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Abstract

Typically, cost estimating models contain many uncertain parameters which drive the model
output results. To characterize the model output distributions, Monte Carlo methods are em-
ployed, which require accurate description of model parameter distributions and dependencies.
In this paper we review the techniques to compute the parameter confidence regions for linear
and nonlinear regression methods that can be used for this purpose. Finally, comments are
made regarding the current practical implementations and limitations.

1 Introduction

When building models in cost estimating as in many other scientific fields, an analyst begins
with observed data and an assumed model form that governs the relationship of the independent
and dependent variables. These models contain parameters that often represent specific physical
properties and the model form of equations can be dictated by underlying dynamical processes.
The desire is to determine the value of the parameters associated with the assumed model that
provide the best fit in some measure between the model predictions and the observed data.

Regression analysis, which is a ubiquitous tool for parameter estimation, identifies the param-
eters that minimize the sum of squared errors between the observed and predicted data points. In
theory, there exist population parameters for the model type that determine all possible observa-
tions up to the random error terms. Since the observed data is only a subset of the total population,
the computed parameters are reflective of the sample and are not necessarily the true population
parameters. Thus, given a set of parameters the secondary task is to quantify the uncertainty
associated with the parameters computed from the sample data. Furthermore, in cost estimating
applications, a model that encompasses all costs for a program may contain many uncertain pa-
rameters. The uncertainty of the model outputs can be assessed using a Monte Carlo simulation to
numerically sample the inputs and capture the output distributions. The Monte Carlo process and
the accuracy of the results relies on quantification of the parameter distributions and dependencies
between them. Typically, distributions for all parameters are one dimensional distributions and
some measure of correlation is used to force pairwise relationships between parameter inputs. This
process may not accurately capture the underlying multidimensional distribution of parameters
and could consequently produce incorrect output distributions and ultimately misleading results.

The purpose of this paper is to review the methods for finding the parameter confidence regions
for linear and nonlinear regression models. The methods will be applied to equations typical in cost
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estimating applications. To support that goal, in section 2, an overview of nonlinear regression is
presented. Joint confidence region computations are developed in section 3. In section 4, the cost
estimating relationship models are introduced as well as numerical results. Finally, in section 5,
the results of this paper, and some potential ideas for future work are summarized.

2 Review of Nonlinear Regression

To facilitate the development of the later equations a review of nonlinear regression is presented
using a matrix approach. For additional introduction and results see [1, 2]. The general form for
all models considered here is

yi = f (xi,β) + εi (1)

where xi is a vector of variables from RN , β = (β0, ..., βp−1)
T is a vector of parameters from Rp,

and f (xi,β) is the function relating the input variables to the output data yi using the parameters
β and a random error term εi.

When the function f (xi,β) is linear in β, the model is called linear. In some cases, the
function is not linear in β, but can be made linear through a nonlinear transformation. Applying a
logarithm to both the input variables and possibly the output data is one common transformation.
When the function is linear or transformably linear in the parameters, the Ordinary Least Squares
(OLS) regression to find the parameter values. When the function f (xi,β) is nonlinear in β
or has no linearizing transformation an approach other than OLS must be used to solve for the
parameter vector β. The most common approach of Nonlinear Regression (NLR) involves iterated
linearization. The linearization process as the name suggests creates a linear model that under
the right circumstances closely approximates the nonlinear model around the specified point. The
process is described below.

To find a least squares solution, recall the error equation is given by the difference between the
observed data yi and the model predictions ŷi, referred to as the fitted data, which are based on
the parameter values. Hence, the error equation can be thought of a function of the independent
variables and the parameter values given by

εi (xi,β) = yi − ŷi
= yi − f (xi,β)

and the total sum of squared errors is

S (xi,β) =

N∑
i=1

(εi (xi,β))2 (2)

=
N∑
i=1

(yi − f (xi,β))2 . (3)

Assuming that f (xi,β) is sufficiently regular, we can expand f (xi,β) about a point β(k) in the
parameter space using a Taylor series expansion as

f (xi,β) = f
(
xi,β

(k)
)

+

p−1∑
j=0

[
∂f (xi,β)

∂βj

]
β=β(k)

(
βj − β(k)j

)
+ LTE

where LTE is the local truncation error associated with the first order Taylor Series approximation.
The term β(k) in this context represents an iterative approximation for the true parameters. Using
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the Taylor series approximation above and neglecting the higher order terms, f (xi,β) can be locally
approximated as a linear function in β and (1) can be written using matrix operations as

yi ≈ f
(
xi,β

(k)
)

+

p−1∑
j=0

[
∂f (xi,β)

∂βj

]
β=β(k)

(
βj − β(k)j

)
+ εi

= f
(
xi,β

(k)
)

+
[
∂f(xi,β)
∂β0

∂f(xi,β)
∂β1

. . . ∂f(xi,β)
∂βp−1

]
β=β(k)


β0 − β(k)0

β1 − β(k)1
...

