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Introduction

• In 333 BC in one of his early military campaigns 
Alexander the Great reached the city of Gordium

• When shown an intricate knot with its ends hidden, he 
cut the knot with his sword
– The phrase “cutting the Gordian knot” has come to 

mean a direct and simple solution to a complex 
problem

– We leverage the powerful sword                             of 
maximum likelihood estimation to                                 
provide a simple alternative to                                           
log-transformed ordinary                                                       
least squares                                                         
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Linear Regression

3

• Given an equation of the form

• And a set of data 

• The residuals are defined as:

• This is also referred to as the “error” term since it is the difference 
between the actual cost and the estimated cost linear regression 
finds the “best fit” by finding the parameters a and b that 
minimize the  sum of the squares of the residuals
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Least Squares and 
Regression Analysis

• The method of least squares was first developed by the mathematicians 
Legendre and Gauss in the early 19th century, who used it to predict the 
orbits of heavenly bodies using observed data

• Francis Galton later applied this technique to find linear predictive 
relationships between various phenomena, such as the relationship 
between the heights of fathers and sons

– Galton found a positive correlation between these heights but found a 
tendency to return or “regress” toward the average height, hence the term 
“regression analysis”
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Nonlinear Regression

• In the spacecraft and defense industry it is more common to see nonlinear 
relationships between cost and cost drivers

• The power equation is ubiquitous

• In this case Y typically represents cost in $, but can also represent effort 
(hours, full-time equivalents)

• X typically represents weight or some other performance parameter
• The equation can also be modified to accommodate multiple cost drivers
• The value of the b parameter in the power equation is usually less than 1, 

indicating economies of scale in design and production
• Linear regression is simple - the calculations can be done by hand, but 

nonlinear regression requires more sophisticated methods, often the use 
of a computer

baXY =
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Additive and 
Multiplicative Residuals

• The residuals of the power equation can either be additive or 
multiplicative

• Additive residuals have the form

• Multiplicative residuals have the form

• Multiplicative residuals are more appropriate for the spacecraft and 
defense industry in most applications because of wide variations in 
size, scope, and scale of the systems that are estimated

– As a result we are primarily interested in the percentage difference between 
actual and estimated costs, not the absolute difference

• For example, if historical data ranges from $50 million to $1 billion, 
better to analyze percentage differences

ε+= baXY

εbaXY =
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Residuals Comparison

• The commonly-used regression techniques considered in 
this presentation are all based on the multiplicative error 
assumption
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Multiplicative Residuals

8

• For the Power Equation with Multiplicative Residuals, i.e.,

• The Regression Estimates Vary Based on the Variation of the 
Residual

• Also Common to Adjust This to Treat ε as a Percentage, i.e., Set

• Actual Cost = Estimate +/- Percentage of Estimate
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Residuals are         
Random Variables

• For a “good” regression model, the cost drivers explain all (or 
most) of the variation in the historical data that can be explained

– It is typically assumed that any remaining variation is random

• Either due to non-repeatable random phenomena 
(e.g., test failures) that are truly random phenomena 
and will not help predict future cost, or due to our 
ignorance

• The multiplicative residuals that represent this unexplained 
variation are thus treated as random variables

• For linear regression, it is assumed that the additive residuals are 
normally distributed

• For nonlinear regression for CER development, residuals assumed 
to follow normal, lognormal, gamma, or treated without making 
such an assumption (non-parametric)
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Normal Distribution

• The most common probability distribution - many random 
phenomena follow this distribution

• Also called the “bell curve,” noted for its symmetry and thin tails.
• If cost is a sum of many random independent phenomena, the 

central limit theorem indicates this may be the appropriate 
distribution.
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Lognormal Distribution

• Lognormal distribution is skewed
• If x is lognormally distributed, y = ln(x) is normally distributed
• Fatter tails than the normal distribution
• Bounded below by zero, unbounded above. 
• If cost is a function is multiplicative factors (e.g., test failues cause a 

percentage increase in cost rather than a fixed amount increase), then 
complex projects are likely to be lognormally distributed (multiplicative 
analog to central limit theorem)

• These aspects make the lognormal appealing for cost modeling
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Gamma Distribution

12

• The Gamma Distribution is a Flexible Distribution.
• Can Resemble a Lognormal, Can Also Resemble an Exponential Distribution.

