Naval Center for Cost Analysis (NCCA)

Modeling with Gumby: Pros and Cons of the Weibull Curve

Jake Mender and Ann Hawpe 07 JUN 2017

Overview

Motivation

Parametric Phasing Curve Overview

Overfitting

Rayleigh Function Details

Rayleigh vs. Weibull

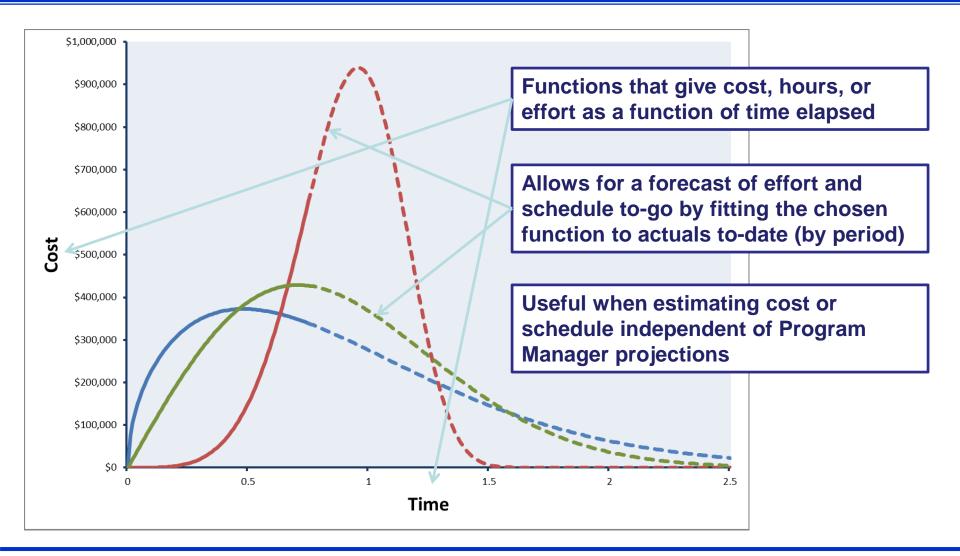
Problem with Rayleigh

Solutions

Take Aways

Future Study

Motivation


- NCCA was asked to evaluate the use of the Weibull curve, instead of the commonly used Rayleigh curve, as a tool for early R&D project estimating
- Our review highlighted some potential pitfalls when using the Weibull for predictive purposes with small data sets
- Results are relevant to other modeling problems in the cost estimating domain