βp−1 − β(k)p−1

+ εi. (4)

Stacking the equations for each of the data points yi we obtain the matrix system equation given
by

Y = F(k) + D(k)
(
β − β(k)

)
(5)

or equivalently

D(k)
(
β − β(k)

)
=
(
Y− F(k)

)
(6)

where the error terms are included in the data vector Y and the model approximation F and the
matrix D of partial derivatives called the Jacobian are given by

F(k) =


f
(
x1,β

(k)
)

f
(
x2,β

(k)
)

...

f
(
xN ,β

(k)
)

 D(k) =


∂f(x1,β)
∂βk

∂f(x1,β)
∂β1

. . . ∂f(x1,β)
∂βp−1

∂f(x2,β)
∂βk

∂f(x2,β)
∂β1

. . . ∂f(x2,β)
∂βp−1

...
...

. . .
...

∂f(xN ,β)
∂βk

∂f(xN ,β)
∂β1

. . . ∂f(xN ,β)
∂βp−1


β=β(k)

.

When the number of data points is not equal to the number of parameters i.e. N 6= p, then the
D matrix is non-square, and hence not invertible. When there are less data points than parameters
(N < p), the system (5) does not have a unique parameter solution but rather an infinite number
of solutions through a p −N dimensional subspace of Rp. When there are more data points than
parameters (N > p), the system is overdetermined and has either a single solution (in the case of
perfect data) or does not have a solution. When there are equal numbers of distinct data points and
parameters the system containing the error is solved exactly. The least squares solution minimizes
the sum of squared errors and gives the exact solution, if it exists. In practical applications, for
this reason, it is typical to have more data points than parameters with the hope that the least
squares solution will provide a better approximation to the true population parameters by reducing
the influence of the error.

A mathematical generalization of the matrix inverse is called the pseudoinverse. Given an
[n×m] matrix A, the pseudoinverse of A is defined by

A† =
(
ATA

)−1
AT

where AT is the transpose of the matrix. Then, for the overdetermined system

Ax = z

the least squares solution using the pseudoinverse is given by

x = A†z. (7)
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To understand how the pseudoinverse gives the least squares solution note the residual (error)
term for any vector x is given by

ε = z −Ax

and the sum of squared errors is

εTε = (z −Ax)T (z −Ax) .

The least squares solution minimizes the sum of squared errors equation yielding a zero derivative,

0 =
∂

∂x

[
εTε

]
= −2AT (z −Ax) . (8)

Rearranging (8) we have
ATAx = ATz

which is the matrix form of the normal equations. The term on the left side ATA is a square
matrix and for at least m unique data points, is invertible. The solution is given by

x =
(
ATA

)−1
ATz

which agrees with (7).
Using the pseudoinverse, the system linearized about the point β(k) in (6) can be solved for a

correction vector

δ(k) =
[
D(k)

]† (
Y− F(k)

)
. (9)

Therefore, starting from an initial guess β(k), we find a new estimate β(k+1) by computing

β(k+1) = β(k) + δ(k). (10)

This process is known as the Gauss-Newton step and is repeated until the termination criteria
are met. A slight but common modification adds a scaling parameter γ ∈ (0, 1] to the correction
vector so that (10) becomes

β(k+1) = β(k) + γδ(k) (11)

= β(k) + γ

([
D(k)

]† (
Y− F(k)

))
.

The correction vector is computed from the linearization around the point β(k) and using a full
correction step can overshoot true solution or produce convergence issues. The scaling parameter
allows for partial steps in the right direction and can increase the stability of the overall optimization
process, potentially at the cost of additional iterations required to reach a given tolerance.