– Indeed the Gamma Distribution is the Sum of Independent Exponential Distributions.

• PDF is Given by:
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Parameter Calculation

• There are numerous ways to calculate the parameters of a 
cost-estimating relationship, but we consider one method –
Maximum Likelihood Estimation (MLE)

• Maximum Likelihood Estimation is a widely used statistical 
technique that serves as a unifying framework for the CER 
methods we discuss
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Maximum Likelihood 
Estimation

14

• Let A1,…, An represent the observed data and X1,…,Xn represent random variables 
where Ai results from observing the random variable Xi

• The likelihood function, which represents the likelihood of obtaining the sample 
results, is 

• The Maximum Likelihood Estimate of θ is the vector that maximizes the likelihood 
function

• Maximum Likelihood Estimation is an established  popular statistical technique
– Major advantage – likelihood function is almost always available
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Maximum Likelihood –
Lognormal Residuals

• For Yi=f(Xi,β)εi, where 
β = vector of coefficients of the CER 
Yi = actual cost of the ith data point
Xi = vector of cost drivers for the ith data point
εi = residual of the ith data point

• Probability density function for lognormal distribution

• Note that µ is the log-space mean
• If we estimate 𝝁𝝁 = 𝒍𝒍𝒍𝒍 𝒀𝒀 then in the case of the power equation  

𝒀𝒀 = 𝜷𝜷𝟎𝟎𝑿𝑿𝜷𝜷𝟏𝟏
we are estimating the linear equation 𝝁𝝁 = 𝒍𝒍𝒍𝒍𝜷𝜷𝟎𝟎 + 𝜷𝜷𝟏𝟏𝒍𝒍𝒍𝒍(𝑿𝑿)

• Note that 𝒆𝒆𝝁𝝁 = 𝒀𝒀 = 𝜷𝜷𝟎𝟎𝑿𝑿𝜷𝜷𝟏𝟏 is the median in linear space
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Estimating the Median

• Conditional probability/likelihood of yi given xi and β:

• If we take the log-likelihood and maximize that, we find it 
is equivalent to minimizing 

which is Log-Transformed Ordinary Least Squares (LOLS)
• Therefore LOLS is an MLE of the median
• Note that we can minimize the sum of squared errors for an 

arbitrary function f(Xi,β) as well
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Estimating the Median 
Vice the Mean

• For skewed data the median is a better representative of a 
distribution’s centrality

• However we rarely consider projects in isolation, but as part 
of a larger portfolio 

• The medians (also known as 50th percentiles) do not add, 
and the sum of 50th percentiles is less than the 50th

percentile of the sum
• The mean is a better choice for estimation, so we say that 

LOLS is biased low
• There are factors that allow you to correct for this (e.g., 

“PING Factor”
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Normal Residuals

• For the Equation Yi=f(Xi,β)εi , when the residuals are 
normally distributed, with mean = 1 and variance θ, the 
likelihood function, is

• The negative log-likelihood function can be simplified 
to the following representation 
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ZMPE

• The normal residual MLE is very similar to the Zero-Percent 
Bias Minimum Percent Error (ZMPE) method developed by 
Dr. Steve Book

• ZMPE minimizes

subject to the constraint that the sample bias is zero, i.e., 
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Normal MLE and ZMPE     
(1 of 2)

20

• The dominant term in the Normal MLE is the same as the ZMPE 
objective function, so the results of the two are often the same

• For the Data Displayed in the Table and Graphically Displayed in the 
Charts:

– Normal MLE Fit is 

– MPE-ZPB Fit is

Weight Cost
2 4
4 6
5 8
10 12
15 15
20 37
30 25
40 22
50 35
55 40
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Normal MLE and ZMPE     
(2 of 2)

• Normal MLE and ZMPE solutions are very similar since they are 
minimizing the same dominant term and are both “unbiased”
– MLE solution is asymptotically unbiased (unbiased for “large” 

samples)
– MPE-ZPB solution is unbiased regardless of sample size

• One advantage that MPE-ZPB has is lack of bias regardless of 
sample size
– Cost estimates are often based on small samples, so MLE 

solution may be biased
• On the other hand, MPE-ZPB is tied to the assumptions of the 

normal MLE.
– Need normally distributed (multiplicative) residuals to ensure 

consistent solutions in many cases.
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Gamma Residuals

• When the residuals follow a gamma distribution, the negative log-
likelihood function is

• This can be minimized by iteratively minimizing the sum of percent 
squared errors until the estimates converge:

• Note k is the iteration number
• This method was first developed by Nelder (1968) and Wedderburn

(1974), who called the method Iteratively Re-Weighted Least Squares 
(IRLS) and re-discovered by Hu in the 1990s, who called it Miminum
Unbiased Percentage Error (MUPE)
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IRLS/MUPE

• In the case of gamma residuals, IRLS/MUPE is an MLE
– also a Generalized Linear Model (GLM)

• However, IRLS/MUPE does not depend upon the 
assumption of gamma residuals.

• The likelihood method was generalized by Wedderburn to 
consider quasi-likelihood, which has good statistical 
properties
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Summary of Three CER 
Methods

• Log-Transformed OLS, MPE-ZPB, and IRLS/MUPE all share a 
common connection in Maximum Likelihood Estimation

• Log-Transformed OLS is a Maximum Likelihood Estimator of the 
median of lognormally distributed multiplicative residuals
– Parametric method

• MPE is a Pseudo-Likelihood Estimator of the Mean of normally 
distributed multiplicative residuals
– Bias constraint added
– Not directly parametric but has parametric properties

• IRLS/MUPE is a Maximum Likelihood Estimator of the mean of 
gamma distributed residuals
– Also more general, quasi-likelihood
– Parametric method
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Comparing the Methods –
an Example

• Although MPE-ZPB has the lowest standard percent error, the 
overall trend does not match the actual data

• MUPE and LOLS have similar fit
– Similar to results reported by Mackenzie(2003)

Weight Cost
10 3.2
20 4.5
30 30
40 7.1
70 8.4
100 10
200 14.1
300 17.3
500 22.4
1000 31.6
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Lognormal – Theoretical 
Foundations (1 of 3)

• Changes in cost over time are proportional to prior costs
– Cost is more likely to increase than decrease over time
– Over 80% of government projects experience cost growth

• Cost increases do not typically result in increased funding 
in the short term, so cost increases result in schedule slips

• Schedule slips mean a longer period in which personnel 
devoted to a project will charge to that project

• Larger projects have more people assigned to them so 
increases in cost will be proportional to the size of the 
project
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Lognormal – Theoretical 
Foundations (2 of 3)

• The change in cost from time t-1 to time t is

where the 𝝐𝝐𝒕𝒕′𝒔𝒔 are mutually independent and independent 
of 𝑋𝑋𝑡𝑡−1

• This is equivalent to 
𝑿𝑿𝒕𝒕 − 𝑿𝑿𝒕𝒕−𝟏𝟏
𝑿𝑿𝒕𝒕−𝟏𝟏

= 𝝐𝝐𝒕𝒕

• Summing over t

�
𝒕𝒕=𝟏𝟏

𝒍𝒍
𝑿𝑿𝒕𝒕 − 𝑿𝑿𝒕𝒕−𝟏𝟏
𝑿𝑿𝒕𝒕−𝟏𝟏

= �
𝒕𝒕=𝟏𝟏

𝒍𝒍

𝝐𝝐𝒕𝒕

𝑿𝑿𝒕𝒕 − 𝑿𝑿𝒕𝒕−𝟏𝟏 = 𝝐𝝐𝒕𝒕𝑿𝑿𝒕𝒕−𝟏𝟏
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Lognormal – Theoretical 
Foundations (3 of 3)