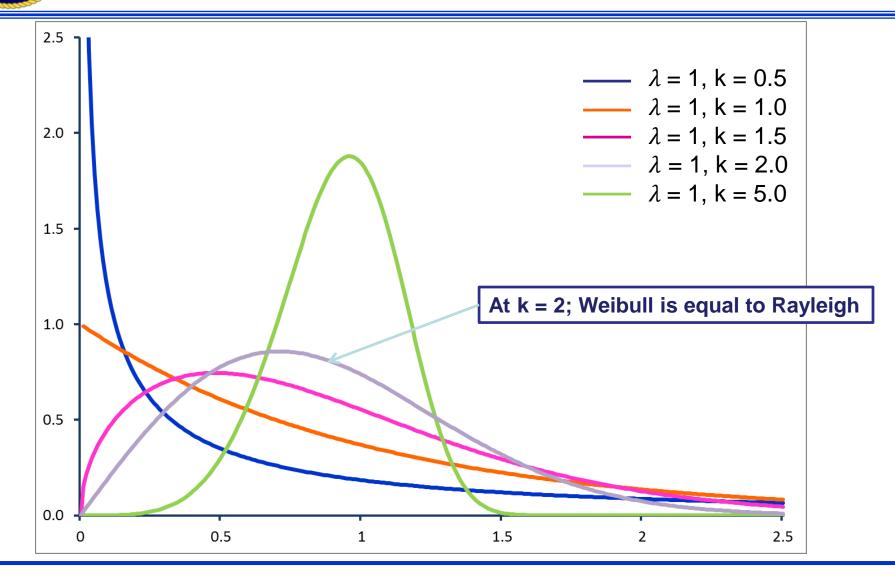
www.iceaaonline.com/portland2017

Parametric Phasing Curves

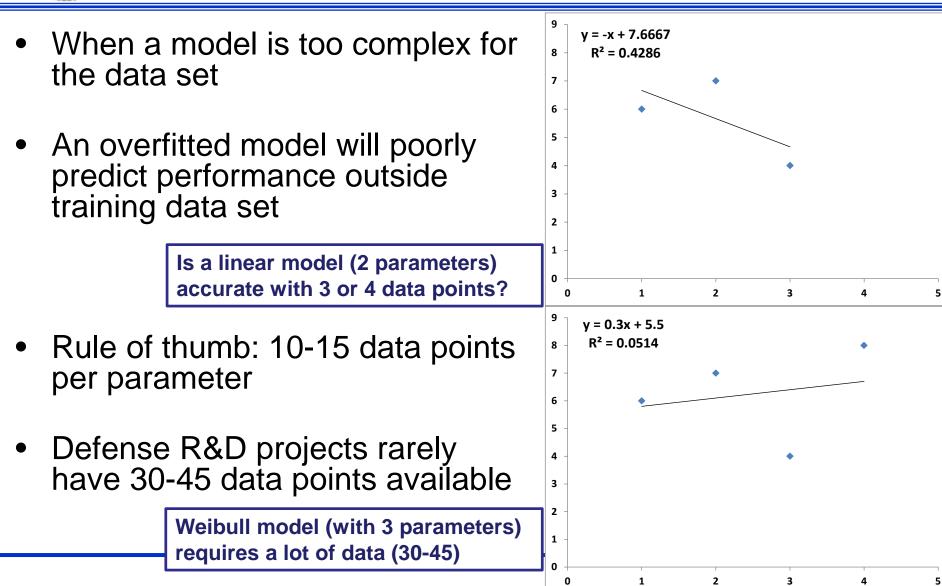
Weibull Distribution

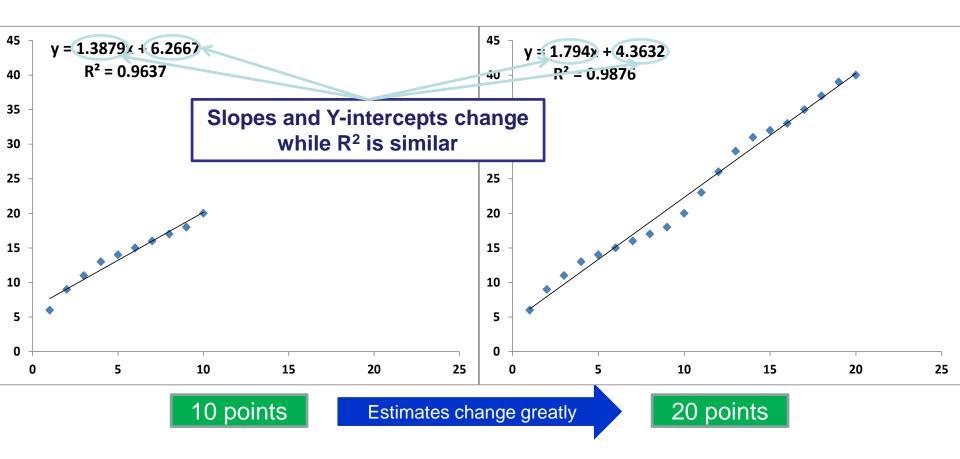
•
$$f(x) = \frac{\kappa}{\lambda} \left(\frac{x-\mu}{\lambda}\right)^{(\kappa-1)} e^{\left(-\left(\frac{x-\mu}{\lambda}\right)^{\kappa}\right)} x \ge \mu; \lambda, \kappa > 0$$

- (κ): shape
- (μ): location
- (λ) : scale
- Three parameters result in a function that is extremely flexible (like Gumby)
 - Pro: Can fit wide range of projects
 - Con: 30-45 data points required to avoid overfitting



Most popular solution is to use the Rayleigh function, a degenerate of the Weibull