When the problem is linear in the parameters the Jacobian matrix is constant and the parameter
vector can be found after one full step iteration. Here, the matrix D is the traditional data (or
design) matrix referred to in literature as X [1]. Consequently, we have derived the well known
result that the maximum likelihood unbiased estimator b of the true parameter vector β is given
by

b = D†Y. (12)

Additionally we reference [1] that for the linear case

b ∼ N
(
β, σ2

(
DTD

)−1)
. (13)
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3 Parameter Confidence Regions for Regression Problems

From (13) we have that the parameter estimates themselves are random variables with a distribution
which depend on the error terms. What may not be as obvious is that the estimates also depend
on the model and data sample points. Specifically, for the inverse of DTD to exist we require that
D have full column rank. Even if DTD is non-singular, the condition number may be large enough
to yield untrustworthy results when computing the population parameter estimates. Ultimately,
we are interested not only the parameter values, but their uncertainty characterization which is
influenced by the data error and sampling.

For a single parameter of interest, confidence intervals are typical to describe the uncertainty
of the parameter estimate. These can be seen in a parameter margin of error, e.g. ±3% or in a
range, e.g. µ ∈ [7.4, 7.6]. When considering the multiple parameters a one dimensional interval is
no longer appropriate. The range of reasonable values is a multidimensional set, for linear problems
an ellipse for 2 parameters or a hyperellipsoid for more than 2 parameters. Simply stated, for a
given confidence coefficient α the confidence region for a parameter θ is the set CR ∈ Rp such that

Pr (θ ∈ CR) < (1− α) . (14)

As stated above, this set CR depends on the model characteristics and particular sample. The
true population parameter vector is a constant and for any confidence region, is either contained
in the region or not. So the confidence region must be interpreted as a statement regarding the
probability that the process and sample can reliably create a region that would contain the true
population parameter with probability (1− α). For a single sample this can be restated to say that
the confidence region is the set of all values such that if any were the true population parameter,
it would not be statistically different at the α level of confidence [3].

More formally, the confidence region is defined [1, 2] as the set of all β̃ such that

S
(
xi, β̃

)
≤ S (xi, b)

(
1 +

p

N − p
F (p,N − p, 1− α)

)
(15)

where S
(
xi, β̃

)
is defined as in (2) and F (p,N − p, 1− α) is the Fisher distribution. After some

rearranging (15) can be expressed as(
S
(
xi, β̃

)
− S (xi, b)

)
≤ ps2F (p,N − p, 1− α) (16)

where we have only recognized the term s2 = S (xi, b) /(N − p) as the mean squared error of the
estimate. From these definitions, determining the boundaries of the confidence region may require
the evaluation of the model at a potentially significant number of points in the parameter space.
In the case of a linear model, by taking advantage of the constant Jacobian we can determine
the confidence region after solving the linear regression without the need for sampling. Given the
parameter estimate b from the linear regression, the evaluated model vector F (x, b) and the matrix
D, using the Taylor series expansion, the model evaluated at any other parameter vector β̃ is

F
(
x, β̃

)
= F (x, b) + D

(
β̃ − b

)
.

From this it can be shown that

S
(
xi, β̃

)
− S (xi, b) =

(
β̃ − b

)T
DTD

(
β̃ − b

)
5
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and combining with (16) we obtain the result(
β̃ − b

)T
DTD

(
β̃ − b

)
≤ ps2F (p,N − p, 1− α) . (17)

From this definition, given the regression estimate b, the Jacobian matrix and s2, the complete
confidence region can be computed without the need for evaluating the model at additional points.
The linear approximation to the confidence region for nonlinear problems can be found using (17)
where the Jacobian matrix D is fixed after evaluating at β = b. If the nonlinear problem is
only “slightly” nonlinear, i.e. the Jacobian doesn’t change significantly over the parameter space,
then the linear approximation confidence regions may provide a good approximation of the true
confidence region.

In the next section, the confidence regions and linear approximations will be compared for
equations that are common in cost estimating. If the linear approximations are good approximations
to the true parameter regions then they could be suitable as input distributions for Monte Carlo
simulations.

4 Cost Estimating Relationships

In this section some typical Cost Estimating Relationship (CER) models are described. Using some
sample data the joint confidence regions are computed.

4.1 Learning Curves

4.1.1 Model Description

The theory of learning, which explains the cost and quantity trends observed, is primarily attributed
to two researchers, T.P. Wright [4] and J. R. Crawford. The basic learning model assumes that
as the number of units produced increases, the cost (in hours or dollars) to produce those units
decreases. As a simple example, consider the reduction in time required to manufacture a unit
as the worker becomes familiar with the instructions. As the worker produces more and gains
experience, the labor time per unit decreases and the unit cost decreases.