• Proportional changes can be approximated as

• Thus

𝒍𝒍𝒍𝒍 𝑿𝑿𝒍𝒍 − 𝒍𝒍𝒍𝒍 𝑿𝑿𝟎𝟎 ≈�
𝒕𝒕=𝟏𝟏

𝒍𝒍

𝝐𝝐𝒕𝒕

or equivalently

• According to the Central Limit Theorem the sum of many 
independent random variables is normally distributed, so 
ln(Xn) is normal for large n, thus Xn is lognormal

�
𝒕𝒕=𝟏𝟏

𝒍𝒍
𝑿𝑿𝒕𝒕 − 𝑿𝑿𝒕𝒕−𝟏𝟏
𝑿𝑿𝒕𝒕−𝟏𝟏

≈ �
𝑿𝑿𝟎𝟎

𝑿𝑿𝒍𝒍 𝒅𝒅𝑿𝑿
𝑿𝑿

= 𝒍𝒍𝒍𝒍 𝑿𝑿𝒍𝒍 − 𝒍𝒍𝒍𝒍 𝑿𝑿𝟎𝟎

𝒍𝒍𝒍𝒍 𝑿𝑿𝒍𝒍 ≈ 𝒍𝒍𝒍𝒍 𝑿𝑿𝟎𝟎 + �
𝒕𝒕=𝟏𝟏

𝒍𝒍

𝝐𝝐𝒕𝒕
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The Use of the Lognormal 
in Other Industries

• Rule of thumb for environmental studies
• Pareto and lognormal are the only distributions found to fit 

actuals for size claims in property and casualty insurance
• Lognormal is widely used in health and labor economics

– LOLS and IRLS are widely used 
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Empirical Evidence for the 
Lognormal

• For 32 LOLS CERs developed for the NASA/Air Force Cost Model 
between 2007 and 2009 the residuals were fit to a variety of 
distributions using the Crystal Ball® add-in for Excel
– Using the Anderson-Darling test, the lognormal was not 

rejected for 30 out of 32 at the 10% critical value and was not 
rejected for 31 of 32 at the 5% critical value

• Mackenzie (2008) has provided empirical evidence for modeling 
residuals with the lognormal

• Smart (2015) showed that cost growth for 289 DoD and NASA 
programs closely follows a lognormal distribution

• The Joint Agency Cost and Schedule Risk and Uncertainty 
Handbook (2014) recommends the lognormal distribution as a 
default for modeling cost risk if no other information is known 
about the shape of the distribution
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A New Method

• We have provided theoretical and empirical evidence for 
modeling the residuals as lognormal

• However the optimal method currently in use for modeling 
lognormal residuals is subject to criticism

• Because of the transformation LOLS estimates the median 
of the lognormal
– There are factors to translate the median to the mean but 

these are approximations and may not be accurate 
outside the input data range

• The new method is to use MLE to directly estimate the 
mean of the lognormal without the use of transformation
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MLE Regression of the Log 
Normal (MRLN) (1 of 4)

• We term this direct estimation of the mean MLE Regression 
for Log Normal error (MRLN or “Merlin”)

• We being with the lognormal likelihood but now we are 
going to estimate the mean rather than the median

• We are estimating the power equation
𝒀𝒀 = 𝜷𝜷𝟎𝟎𝑿𝑿𝟏𝟏

𝜷𝜷𝟏𝟏 …𝑿𝑿𝒑𝒑
𝜷𝜷𝒑𝒑

• The mean of a lognormal distribution is

𝒆𝒆𝝁𝝁+
𝜽𝜽
𝟐𝟐

• For the ith observation

𝒆𝒆𝝁𝝁𝒊𝒊+
𝜽𝜽
𝟐𝟐 = 𝜷𝜷𝟎𝟎𝑿𝑿𝒊𝒊𝟏𝟏

𝜷𝜷𝟏𝟏 …𝑿𝑿𝒊𝒊𝒑𝒑
𝜷𝜷𝒑𝒑
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• Taking log transformations

