-Darling 

statistic is 

𝑨𝟐 = 𝒏∫
(𝑭𝒏(𝒙) − 𝑭∗(𝒙))

𝟐

𝑭∗(𝒙)(𝟏 − 𝑭∗(𝒙))

∞

𝟎

𝒇∗(𝒙)𝒅𝒙 

 

We focus our attention on assessing the fit of the residuals to the A-D and K-S tests. The 

NASA/Air Force Cost Model (NAFCOM) contains numerous subsystem-level and 

component-level CERs for spacecraft. These CERs are all LOLS CERs. We assess the fit 

of 32 nonrecurring and recurring CERs that have sufficient data points to fit a distribution 

to the residuals. The subsystems and components assessed are displayed in Tables 1 and 

2.  
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Subsystem Number of Data Points 

Attitude Control 72 

Communications, 

Command and Data 

Handling 

77 

Electric Power 78 

Reaction Control 

Subsystem 

62 

Solid Rocket 

Motor/Apogee Kick 

Motor 

26 

Structures and 

Mechanisms 

121 

Thermal Control 114 

Table 1. Subsystem NAFCOM CERs Fit to Residual Distributions. 

 

Component Number of Data Points 

Amplifier 19 

Antenna 21 

Battery 25 

Command and Data 

Handling 

31 

Computer 17 

Power Distribution 34 

Tank 21 

Transmitter 22 

Transponder 18 

 

Table 2. Component-Level NAFCOM CERs Fit to Residual Distributions. 

 

For the 16 subsystems and components in the table, there are CERs for both nonrecurring 

and recurring costs. Thus the residuals for 32 CERs were fit to continuous distribution. 

The Crystal Ball add-in for MS Excel was used to perform these fits. 

 

The critical value for the Anderson-Darling varies by distribution. For the normal and 

lognormal distributions the 10% critical value is 0.752 and the 5% critical value is 0.631. 

The K-S critical values depend on the sample size. The 10% critical value is 
1.22

√𝑛
 and the 

5% critical value is 
1.36

√𝑛
.  The critical vale is the probability of rejecting a true hypothesis. 

Statistics textbooks typically cite 5% as the standard critical value. (van Belle 2003).  

 

Crystal Ball includes a wide variety of continuous and discrete distributions, including 

the beta, lognormal, normal, gamma, and many others, including the maximum extreme 

(i.e., Gumbel) distribution. 
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For the 32 CERs, using the Anderson-Darling test, the lognormal is not rejected at the 

10% critical value for 30 out of 32 of the CERs, and is not rejected at the 5% critical 

value for 31 out of 32 of the CERs. Using the Kolmogorov-Smirnov test, the lognormal is 

not rejected at the 10% critical value for any of the 32 CERs. Using the chi-square test, 

the lognormal is not rejected at the 10% critical value for 30 of 32 CERs, and is not 

rejected at the 5% critical value for 31 of 32 CERs. 

 

The two CERs that are rejected for a lognormal fit using the 10% criteria are also rejected 

for all the other continuous distributions included in Crystal Ball. These two CERs are 

the design and development CER for communications, command, and data handling, and 

the theoretical flight unit CER for batteries. In order to compare the fit for these two with 

another case for which the fit is very good, we turn to the important visual comparison, 

sometimes referred to as the “eyeball test.” 

 

The lognormal is a good fit for the design and development CER for the attitude control 

subsystem. It has the lowest A-D test statistic and the lowest K-S test statistic among all 

of the continuous distributions included in Crystal Ball. The maximum extreme (Gumbel) 

distribution and the gamma distribution provide good fits as well. See Figure 7 for a 

graphical comparison of the fits with the empirical distribution. 

 

 
Figure 7. Graphical Comparison of Residuals for Attitude Determination and 

Control Subsystem with Three Fitted Distributions. 

 

To see a comparison of the lognormal fit versus the empirical distribution for the 

communications, command, and data handling nonrecurring CER, see Figure 8. The 

lognormal distribution has the lowest test statistic for both the A-D and K-S tests of 
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goodness of fit. Note that this fit is rejected at the 10% critical value, but not rejected at 

the 5 % critical value.  