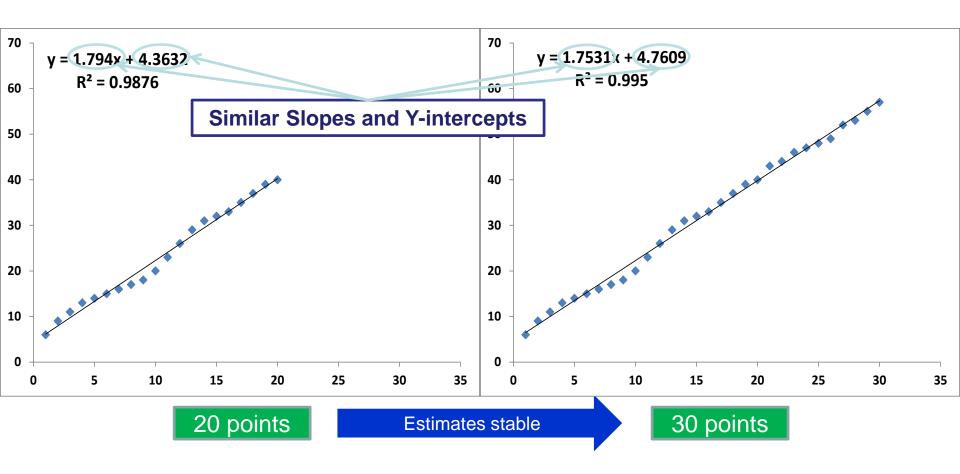



Overfitting

www.iceaaonline.com/portland2017

Presented at the 2017 ICEAA Professional Development & Training Workshop

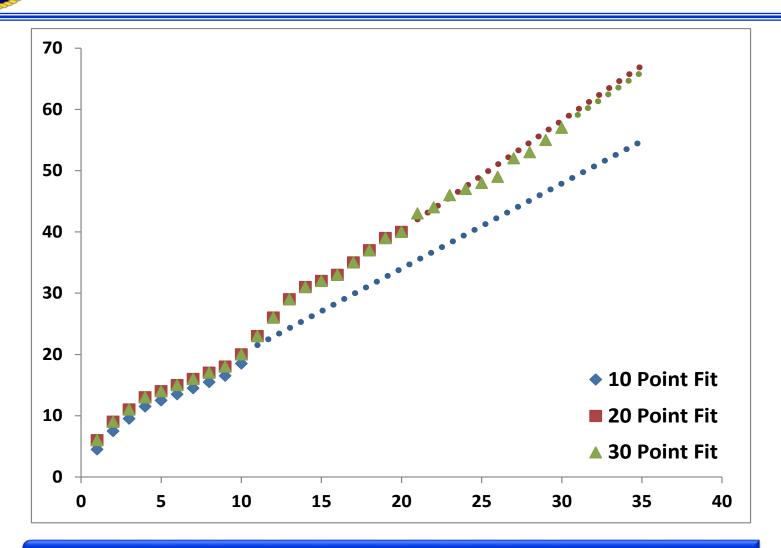
Overfitting: Part 2



Applying rule: linear model requires 20-30 points before parameter estimates will stabilize around the population mean

www.iceaaonline.com/portland2017

Presented at the 2017 ICEAA Professional Development & Training Workshop


Overfitting: Part 3

Weibull model (with 4 parameters) requires a lot of data (40-60)

www.iceaaonline.com/portland2017

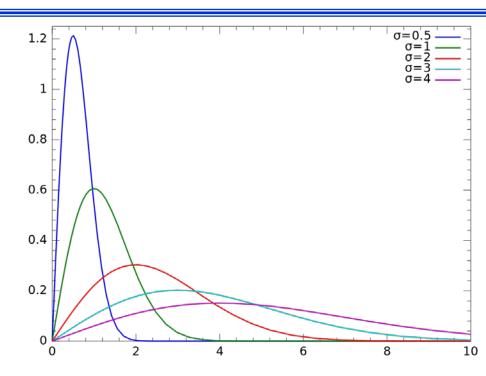
Overfitting: Part 4

Predictions stabilize once sufficient data is available

Overfitting: Solutions

Three ways to deal with this:

- 1. Use Weibull degenerates (like the Rayleigh) with fewer parameters
 - Reduce the amount of required data
- 2. Estimate parameters from other features of the project (AKA, get more data)
 - "Create" more data by considering other information
- 3. Use a different method
 - Find another method that isn't as data hungry