• Therefore

• Recall that the log-likelihood is 

𝝁𝝁𝒊𝒊 +
𝜽𝜽
𝟐𝟐

= 𝒍𝒍𝒍𝒍𝜷𝜷𝟎𝟎 + 𝜷𝜷𝟏𝟏𝒍𝒍𝒍𝒍𝑿𝑿𝒊𝒊𝟏𝟏 + ⋯+ 𝜷𝜷𝒑𝒑𝒍𝒍𝒍𝒍𝑿𝑿𝒊𝒊𝒑𝒑

𝝁𝝁𝒊𝒊 = 𝒍𝒍𝒍𝒍𝜷𝜷𝟎𝟎 + 𝜷𝜷𝟏𝟏𝒍𝒍𝒍𝒍𝑿𝑿𝒊𝒊𝟏𝟏 + ⋯+ 𝜷𝜷𝒑𝒑𝒍𝒍𝒍𝒍𝑿𝑿𝒊𝒊𝒑𝒑 −
𝜽𝜽
𝟐𝟐 = 𝒍𝒍𝒍𝒍𝜷𝜷𝟎𝟎 + �

𝒋𝒋=𝟏𝟏

𝒑𝒑

𝜷𝜷𝒊𝒊𝒍𝒍𝒍𝒍𝑿𝑿𝒊𝒊𝒑𝒑 −
𝜽𝜽
𝟐𝟐

𝑳𝑳 𝝁𝝁,𝜽𝜽 = �
𝒊𝒊=𝟏𝟏

𝒍𝒍
𝟏𝟏

𝒚𝒚𝒊𝒊 𝟐𝟐𝟐𝟐𝜽𝜽
𝒆𝒆−

𝒍𝒍𝒍𝒍𝒚𝒚𝒊𝒊−𝝁𝝁𝒊𝒊 𝟐𝟐
𝟐𝟐𝜽𝜽

MLE Regression of the Log 
Normal (MRLN) (2 of 4)
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• The log-likelihood (ignoring constants) is thus

• We substitute for µ to obtain

𝒍𝒍 𝝁𝝁,𝜽𝜽 = −
𝟏𝟏
𝟐𝟐𝜽𝜽�

𝒊𝒊=𝟏𝟏

𝒍𝒍

𝒍𝒍𝒍𝒍𝒚𝒚𝒊𝒊 − 𝝁𝝁𝒊𝒊 𝟐𝟐 −�
𝒊𝒊=𝟏𝟏

𝒍𝒍

𝒍𝒍𝒍𝒍𝒚𝒚𝒊𝒊 −
𝒍𝒍
𝟐𝟐
𝒍𝒍𝒍𝒍𝜽𝜽

𝒍𝒍 𝜷𝜷𝟎𝟎,𝜷𝜷𝟏𝟏, … ,𝜷𝜷𝒑𝒑,𝜽𝜽

= −
𝟏𝟏
𝟐𝟐𝜽𝜽�

𝒊𝒊=𝟏𝟏

𝒍𝒍

𝒍𝒍𝒍𝒍𝒚𝒚𝒊𝒊 − 𝒍𝒍𝒍𝒍𝜷𝜷𝟎𝟎 −�
𝒋𝒋=𝟏𝟏

𝒑𝒑

𝜷𝜷𝒊𝒊𝒍𝒍𝒍𝒍𝑿𝑿𝒊𝒊𝒑𝒑 +
𝜽𝜽
𝟐𝟐

𝟐𝟐

−�
𝒊𝒊=𝟏𝟏

𝒍𝒍

𝒍𝒍𝒍𝒍𝒚𝒚𝒊𝒊 −
𝒍𝒍
𝟐𝟐 𝒍𝒍𝒍𝒍𝜽𝜽

MLE Regression of the Log 
Normal (MRLN) (3 of 4)
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• Ignoring constants we obtain
𝒍𝒍 𝜷𝜷𝟎𝟎,𝜷𝜷𝟏𝟏, … ,𝜷𝜷𝒑𝒑,𝜽𝜽