 

 
Figure 8. Graphical Comparison of Residuals for Communications, Command and 

Data Handling Subsystem. 

 

From the eyeball test this still appears to be a decent fit, confirming the rule of thumb that 

the 5% critical value is the primary discriminator. 

 

The only CER that does not fit any distribution at the 5% critical value is the theoretical 

flight unit CER for batteries. For this component, the lognormal has the lowest test 

statistic value for the A-D and K-S tests. We can clearly see from the eyeball test that the 

lognormal is not a good fit (and thus the other distributions will be even worse, since they 

have worse test statistics). This is largely due to one outlier. Without this outlier, the CER 

residuals fit a lognormal distribution well. For this outlier the actual cost is approximately 

six times as much as the estimate. This merits additional investigation into the outlier to 

determine if there is a reason why this is the case, or if there is an error in the data. See 

Figure 9 for a graphical comparison of the empirical residuals to the lognormal fit for 

batteries. 
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Figure 9. Graphical Comparison of Residuals for Batteries. 

 

Don Mackenzie (Mackenzie et al. 2008) has given empirical evidence in support of the 

lognormal for modeling the residuals. 

 

In a 2015 paper, Smart showed that cost growth for 289 DoD and NASA programs 

closely follows a lognormal distribution (Smart 2015). 

  

The Joint Agency Cost and Schedule Risk and Uncertainty Handbook recommends the 

lognormal distribution as a default for modeling cost risk if no other information is 

known about the shape of the uncertainty distribution. (Thomas and Smith 2014) 

 

 

A New Method for CER Development 

We have provided theoretical and empirical evidence that the lognormal is a proper 

choice for CER residuals. However, the optimal method for modeling that is currently in 

use, LOLS, is subject to significant criticism, which involves essentially two facts. 

Specifically, because of the transformation LOLS estimates the median of the lognormal, 

and the method is not optimal (Garvey et al., 2016) 

.  

There is good reason to measure the median, as we have discussed, for a single project. 

However, in the vast majority of cases, projects are typically not budgeted for in 

isolation, but are part of a larger portfolio. While the sum of the means of a portfolio of 

projects is the portfolio mean, the percentiles of a distribution do not add. For the 50th 

percentile of a lognormal, since it is always less than the mean, the sums of the 50th 

percentiles is less than the overall 50th percentile. So estimating at the median is 

problematic. In practice it is much better to estimate at the mean or at another, higher risk 

measure. As discussed there are factors to adjust the CER estimate to the mean value. 
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However, these are approximations and are not accurate outside of the input data range 

(NCCA 2016). 

 

Since LOLS is minimizing the error of the log of cost, which is not a “meaningful 

measure,” then the claim gas been made that LOLS is not optimal. We have shown the 

LOLS is a maximum likelihood estimate of the median of the lognormal error, so it is an 

optimal method.  

 

Of the two major issues, one is serious. We would like to estimate the mean of a 

lognormal distribution so we propose just doing that directly and avoid transformation. 

That is we model lognormal residuals without transformation using the same technique, 

MLE.. This is computationally intensive, but very easy to implement. We term this 

method Maximum likelihood estimation Regression for Log Normal error (MRLN or 

“Merlin”). We begin with the lognormal likelihood, as before, but now we are going to 

estimate the mean of the equation, rather than the median. We are estimating the power 

equation: 

 

𝒀 = 𝜷𝟎𝑿𝟏
𝜷𝟏 …𝑿𝒑

𝜷𝒑
 

 

The mean of a lognormal density function is 

𝒆𝝁+
𝜽
𝟐 

 

Thus for the ith observation, we set  

 

𝒆𝝁𝒊+
𝜽
𝟐 = 𝜷𝟎𝑿𝒊𝟏

𝜷𝟏 …𝑿
𝒊𝒑

𝜷𝒑
 

 

Taking log transformation of both sides of the above equation, we find 

 

𝝁𝒊 +
𝜽

𝟐
= 𝒍𝒏𝜷𝟎 + 𝜷𝟏𝒍𝒏𝑿𝒊𝟏 +⋯+ 𝜷𝒑𝒍𝒏𝑿𝒊𝒑 

 