The Rayleigh Curve

 Developed from Manpower Utilization model developed by P.V. Norden in the 1960s

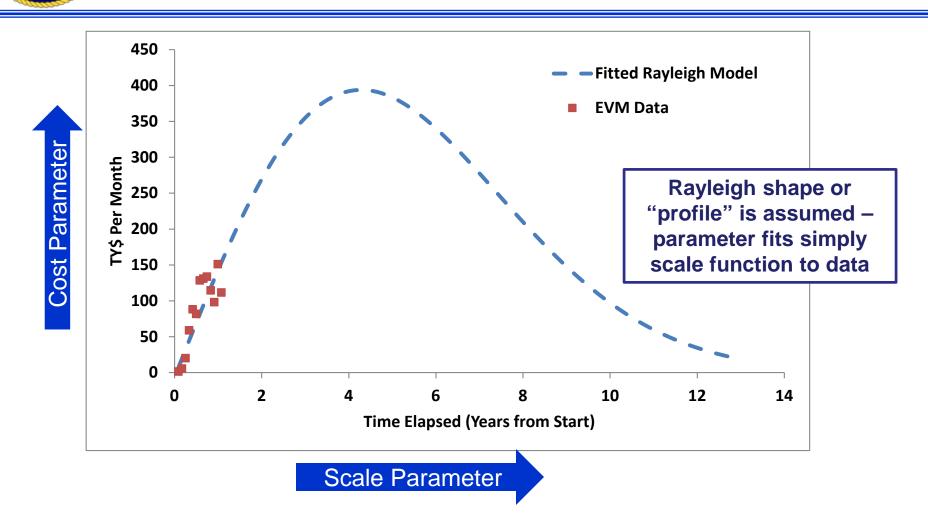
Presented at the 2017 ICEAA Professional Development & Training Workshop

- Pattern is approximated by Rayleigh Function
- If true, allows for total effort and duration to be estimated from the trajectory of early effort
 - For our purposes this is conveyed by ACWP as reported in EVM CPRs

Rayleigh simplifies the Weibull by assuming the distribution mode is always at the 39th percentile

Rayleigh is a degenerate (or restricted version) of the Weibull

Rayleigh Function Basics


- Restricted version of the Weibull
 - 2 parameters set to fixed value (restricted)
 - 1 parameter added, a cost scalar (d)

Presented at the 2017 ICEAA Professional Development & Training Workshop

- 1. Effort completed at time (t) is given by the Rayleigh function
- 2. Rayleigh function defined by CDF: *Cumulative Effort* $(t) = C(t) = k * (1 - e^{-\alpha * t^2})$
- 3. Taking derivative of CDF gives PDF: *Change in Effort* $(t) = c(t) = -\alpha * 2 * k * t * e^{-\alpha * t^2}$
- 4. Parameter definitions:
 - t = time elapsed since contract start
 - α = Rayleigh shape parameter (related to duration)
 - k = Rayleigh scale parameter (related to Final Cost)

By assuming a fixed shape parameter, we are scaling the cost and duration of the fixed Rayleigh profile to find the combination of the two that best fits our data

www.iceaaonline.com/portland2017

Rayleigh vs. Weibull

Demo to be done in Excel

The Problem

- Restricted models, like the Rayleigh, require a major assumption that projects have the Rayleigh profile
- Evidence is mixed on this assumption
- Rayleigh has predictive power because of the assumed profile
- Weibull lacks predictive power because it can take on a variety of forms
 - An effective heuristic to determine which Weibull fits the problem at hand is needed

Possible Solution

- Rayleigh method assumes a profile
- Instead of assuming a profile, why not use two-stage model to predict profile, and then predict cost and duration?
- Won't work off existing CPR data
- Could work if additional independent information about the project allowed for classification

NCCA hasn't done this yet, but other people have tried...