According to both Wright and Crawford, as the total number of units doubles the cost decreases
by a fixed percentage. While Wright and Crawford both developed the same model equation their
interpretations of the types of cost has spawned two learning theories, Unit and Cumulative Average
(CUMAV). Here we will focus only on the Unit theory. In this theory the mathematical formulation
for a learning curve based model has the form

y = T1 x
log2(LC) (18)

where T1 is defined as the cost of a theoretical first unit and LC is the percentage reduction that
occurs when the number of units doubles and is referred to as the learning curve slope. This
formulation is a two parameter model depending on the T1 and LC values to uniquely define the
predictions for all production units x. Representative slopes can range from 0.75 for manual labor
intensive or complex manufacturing processes to 0.95 for simple or automated processes.

In many cases, units are procured as a lot and the costs are not tracked on an individual basis
but rather only the total cost of the lot is known. In this case the average cost for a production lot
i with first unit Fi and last unit Li is given by

1

Li − (Fi − 1)

Li∑
k=Fi

yk = ȳi =
T1

Li − (Fi − 1)

Li∑
k=Fi

x
log2(LC)
k . (19)
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In order to avoid the necessary computation of the sum, a potentially non-integer production
unit x̃i, called the lot midpoint for lot i, is defined such that the unit cost of the lot midpoint unit
is the same as the average unit cost of the lot. Once x̃i is found, then the average unit cost of a lot
is given as

1

Li − (Fi − 1)

Li∑
k=Fi

yk = ȳi = T1 x̃
log2(LC)
i . (20)

To derive what the x̃i value should be note, one approximation of the summation can be derived
using calculus

Li∑
k=Fi

x
log2(LC)
k ≈

∫ Li+
1
2

Fi− 1
2

xlog2(LC)dx∗

=
xlog2(LC)+1

log2 (LC) + 1

∣∣∣∣∣
Li+

1
2

Fi− 1
2

=

(
Li + 1

2

)log2(LC)+1 −
(
Fi − 1

2

)log2(LC)+1

log2 (LC) + 1
. (21)

Combining the above with the average unit cost equation we obtain

1

Li − (Fi − 1)

Li∑
k=Fi

yk =
T1

Li − (Fi − 1)

Li∑
i=Fi

x
log2(LC)
k

≈ T1
Li − (Fi − 1)

((
Li + 1

2

)log2(LC)+1 −
(
Fi − 1

2

)log2(LC)+1

log2 (LC) + 1

)

= T1

((
Li + 1

2

)log2(LC)+1 −
(
Fi − 1

2

)log2(LC)+1

(Li − (Fi − 1)) (log2 (LC) + 1)

)

which yields an approximation of x̃i given by

x̃i =

((
Li + 1

2

)log2(LC)+1 −
(
Fi − 1

2

)log2(LC)+1

(Li − (Fi − 1)) (log2 (LC) + 1)

) 1
log2(LC)

. (22)

From this definition it is evident that the lot midpoint values depend on the slope of the learning
curve and the lot size. A simpler heuristic approximation for the lot midpoint is given by

ˆ̃xi =
Fi + Li + 2

√
Fi Li

4
(23)

which is the average of the algebraic and geometric lot average unit numbers. This approximation
does not depend on the slope of the learning curve and can be used as an initial estimate for an
iterative solver.

∗In [5] a formulation is presented that relies on inclusion of correction terms to the stated approximation to provide
an arbitrary level of accuracy. Additionally, by using the integration bounds Fi and Li + 1 instead, we can arrive at
an equivalent lot midpoint formulation for the CUMAV equations.

7

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017



By substituting the (21) directly into (19), the average production lot cost model equation is
given by

ȳi = f (Fi, Li;T1, LC) + εi

= T1

(
(Li + 0.5)(log2 LC+1) − (Fi − 0.5)(log2 LC+1)

(Li − Fi + 1) (log2 LC + 1)

)
+ εi. (24)

This model is nonlinear with two variables and two parameters. On closer examination, the lot
average unit cost equation (20) using the lot midpoint only has one input variable and by applying
logarithmic transformation we obtain a form of the basic equation that is linear in the parameters

ln ȳi = lnT1 + b ln x̃i (25)

where b = log2 (LC) is called the learning curve exponent associated with a particular learning
curve slope. This model can be solved using OLS in Log-Log space to find an estimate of the
lnT1, b parameters and consequently, the unit space parameters T1, LC.