= −
𝒍𝒍
𝟐𝟐 𝒍𝒍𝒍𝒍

𝜽𝜽 −
𝟏𝟏
𝟐𝟐𝜽𝜽�

𝒊𝒊=𝟏𝟏

𝒍𝒍

𝒍𝒍𝒍𝒍𝒚𝒚𝒊𝒊 − 𝒍𝒍𝒍𝒍𝜷𝜷𝟎𝟎 −�
𝒋𝒋=𝟏𝟏

𝒑𝒑

𝜷𝜷𝒋𝒋𝒍𝒍𝒍𝒍𝑿𝑿𝒊𝒊𝒋𝒋 +
𝜽𝜽
𝟐𝟐

𝟐𝟐

• There are no closed form solutions for the partial 
derivatives, so we need a numerical method, such as 
Newton-Raphson, to find the roots

• We can minimize the negative of the likelihood directly in 
Excel, using Solver, or by using the MLE package in R

MLE Regression of the Log 
Normal (MRLN) (4 of 4)
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Example 1 (1 of 2)

• 121 data points for satellite and spacecraft Structures, design 
and development cost and weight
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Example 1 (2 of 2)

• The parameters and goodness-of-fit metrics are

• The residuals follow a lognormal distribution (fail to reject at the 
10% critical value for Anderson-Darling and Kolmogorov-
Smirnov tests)

• MRLN, MUPE, and ZMPE all have similar fit statistics
• Bias is not an issue: sample bias is 0.2% for MRLN, 2.5x10-8 for 

MUPE and 8.7x10-7 for ZMPE

Method β0 β1 Pearson’s R2 Std % Error

MRLN 0.13 0.81 38% 146%

LOLS 0.07 0.81 38% 228%

MUPE 0.17 0.76 39% 143%

ZMPE 0.31 0.67 40.5% 140%
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Example 2 (1 of 2)

• For our second example we consider 62 reaction control 
subsystem – design and development cost and thrust for 
satellites and spacecraft
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Example 2 (2 of 2)

• The parameters and goodness-of-fit metrics are

• The ZMPE and MRLN fit are similar for this case
• MUPE is the most different
• Residuals again follow a lognormal – fail to reject at 

the 5% critical value for either Anderson-Darling or 
Komolgorov-Smirnov

Method β0 β1 Pearson’s R2 Std % Error

MRLN 1.35 0.59 54% 144%

LOLS 0.65 0.59 54% 315%

MUPE 2.04 0.48 47% 157%

ZMPE 1.38 0.57 53% 147%
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Example 3

• 77 command, control, and data handling subsystems costs 
weights, and % new design for satellites and spacecraft

• The fits are all similar
• Data are better behaved with few outliers
• The residuals follow a lognormal, fail to reject at the 5% 

critical value for Anderson-Darling and Komolgorov-
Smirnov

Method β0 β1 β2 Pearson’s R2 Std % 
Error

MRLN 0.45 1.96 0.96 97% 63%
LOLS 0.39 1.96 0.96 97% 75%
MUPE 0.51 1.98 0.94 97% 62%
ZMPE 0.65 2.03 0.89 96% 61%
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Summary (1 of 3)

• We have discussed three popular CER methods
– LOLS
– MUPE/IRLS
– ZMPE

• We have discussed Maximum Likelihood Estimation (MLE) 
and how each method has a connection to MLE when the 
residuals are multiplicative
– LOLS is an MLE for lognormal residuals
– MUPE is an MLE for gamma residuals (also it is a quasi-

likelihood estimator)
– ZMPE is similar to the MLE for normal residuals
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Summary (2 of 3)