Therefore,  

 

𝝁𝒊 = 𝒍𝒏𝜷𝟎 + 𝜷𝟏𝒍𝒏𝑿𝒊𝟏 +⋯+ 𝜷𝒑𝒍𝒏𝑿𝒊𝒑 −
𝜽

𝟐
= 𝒍𝒏𝜷𝟎 +∑𝜷𝒊𝒍𝒏𝑿𝒊𝒑 −

𝒑

𝒋=𝟏

𝜽

𝟐
 

 

Recall that the likelihood for a lognormal is given by 

 

𝑳(𝝁, 𝜽) =∏
𝟏

𝒚𝒊√𝟐𝝅𝜽
𝒆−

(𝒍𝒏𝒚𝒊−𝝁𝒊)
𝟐

𝟐𝜽

𝒏

𝒊=𝟏

 

 

The log-likelihood is thus (ignoring constants) 
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𝒍(𝝁, 𝜽) = −
𝟏

𝟐𝜽
∑(𝒍𝒏𝒚𝒊 − 𝝁𝒊)

𝟐 −∑𝒍𝒏𝒚𝒊 −
𝒏

𝟐
𝒍𝒏𝜽

𝒏

𝒊=𝟏

𝒏

𝒊=𝟏

 

 

We substitute for   to obtain 

 

𝒍(𝜷𝟎, 𝜷𝟏, … , 𝜷𝒑, 𝜽)

= −
𝟏

𝟐𝜽
∑(𝒍𝒏𝒚𝒊 − 𝒍𝒏𝜷𝟎 −∑𝜷𝒊𝒍𝒏𝑿𝒊𝒑 +

𝒑

𝒋=𝟏

𝜽

𝟐
)

𝟐

−∑𝒍𝒏𝒚𝒊 −
𝒏

𝟐
𝒍𝒏𝜽

𝒏

𝒊=𝟏

𝒏

𝒊=𝟏

 

 

Ignoring constants and rearranging we obtain  

𝒍(𝜷𝟎, 𝜷𝟏, … , 𝜷𝒑, 𝜽) = −
𝒏

𝟐
𝒍𝒏𝜽 −

𝟏

𝟐𝜽
∑(𝒍𝒏𝒚𝒊 − 𝒍𝒏𝜷𝟎 −∑𝜷𝒋𝒍𝒏𝑿𝒊𝒋 +

𝜽

𝟐

𝒑

𝒋=𝟏

)

𝟐
𝒏

𝒊=𝟏

 

 

Taking partial derivatives with respect to the parameters, we obtain 

 

𝝏𝒍

𝝏𝜽
= −

𝒏

𝟐𝜽
−
𝒏

𝟖
+
∑ (𝒍𝒏𝒚𝒊 − 𝒍𝒏𝜷𝟎 − ∑ 𝜷𝒋𝒍𝒏𝑿𝒊𝒋

𝒑
𝒋=𝟏 )

𝟐
𝒏
𝒊=𝟏

𝟐𝜽𝟐
 

 

𝝏𝒍

𝝏𝜷𝟎
= −

∑ (𝒍𝒏𝒚𝒊 − 𝒍𝒏𝜷𝟎 − ∑ 𝜷𝒋𝒍𝒏𝑿𝒊𝒋
𝒑
𝒋=𝟏 )𝒏

𝒊=𝟏

𝜷𝟎𝜽
 

 

For k = 1,…,p,  

𝝏𝒍

𝝏𝜷𝒌
= −

∑ 𝒍𝒏𝑿𝒊𝒌 (𝒍𝒏𝒚𝒊 − 𝒍𝒏𝜷𝟎 − ∑ 𝜷𝒋𝒍𝒏𝑿𝒊𝒋
𝒑
𝒋=𝟏 )𝒏

𝒊=𝟏

𝜽
 

 

There won’t typically be a closed form solution form solution for the roots of these 

equations (unlike LOLS), so we will need a numerical iterative routine to solve, such as 

the Newton-Raphson algorithm. The Newton-Raphson method was published in Joseph 

Raphson’s Analysis Aequationum Universalis in 1690. While tedious, the tools to 

calculate nonlinear least squares have existed before the development of the least squares 

method by Carl Gauss in the early 19th century. 