4.1.2 Numerical Experiment

In this section we test the various approaches to solve the model and compare both the parameter
estimates and their associated confidence regions. For all the tests a representative data set is used,
shown in Table 1 and a plot of the data in Figure 1 using the heuristic lot midpoint ˆ̃xi.

Lot 1 2 3 4 5 6 7

First Unit 1 11 24 45 67 91 115

Last Unit 10 23 44 66 90 114 134

Average Unit Cost 138.39 121.78 100.00 86.78 70.71 69.84 70.51

Table 1: Learning Curve Data
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Figure 1: Learning Curve Data

First, we consider the logarithmic transformation of the model since it can be solved using OLS.
This is a common approach whenever a model is transformably linear. Using a single step and the
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lot midpoint heuristic approximation in (23) we obtain the solution parameters

lnT1 = 5.3415

b = −0.2278

which yields a unit space standard error of estimate SE of 9.6737. The unit space standard error
of the estimate is given since the results of transformed linear and nonlinear regression models will
be compared.

Using the parameter estimates and covariance matrix, the marginal confidence intervals and
joint confidence regions can be computed and are shown in Figure 2. The marginal confidence

5.0 5.2 5.4 5.6 5.8

Ln T1

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

b

0.500

0.750

0.900

0.950

L near (One step) Conf dence reg on - Log Space

Joint Confidence Region Contours

Marginal 95% Confidence Intervals

Figure 2: Linear (One-step) Confidence Region in Log Space

intervals consider the parameters independently and determine the extent of each interval using a
specified confidence coefficient, the t distribution and the standard error of the parameter estimator.
The intersection of the marginal confidence intervals for each parameter may not represent the set
of all “reasonable” parameter values as indicated by the joint confidence region. As an example,
any point in the lower left or upper right of the intersection of marginal distribution intervals that
is outside the ellipses is outside of the 95% joint confidence region for the parameter pairs. These
points should not be considered as a reasonable pair of parameters at the 95% level of significance.
The joint confidence region in this figure has been computed using (17). As stated previously,
for linear problems (17) yields the exact ellipsiodal confidence regions and are equivalent to (15)
[2]. When modeling linear problems, the marginal distributions combined with the correlation
information can more faithfully represent the joint confidence regions. Recall that the (Pearson)
correlation is a normalized form of the covariance information and that the joint confidence regions
for linear problems can be directly computed from the covariance matrix. In fact, the ellipse angles
and axis lengths are determined by the eigenvectors and eigenvalues of the covariance matrix [6].

Next, we solve the iterated OLS problem and use the previous iteration LC to compute new
lot midpoints based on (22). The resulting parameters are

lnT1 = 5.3350

b = −0.2262
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with a unit space standard error of estimate SE of 9.5692. The marginal confidence intervals
and joint confidence regions are shown in Figure 3. In Figure 4, joint confidence regions of both

5.0 5.2 5.4 5.6 5.8

Ln T1

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

b
0.500

0.750

0.900

0.950

Linear (Iterated) Confidence region - Log Space

Joint Confidence Region Contours

Marginal 95% Confidence Intervals

Figure 3: Linear (Iterated) Confidence Region in Log Space

the single step and iterated linear models are shown. For this data set, since there is very little

5.0 5.2 5.4 5.6 5.8

Ln T1

−0.35
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−0.25
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−0.15

−0.10

b
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0.900

0.950

0.500

0.750

0.900

0.950

Compari on of Linear Confidence region  - Log Space

One-step OLS

Iterated OLS

Figure 4: Comparison of Linear Confidence Regions in Log Space

difference between the two sets of solutions and their corresponding confidence regions it may be
sufficient to use the lot midpoint heuristic.

Once the solution has been found in the transformed data space, the unit space parameters
and regions are found by applying the inverse transformation. The resulting parameter values and
confidence regions are shown in Table 2 and Figure 5 respectively. After the inverse transformation
there is still little difference between the two parameter values and confidence regions. The notable
distinction now is that since the transformation is nonlinear, the confidence regions for both models
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One-step OLS Iterated OLS

T1 208.82 207.47

LC 0.8539 0.8549

Unit space SE 9.6737 9.5692

Table 2: Comparison of Transformed OLS parameters in Unit Space

100 150 200 250 300 350
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1.00
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0.900

0.950
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0.950

Comparison of Linear Confidence regions - Unit Space

Transformed One-step OLS

Transformed Iterated OLS

Figure 5: Comparison of Linear Confidence Regions in Unit Space

that were ellipsoidal in the regression space are now distorted ellipses after mapping back into the
original data space.