Electronic

Space

-0.545079

-1.100189

0.18152

0.56290

-3.00

-1.95

PresentAtir²⁰ Force histitute of Technology²⁰¹⁷ (AFIT) Weibull Model

Attempted to address the overfitting problem via a two-stage model

Step 1: Develop regression using program characteristics to predict best Shape and Scale parameters

Step 2: Fit a Weibull model using estimated parameters and optimizing for budget parameter

Shape Model S	ummary of Fi	it	Scale Model Summary of Fit						
RSquare 0.310					RSquare				0.921671
RSquare Adj 0.274185					RSquare Adj				0.920888
Root Mean Square Error0.763702Mean of Response2.724529Observations (or Sum Wgts)102					Root Mean Square Error Mean of Response				0.824422 5.854373
					Shana Madal A	nalveie of Va	riance (ANOVA)		
Source	DF		Mean Square	F Ratio	Source	DF	Sum of Squares	Mean Square	F Ratio
		Sum of Squares			Model	1	799.75149	799.751	1176.672
Model	5	25.169127	5.03383	8.6308	Error	100	67.96724	0.680	Prob > F
Error	96	55.991124	0.58324	Prob > F	C. Total	101	867.71873		<.0001
C. Total	101	81.160251		<.0001					
					Scale Model Parameter Estimates				
Shape Model Parameter Estimates					Term	Estimate	Std Error	t Ratio	Prob> t
Term	Estimate	Std Error	t Ratio	Prob> t	Intercept	0.0683049	0.187391	0.36	0.7163
Intercept	1.299561	0.32514	4.00	0.0001	Duration	0.7256199	0.021153	34.30	<.0001
ln(1/Duration)	-0.973254	0.16037	-6.07	<.0001					
Army	-0.423434	0.20643	-2.05	0.0430					
Navy	-0.485661	0.18882	-2.57	0.0116					

0.0034

0.0536

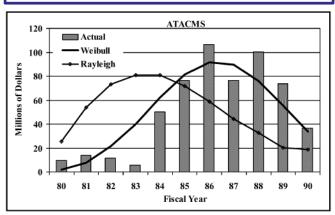
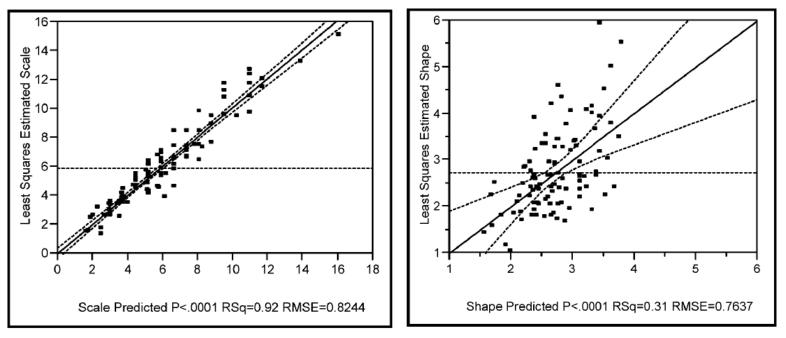


Figure 22. Rayleigh and Weibull Model vs. Actual ATACMS Budget Profile


www.iceaaonline.com/portland2017

AFIT Model: Results

Presented at the 2017 ICEAA Professional Development & Training Workshop

Predict Scale and Shape as a function of service, system type, total cost, and duration

Results: success predicting scale (and to a lesser extent Shape) – Forecasted Weibull models correlated well to project expenditures, but the associated duration and cost estimates were not evaluated for accuracy

NCCA Evaluation Criteria

Presented at the 2017 ICEAA Professional Development & Training Workshop

- In DoD use, phasing curves are used to make specific predictions regarding three things:
 - 1. Profile: the period by period expenditures
 - 2. Duration: The total amount of time required
 - 3. Total Cost: The total amount required to complete the project
- Any proposed Phasing Model should be evaluated in all 3 dimensions before use

- Parametric phasing models can be an effective tool for independent evaluation of <u>R&D projects</u>
- Estimators must be careful when using complex models early in a project
 - Complex models require larger amounts of data
- Rayleigh model is well supported by a <u>large body</u> of research, but has known limitations
- The more complex Weibull shows promise, but requires further research regarding the <u>overfitting</u> problem

Analysts must think critically regarding their use case and ensure the model selected is appropriate for the problem at hand

Future Study

- Evaluate AFIT model in the context of the early R&D forecasting use case
- Explore alternate predictors for shape, scale, and location parameters (beyond what was considered in the AFIT study)

www.iceaaonline.com/portland2017