 

We can utilize Excel’s solver routine to minimize the negative of the log likelihood. The 

statistical programming language R also provides the capability to calculate maximum 

likelihood estimates. 

 

We consider three examples. The examples are intended to compare the methods and not 

to be used for predicting future costs, so we do not do any training/testing splits of the 

data or cross-validation. 
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For our first example, we look at 121 data points for spacecraft weight and development 

cost. See Figure 10 for a graphical comparison. 

 

 
Figure 10. Design and Development Costs for the Structures Subsystem of 121 

Spacecraft, Weights, and CERs. 

 

Two commonly used measures of goodness-of-fit are Pearson’s R2 and standard percent 

errors. Keep in mind that these CER methods are nonlinear ones. As such, the linear R2 

commonly discussed in textbooks is problematic, since in the nonlinear case, this 

measure can be negative. As a measure of goodness-of-fit that does not suffer from this 

issue, Book and Young (1995) proposed a measure, Pearson’s R2, that circumvents this 

issue by calculating the square of the Pearson correlation coefficient. This is similar to 

the coefficient of determination and has a similar interpretation. Higher values are 

desired, and the metric ranges from 0 to 1. “Good” CERs often have Pearson’s R2 values 

above 70%. A second goodness of fit measure that measures deviations away from the fit 

is standard percent error. The typical linear standard error doesn’t work well for the 

nonlinear multiplicative error case, since we are interested in percentage deviations from 

the actual cost. The standard percent error is a nonlinear analog to the regression standard 

error, and is defined as  

 

 

                      Standard Percent Error  =                                                  100%, 

 

 

where n is the sample size, and k is the number of fitted coefficients. In this case, lower 

values are desired. These values can be quite large, even for CERs with Pearson R2s 
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above 90%. A standard percent error for spacecraft CERs below 30% is considered 

excellent (and rare). Note the similarity of this metric to the MPE-ZPB objective 

function..  

 

The parameters for these fits are provided in Table 3.  

 

Method 0 1 Pearson’s R2 Std % Error 

MRLN 0.13 0.81 38% 146% 

LOLS 0.07 0.81 38% 283% 

MUPE 0.17 0.76 39% 143% 

ZMPE 0.31 0.67 40.5% 140% 

Table 3. Comparison of CER Fits and Goodness-of-Fit Metrics. 

 

The four methods have similar Pearson’s R2 values. In terms of standard percent error, he 

direct estimation of the mean of the lognormal error has by far the lowest value. This is 

because the residuals follow a lognormal distribution. A fit of the residuals finds that the 

lognormal distribution has the lowest K-S, Chi-Square, and Anderson-Darling test values 

and is not rejected at the 10% critical values for any of the three tests. The gamma 

distribution ranks second in critical values for all three tests but is rejected at the 5% 

critical value for the A-D test, but not rejected at the 5% critical value for the K-S test or 

the Chi-Square test. 

 

The standard errors for MRLN, MUPE, and ZMPE are all similar. MUPE and MRLN 

have similar trends. A visual inspection seems to indicate that these two follow the trend 

in the data better than ZMPE. 
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For our second example we consider 62 reaction control system data points for 

spacecraft. 

 

 
Figure 11. Design and Development Costs and Thrust Values for the Reaction 

Control Subsystem of 62 Spacecraft, Weights, and CERs. 

 

Method 0 1 Pearson’s R2 Std % Error 

MRLN 1.35 0.59 54% 144% 

LOLS 0.65 0.59 54% 315% 

MUPE 2.04 0.48 47% 157% 

ZMPE 1.38 0.57 53% 147% 

Table 4. Comparison of CER Fits and Goodness-of-Fit Metrics. 

 

The direct estimation of the lognormal mean again has the lowest standard error and in 

this case has the highest standard error. The MUPE fit is the most different. I found that 

the algorithm did not really converge using Excel Solver, but bounced back and forth 

between the parameter in Table 4 and (0.37,0.92), but the standard error is much smaller 

for the parameters reported in the table. Again, for this case, the residuals closely follow a 

lognormal – we fail to reject the lognormal hypothesis at the 5% critical value for any of 

the three tests provided in Crystal Ball. The Weibull has the next best critical values, 

followed by the gamma, but we reject the hypothesis that the residuals follow a Weibull 

or gamma at the 5% and 10% critical values with the Anderson-Darling test. 