The parameters are also computed directly in unit space using nonlinear regression to solve
(24) and the resulting parameters are shown in Table 3. The approximate joint confidence regions
are computed using the linear approximation given in (17) and the true joint confidence regions
are computed using the model evaluation method given in (16). The resulting regions are plotted
with the iterated OLS confidence region mapped into the unit space from Figure 6. It is evident
from the figure that the linear approximation from the nonlinear regression final iteration does a
pretty good job of matching the true joint confidence region obtained using the model evaluation
method. Thus, for this problem and this data set the Jacobian of the nonlinear system does not
change much over the parameter space. It is also obvious that the confidence regions obtained from
the transformed OLS model mapped back into unit space are different than true joint confidence
region.

One-step OLS Iterated OLS Nonlinear Regression

T1 208.82 207.47 195.79

LC 0.8539 0.8549 0.8569

Unit space SE 9.6737 9.5692 8.1010

Table 3: Comparison of Unit Space Parameter values by Solution Technique
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Figure 6: Comparison of Confidence Regions in Unit Space

A discussion here regarding error assumptions is warranted. The basic definition of any model
should also define the assumption regarding the types of errors that affect the data. Specifically,
much of standard OLS theory is based on the assumption of a linear additive error term, i.e. (1)
where f (xi,β) is linear in the parameters. When applying any nonlinear transformation to the
data, the error assumption is changed according to the transformation as well. In most cases, for
convenience, the error is assumed to be linear in the transformed space, i.e. where the regression
is performed. When comparing models that solve for the parameters in different spaces there
is inevitably different assumptions regarding the error terms. This contributes to the differences
in parameter estimates when comparing the OLS methods to the unit space nonlinear regression
methods. Likewise, each confidence region uses the term s2 which is the mean squared error of its
respective estimate in the regression space to determine the bounds of the confidence regions. The
differences in the error term assumption and the resulting s2 term drives the differences between
the transformed OLS confidence regions and the unit space confidence regions. In a practical
application with this data set, the use of the joint confidence region from a Transformed OLS
model would include values that have a higher T1 value and a steeper learning curve slope than the
data suggests, potentially overstating the costs.

In this example we have compared the unit space results of both parameter estimates and joint
confidence regions of transformably linear regression problems to their corresponding nonlinear
regression results. The data suggests that though the parameter estimates themselves may be
close, the confidence regions can be more severely impacted by the transformation applied and the
resulting error assumption implications.

4.2 Weight Curves

Another common cost estimating relationship relates the cost of an item to its weight. Here we
present two nonlinear equations, each have only one independent variable and two parameters to
illustrate the differences in joint confidence regions of the parameters.
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4.2.1 Model Descriptions

First, a model that is similar to the learning curve model is given by

Model 1 : y = θ1x
θ2 . (26)

In contrast to the learning curve equation which had a negative learning exponent b, in weight
based CERs the growth exponent θ2 is usually positive indicating that the cost increases as weight
increases. If the growth exponent is greater than one, the CER is superlinear, i.e. the cost grows
faster than proportionally to a weight increase. While this may be accurate for some data sets, it
is not assumed to be typical.

The second model employed is given by

Model 2 : y = θ1

(
1− e−θ2x

)
. (27)

In this model we note that the independent variable and a parameter appear as part of an exponent.

4.2.2 Numerical Experiment

In this section, the two models are solved using the representative data shown in Table 4. This
data is from [7], without the observation relative importance weighting factor.

Data point Cost $K Weight (lbs) Data point Cost $K Weight (lbs)

Obs 1 3,106.64 77.05 Obs 8 19,796.80 332.50

Obs 2 29,166.32 1,236.77 Obs 9 7,526.40 269.42

Obs 3 4,820.48 232.14 Obs 10 6,002.24 123.84

Obs 4 34,111.22 863.36 Obs 11 11,668.48 316.15

Obs 5 6,387.04 224.40 Obs 12 6,329.12 59.77

Obs 6 20,871.60 720.44 Obs 13 4,683.20 59.17

Obs 7 28,621.92 959.33 Obs 14 21,068.72 369.12

Table 4: Weight CER Data

The parameters for each model type are computed directly in unit space using nonlinear re-
gression. The resulting parameters and standard errors are shown in Table 5. The resulting fitted
data from models are shown in Figure 7. As stated, these two different model types were chosen to
illustrate that two models with similar fit statistics can have vastly different underlying parameter
joint confidence regions.