• We have also discussed the transformation controversy 
regarding LOLS

• We have presented logical/mathematical arguments and 
empirical evidence as to why the lognormal is the right 
model for the residuals

• We have presented a simple solution to avoid the 
transformation issue altogether by directly modeling the 
mean of the lognormal via MLEs - MRLN

• MRLN is easy to implement in Excel Solver or the MLE 
package in R
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Summary (3 of 3)

Wired Tired Expired

Public Release 16-MDA-8878

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017



References (1 of 3)

1. Babyak, M.A., “What You See May Not Be What You Get: A Brief, Nontechnical Introduction to 
Overfitting in Regression-Type Models,” Psychosomatic Medicine, 66, 411-421, 2004.
2. Bahadur, R.R., and L.J. Savage, “The Nonexistence of Certain Statistical Procedures in 
Nonparametric Problems,” Annals of Mathematical Statistics 27, 1956, pp 1115-1122.
3. Basu, A. et al., “Comparing Alternative Models: Log Vs. Cox Proportional Hazard,” Health 
Economics, 2004.
4. Book, S.A., and P.H. Young, “General-Error Regression for USCM-7 CER Development,” The 
Aerospace Corporation, El Segundo, CA, 1995
5. Book, S.A., and P.H. Young, “General-Error Regression for Deriving Cost-Estimating 
Relationships,” Journal of Cost Analysis, Fall 1997, pp. 1-28.
6. Book, S.A., and N.Y. Lao, “Deriving Minimum-Percentage-Error CERs Under Zero-Bias 
Constraints,” The Aerospace Corporation, El Segundo, CA, July 1996.
7. Book, S.A., “IRLS/MUPE CERs Are Not MPE-ZPB CERs,” Presented at the International Society 
for Parametric Analysts Annual Conference, Seattle, WA, May 23-26, 2006.
8. Book, S.A., and P.H. Young, “The Trouble with R2,” The Journal of Parametrics, Vol. 26, No. 1, 
Summer 2006, pp. 87-112.
9. Embrechts, P, C. Kluppelberg, and T. Mikosch, Modelling Extremal Events for Insurance and 
Finance, Fourth Printing, Berlin, 2003.
10. Eskew, H.L. and K.S. Lawler, “Correct and Incorrect Error Specifications in Statistical Cost 
Models,” Journal of Cost Analysis, Spring 1994.

Public Release 16-MDA-8878

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017



References (2 of 3)

11. Foussier, P. M. and P. Foussier, “Should We Use the Median Instead of the OLS?,” Parametric 
World, Fall 2008, pp. 8-11.
12. Fu, L., and R. Moncher, “Severity Distributions for GLMs: Gamma or Lognormal?”, 2004 CAS 
Spring Meeting, Colorado Springs, CO, 2004.
13. Gallin, J.H., “Net Migration and State Labor Market Dynamics,” Journal of Labor Economics, 
2004.
14. Garvey, P. R., Book, S.A., and Covert, R.P., Probability Methods for Cost Uncertainty: A Systems 
Engineering Perspective, CRC Press, Boca Raton, FL, 2016.
15. Goldberg, M.S., and A.E. Tuow, Statistical Methods Learning Curves and Cost Analysis, 
Institute for Operations Research and Management Sciences, Linthicum, MD, 2003.
16. Hu, S., “The Impact of Using Log-Error CERs Outside the Data Range and Ping Factor,” 
Presented at the Annual Joint ISPA-SCEA Conference, Denver, CO, June, 2005.
17. Hu, S., “Fit, Rather Than Assume, a CER Error Distribution,” Presented at the Annual ICEAA 
Professional Development and Training Workshop, New Orleans, LA, June 2013.
18. Ismail, N., and A.A. Jemain, “Comparison of Minimum Bias and Maximum Likelihood 
Methods for Claim Severity,” Casualty Actuarial Society E-Forum, Winter 2009.
19. Kleiber, C., and S. Klotz, Statistical Size Distributions in Economics and Actuarial Sciences, 
Wiley-Interscience, Hoboken, NJ, 2003.
20. Klugman, S.A., et al., Loss Models, 3rd Ed., John Wiley & Sons, Hoboken, 2008.
21. Lee, D.A., The Cost Analyst’s Companion, Logistics Management Institute, McLean, VA, 1997.