 

Our third example is 77 command, control, and data handling data points for spacecraft. 

We use two independent variables – weight and % new design to predict the cost of the 

design and development of this subsystem. 
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Method 0 1 2 Pearson’s R2 Std % 

Error 

MRLN 0.45 1.96 0.96 97% 63% 

LOLS 0.39 1.96 0.96 97% 75% 

MUPE 0.51 1.98 0.94 97% 62% 

ZMPE 0.65 2.03 0.89 96% 61% 

Table 5. Comparison of CER Fits and Goodness-of-Fit Metrics. 

 

All four methods provide similar results and similar fits. The data are better behaved with 

fewer outliers. The lognormal is again the best fit according to all three criteria and is not 

rejected at the 5% critical value. The gamma is rejected at the 5% and 10% critical values 

for the Anderson-Darling test but is not rejected at the 5% critical value for the K-S test. 

 

Summary 

Log-transformed OLS was the first nonlinear CER method widely used in estimating 

costs for government projects. This method has been heavily criticized in recent years for 

being antiquated. However, we have shown that there are important properties that make 

LOLS an optimal method. In the case of lognormally distributed residuals, LOLs is an 

MLE. MLEs have important statistical properties, such as efficiency and consistent, as 

well as minimum variance. We provided a theoretical argument, evidence from other 

industries, and empirical evidence in the form of NAFCOM data so argue that CER 

residuals are lognormally distributed. We also discussed two other commonly used 

methods for CER development – ZMPE and MUPE – and discussed their connection to 

MLE.  

 

However, LOLS does have some shortcomings, which are due to underestimating the 

mean (bias) and the interpretation of the transformation in log space. In order to 

overcome these, we have introduced the application of the maximum likelihood 

estimation method directly to lognormal error in unit space. This yields a new method for 

CER development, which we have termed Maximum likelihood estimation Regression of 

the Log Normal (MRLN or “Merlin”). We have provided examples comparing the results 

of this method with ZMPE, MUPE, and LOLS. 

 

 

 

 

 

 

 

 

 

 

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017



Public Release 16-MDA-8878 28 

References 

1. Babyak, M.A., “What You See May Not Be What You Get: A Brief, Nontechnical 

Introduction to Overfitting in Regression-Type Models,” Psychosomatic Medicine, 66, 

411-421, 2004. 

2. Bahadur, R.R., and L.J. Savage, “The Nonexistence of Certain Statistical Procedures in 

Nonparametric Problems,” Annals of Mathematical Statistics 27, 1956, pp 1115-1122. 

3. Basu, A. et al., “Comparing Alternative Models: Log Vs. Cox Proportional Hazard,” 

Health Economics, 2004. 

4. Book, S.A., and P.H. Young, “General-Error Regression for USCM-7 CER 

Development,” The Aerospace Corporation, El Segundo, CA, 1995 

5. Book, S.A., and P.H. Young, “General-Error Regression for Deriving Cost-Estimating 

Relationships,” Journal of Cost Analysis, Fall 1997, pp. 1-28. 

6. Book, S.A., and N.Y. Lao, “Deriving Minimum-Percentage-Error CERs Under Zero-

Bias Constraints,” The Aerospace Corporation, El Segundo, CA, July 1996. 

7. Book, S.A., “IRLS/MUPE CERs Are Not MPE-ZPB CERs,” Presented at the 

International Society for Parametric Analysts Annual Conference, Seattle, WA, May 23-

26, 2006. 

8. Book, S.A., and P.H. Young, “The Trouble with R2,” The Journal of Parametrics, Vol. 

26, No. 1, Summer 2006, pp. 87-112. 

9. Embrechts, P, C. Kluppelberg, and T. Mikosch, Modelling Extremal Events for 

Insurance and Finance, Fourth Printing, Berlin, 2003. 