Model 1 Model 2

θ1 233.91 40,021.07

θ2 0.6991 0.0013

SE 4,525.4 4,273.5

Table 5: Weight CER Model Results

The joint confidence regions are computed using both the linear approximation and the model
evaluation method with the results shown in Figure 8 and Figure 9.
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Figure 7: Comparison of Model fits

From the figures we see that the confidence regions are quite different between the two model
both in scale and shape. Also, the true parameter confidence regions are quite different than their
corresponding linear approximations. For continuous nonlinear models, the linear approximation
may only be valid in a small neighborhood of the computed parameter values as is shown in the
close up Figure 10 and Figure 11.

In this example we have shown that two models with relatively equal fit statistics can have
substantially different parameter confidence regions in size and scale. Furthermore, for both models,
the joint confidence regions resulting from the linear approximation method provide fairly poor
approximations to the true joint parameter confidence regions. The concern here is that for these
models using the marginal distributions and Pearson correlation would include many values that
are outside the true confidence regions. The ultimate result is any uncertainty analysis output
would be incorrect and potentially misleading to any decision maker relying on the analysis.
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Figure 8: Comparison of Confidence Regions for Model 1
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Figure 9: Comparison of Confidence Regions for Model 2
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Figure 10: Comparison of Confidence Regions for Model 1
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Figure 11: Comparison of Confidence Regions for Model 2
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5 Conclusions

5.1 Summary of Results

In this paper, the joint confidence region computation methods have been reviewed and applied to
common nonlinear cost estimating problems. It has been done to highlight several key ideas and
limitations within our current capabilities.

First, it was shown that the product of marginal confidence intervals may not provide a reason-
able representation for a joint confidence region. The joint confidence regions capture additional
parameter dependence information and can be significantly different than the product of marginal
confidence intervals, which treat parameters as independent. Next, it was shown that once mapped
back to the original data space, confidence regions resulting from a linearizing transformation may
not provide an accurate representation of the true parameter confidence region. The assumptions
regarding the error terms are modified through the transformation and introduce differences both
in the parameter estimates and associated confidence regions. Once the confidence regions are
mapped back into the original space the confidence regions are no longer ellipsoidal.

While many Monte Carlo applications allow for non-independent variables, typically correlation
is used to generate appropriate random samples of the marginal distributions instead of sampling
directly the multivariate parameter distribution. The Pearson correlation coefficient only measures
the linear relationship between two variables which, as we have seen from the examples, for nonlinear
models the parameter relationships are likely nonlinear as well. To allow for non-ellipsoidal shapes or
combinations of different types of distributions to be sampled dependently, many software packages
(including Crystal Ball and @Risk) utilize a rank correlation measure. Unfortunately, there are
easily constructed examples where over the range of variables the rank correlation value is zero
yet the variables are strongly dependent. So while the traditional approach may still provide good
results, there is a chance that for any problem that any sampling technique based on correlation
alone, may be flawed and could produce misleading results.

5.2 Future Work

In spite of the vast research in parameter identification and uncertainty quantification, there are
still many open areas of research. A logical next step to this paper is to identify other methods to
sample from joint distributions in a way that preserves more if not all of the dependence information
between parameters. While there are many methods that do currently exist such as multivariate
inverse transform sampling, Copulas and Markov chain Monte Carlo methods, most are heavily data
driven and would require more robust software and programming packages such as R or Python
over the traditional spreadsheet based models.

Additionally, in the figures presented in this paper the 0.50, 0.75, 0.90 and 0.95 confidence levels
have been shown. There is a clear need for rules of thumb and/or policy regarding the acceptable
levels of parameter uncertainty that should be accounted for as part of a cost estimate uncertainty
analysis. These levels and their impacts consequently influence the distribution of the model outputs
and any decisions made using the data.

In light of all the obstacles to proper analysis, there is occasionally, a temptation to simplify
the model form so that easier theory and results may be applied. However, doing so may degrade
the ability to make inferences about the reality of the situation, physical properties or processes
that are being analyzed. Finally, as cost estimators and stewards of limited resources, we should
always be concerned about supplying the decision makers with the right amount of useful data and
analysis to make the best decision.
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