Public Release 16-MDA-8878

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017



References (3 of 3)

22. Mackenzie, D., “Cost Estimating Relationship Variance Study,” AIAA Space Conference, Long Beach, 
CA, 2003.
23. Mackenzie, D., et al., “Top Level Spacecraft Cost Distribution Study,” Joint Annual ISPA-SCEA 
Conference, Noordwijk, May, 2008.
24. Manning, W.G., and J. Mullahy, “Estimating Log Models: To Transform or Not to Transform?”, Journal 
of Health Economics, 2001
25. Manning, W.G., et al., “Generalized Modeling Approaches to Risk Adjustment of Skewed Outcomes 
Data,” Journal of Health Economics, 2005.
26. Naval Center for Cost Analysis, Cost Estimating Relationship Development Handbook, 2016 (Draft).
27. Nelder, J. A., “Weighted Regression, Quantal Response Data, and Inverse Polynomials,” Biometrics, 
Vol. 24 (1968), pages 979-985. 
28. Seal, H.L., “Numerical Probabilities of Ruin When Expected Claim Numbers Are Large,” Mitteilungen
SVVM, 89-104, 1983.
29. Smart, C., “Bayesian Parametrics: How to Develop a CER
with Limited Data and Even Without Data,” presented at the ICEAA Annual Conference, June 2014, 
Denver, CO.
30. Smart, C.B., “Covered with Oil: Incorporating Realism in Cost Risk Analysis,” Journal of Cost Analysis 
and Parametrics, 8:3, 186-205, 2015.
31. Thomas, D. and A. Smith, Joint Agency Cost Schedule Risk and Uncertainty Handbook, 2014.
32. van Belle, G., Statistical Rules of Thumb, 2nd ed., Wiley, Hoboken New Jersey, 2008.
33. Wedderburn, R.W.M., “Quasi-likelihood Functions, Generalized Linear Models, and the Gauss-
Newton Method,” Biometrika, Vol. 61, Number 3 (1974), pages 439-447.

Public Release 16-MDA-8878

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017


	Cutting the Gordian Knot: Maximum Likelihood Estimation for Regression of Log Normal Error
	Introduction
	Linear Regression
	Least Squares and Regression Analysis
	Nonlinear Regression
	Additive and Multiplicative Residuals
	Residuals Comparison
	Multiplicative Residuals
	Residuals are         Random Variables
	Normal Distribution
	Lognormal Distribution
	Gamma Distribution
	Parameter Calculation
	Maximum Likelihood Estimation
	Maximum Likelihood – Lognormal Residuals
	Estimating the Median
	Estimating the Median Vice the Mean
	Normal Residuals
	ZMPE
	Normal MLE and ZMPE     (1 of 2)
	Normal MLE and ZMPE     (2 of 2)
	Gamma Residuals
	IRLS/MUPE
	Summary of Three CER Methods
	Comparing the Methods – an Example
	Lognormal – Theoretical Foundations (1 of 3)
	Lognormal – Theoretical Foundations (2 of 3)
	Lognormal – Theoretical Foundations (3 of 3)
	The Use of the Lognormal in Other Industries
	Empirical Evidence for the Lognormal
	A New Method
	MLE Regression of the Log Normal (MRLN) (1 of 4)
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Example 1 (1 of 2)
	Example 1 (2 of 2)
	Example 2 (1 of 2)
	Example 2 (2 of 2)
	Example 3
	Summary (1 of 3)
	Summary (2 of 3)
	Summary (3 of 3)
	References (1 of 3)
	References (2 of 3)
	References (3 of 3)