10. Eskew, H.L. and K.S. Lawler, “Correct and Incorrect Error Specifications in 

Statistical Cost Models,” Journal of Cost Analysis, Spring 1994. 

11. Foussier, P. M. and P. Foussier, “Should We Use the Median Instead of the OLS?,” 

Parametric World, Fall 2008, pp. 8-11. 

12. Fu, L., and R. Moncher, “Severity Distributions for GLMs: Gamma or Lognormal?”, 

2004 CAS Spring Meeting, Colorado Springs, CO, 2004. 

13. Gallin, J.H., “Net Migration and State Labor Market Dynamics,” Journal of Labor 

Economics, 2004. 

14. Garvey, P. R., Book, S.A., and Covert, R.P., Probability Methods for Cost 

Uncertainty: A Systems Engineering Perspective, CRC Press, Boca Raton, FL, 2016. 

15. Goldberg, M.S., and A.E. Tuow, Statistical Methods Learning Curves and Cost 

Analysis, Institute for Operations Research and Management Sciences, Linthicum, MD, 

2003. 

16. Hu, S., “The Impact of Using Log-Error CERs Outside the Data Range and Ping 

Factor,” Presented at the Annual Joint ISPA-SCEA Conference, Denver, CO, June, 2005. 

17. Hu, S., “Fit, Rather Than Assume, a CER Error Distribution,” Presented at the 

Annual ICEAA Professional Development and Training Workshop, New Orleans, LA, 

June 2013. 

18. Ismail, N., and A.A. Jemain, “Comparison of Minimum Bias and Maximum 

Likelihood Methods for Claim Severity,” Casualty Actuarial Society E-Forum, Winter 

2009. 

19. Kleiber, C., and S. Klotz, Statistical Size Distributions in Economics and Actuarial 

Sciences, Wiley-Interscience, Hoboken, NJ, 2003. 

20. Klugman, S.A., et al., Loss Models, 3rd Ed., John Wiley & Sons, Hoboken, 2008. 

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017



Public Release 16-MDA-8878 29 

21. Lee, D.A., The Cost Analyst’s Companion, Logistics Management Institute, McLean, 

VA, 1997. 

22. Mackenzie, D., “Cost Estimating Relationship Variance Study,” AIAA Space 

Conference, Long Beach, CA, 2003. 

23. Mackenzie, D., et al., “Top Level Spacecraft Cost Distribution Study,” Joint Annual 

ISPA-SCEA Conference, Noordwijk, May, 2008. 

24. Manning, W.G., and J. Mullahy, “Estimating Log Models: To Transform or Not to 

Transform?”, Journal of Health Economics, 2001 

25. Manning, W.G., et al., “Generalized Modeling Approaches to Risk Adjustment of 

Skewed Outcomes Data,” Journal of Health Economics, 2005. 

26. Naval Center for Cost Analysis, Cost Estimating Relationship Development 

Handbook, 2016 (Draft). 

27. Nelder, J. A., “Weighted Regression, Quantal Response Data, and Inverse 

Polynomials,” Biometrics, Vol. 24 (1968), pages 979-985.  

28. Seal, H.L., “Numerical Probabilities of Ruin When Expected Claim Numbers Are 

Large,” Mitteilungen SVVM, 89-104, 1983. 

29. Smart, C., “Bayesian Parametrics: How to Develop a CER with Limited Data and 

Even Without Data,” presented at the ICEAA Annual Conference, June 2014, Denver, 

CO. 

30. Smart, C.B., “Covered with Oil: Incorporating Realism in Cost Risk Analysis,” 

Journal of Cost Analysis and Parametrics, 8:3, 186-205, 2015. 

31. Thomas, D. and A. Smith, Joint Agency Cost Schedule Risk and Uncertainty 

Handbook, 2014. 

32. van Belle, G., Statistical Rules of Thumb, 2nd ed., Wiley, Hoboken New Jersey, 2008. 

33. Wedderburn, R.W.M., “Quasi-likelihood Functions, Generalized Linear Models, and 

the Gauss-Newton Method,” Biometrika, Vol. 61, Number 3 (1974), pages 439-447. 

 

 

 

 

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017




