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Introduction

 Cost Estimates are models that contain uncertain 
parameters
 Parameters drive the model output uncertainty

 Most analysts use regression analysis to estimate 
parameters
 Computed values are based on the sample data

 Monte Carlo Methods are useful to assess the model 
uncertainty
 Some characterization of the parameter uncertainty is required
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Goal

 Review parameter confidence regions for linear and 
nonlinear regression models

 Compute the regions for some common (nonlinear) Cost 
Estimating Relationships (CERs)
 Determine just how “non-linear” the parameter confidence 

regions are

 Discuss current limitations and recommendations
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REVIEW OF CONFIDENCE 
INTERVALS
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One Variable

 Given data 𝒙𝒙𝒊𝒊 𝒊𝒊=𝟏𝟏
𝑵𝑵

 The confidence interval for the population mean 𝝁𝝁 is 

𝑷𝑷 �𝒙𝒙 − 𝒛𝒛∗
𝝈𝝈
𝑵𝑵

< 𝝁𝝁 < �𝒙𝒙 − 𝒛𝒛∗
𝝈𝝈
𝑵𝑵

> (𝟏𝟏 − 𝜶𝜶)

where: 
𝜶𝜶 is the specified significance level
𝒛𝒛∗ is the (two tail) critical value from 𝑁𝑁 0,1
𝝈𝝈 is the population standard deviation

 If 𝝈𝝈 is unknown then 𝒔𝒔 and the Student’s t distribution 𝒕𝒕∗ critical 
value can be used 

𝑷𝑷 �𝒙𝒙 − 𝒕𝒕∗
𝒔𝒔
𝑵𝑵

< 𝝁𝝁 < �𝒙𝒙 − 𝒕𝒕∗
𝒔𝒔
𝑵𝑵

> (𝟏𝟏 − 𝜶𝜶)
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Confidence Interval Interpretations

 For any significance level for any parameter, based on 
the data set, the Confidence Region for the mean value of 
that parameter is a fixed interval

 The mean value is either in the interval or its not
 The probability that the population mean is in the range is 0 or 1

 The interpretation must be about the confidence interval 
computation process providing the intervals that contain 
the true population 𝟏𝟏 − 𝜶𝜶 % of the time
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Marginal Confidence Intervals

 When solving for models involving more than one 
parameter typically regression is used

 Each parameter 𝜷𝜷𝒋𝒋 can be treated independently using 
the regression results 𝒃𝒃𝒋𝒋 , 𝒔𝒔𝒃𝒃𝒋𝒋

𝑷𝑷 𝒃𝒃𝒋𝒋 − 𝒕𝒕∗
𝒔𝒔𝒃𝒃𝒋𝒋
𝑵𝑵

< 𝜷𝜷𝒋𝒋 < 𝒃𝒃𝒋𝒋 + 𝒕𝒕∗
𝒔𝒔𝒃𝒃𝒋𝒋
𝑵𝑵

> (𝟏𝟏 − 𝜶𝜶)

 Result is a confidence interval “box” within the 
parameter space 
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Multivariate Models

 For a given confidence level (𝟏𝟏 − 𝜶𝜶) we can check to see 
if expectation model produces a significantly different 
answer at a new parameter value �𝜷𝜷 by computing

𝑺𝑺 𝒙𝒙𝒊𝒊, �𝜷𝜷 − 𝑺𝑺 𝒙𝒙𝒊𝒊,𝒃𝒃 ≤ 𝒑𝒑 𝒔𝒔𝟐𝟐𝑭𝑭 𝒑𝒑,𝑵𝑵− 𝒑𝒑,𝟏𝟏 − 𝜶𝜶

where
𝒔𝒔𝟐𝟐 is the mean squared error of the estimate
𝑭𝑭 𝒑𝒑,𝑵𝑵− 𝒑𝒑,𝟏𝟏 − 𝜶𝜶 is the Fisher distribution
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Multivariate Linear Models

 When the model is linear the Jacobian is constant and the can be 
evaluated for any different parameter as

�𝜷𝜷 − 𝒃𝒃 𝑻𝑻𝑫𝑫𝑻𝑻𝑫𝑫 �𝜷𝜷 − 𝒃𝒃 ≤ 𝒑𝒑 𝒔𝒔𝟐𝟐𝑭𝑭 𝒑𝒑,𝑵𝑵− 𝒑𝒑,𝟏𝟏 − 𝜶𝜶

where
𝑫𝑫 is the system Jacobian 

 With this formulation we can very quickly check lots of points using 
just matrix vector multiplication

 All confidence regions are also ellipses whose shape is determined 
by 𝑫𝑫
 Ratio of ellipse axes is related to Pearson Correlation coefficient
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Multivariate Nonlinear Models

 For Nonlinear models the Jacobian (𝑫𝑫) is not constant

 We could do one of the following to compute confidence regions of the 
parameters
 Evaluate the model a lots of different points to find the true confidence region
 Assume the Jacobian is constant or that it doesn’t change much that it is and use 

the same (𝑫𝑫) to compute a linear approximation to the true confidence regions

 Model evaluation probably not be as fast as matrix vector multiplication
 But it is embarrassingly parallel

 Sometimes a (nonlinear) transformation on the variables or the data (or 
both) can yield a linear model
 Not guaranteed to exist
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LEARNING CURVE MODEL
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Learning Curve Model

 Basic learning curve model form is

𝒚𝒚 = 𝑻𝑻𝟏𝟏𝒙𝒙 log𝟐𝟐 𝑳𝑳𝑳𝑳

where
𝑻𝑻𝟏𝟏 is the cost of the theoretical first unit
𝑳𝑳𝑳𝑳 is the learning curve slope percent

 Nonlinear model with 2 parameters and 1 variable
 Can be made linear by applying logarithm

 For production lot average cost we have

𝟏𝟏
𝑳𝑳 − 𝑭𝑭 + 𝟏𝟏

�
𝒌𝒌=𝑭𝑭

𝑳𝑳

𝒚𝒚𝒌𝒌 =
𝑻𝑻𝟏𝟏

𝑳𝑳 − 𝑭𝑭 + 𝟏𝟏
�
𝒌𝒌=𝑭𝑭

𝑳𝑳

𝒙𝒙𝒌𝒌
log𝟐𝟐 𝑳𝑳𝑳𝑳

where
𝑳𝑳 is the last unit in the lot
𝑭𝑭 is the first unit in the lot
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Learning Curve Model

 After an approximation for the sum we have

�𝒚𝒚 = 𝑻𝑻𝟏𝟏
𝑳𝑳 + 𝟎𝟎.𝟓𝟓 log𝟐𝟐 𝑳𝑳𝑳𝑳+𝟏𝟏 − 𝑭𝑭 − 𝟎𝟎.𝟓𝟓 log𝟐𝟐 𝑳𝑳𝑳𝑳+𝟏𝟏

𝑳𝑳 − 𝑭𝑭 + 𝟏𝟏 log𝟐𝟐 𝑳𝑳𝑳𝑳 + 𝟏𝟏

 Nonlinear model with 2 parameters and 2 variables
 L and F are not really independent variables
 Using a Lot midpoint can simplify to one variable

 The equation above has a lot midpoint of 

�𝒙𝒙 =
𝑳𝑳 + 𝟎𝟎.𝟓𝟓 log𝟐𝟐 𝑳𝑳𝑳𝑳+𝟏𝟏 − 𝑭𝑭 − 𝟎𝟎.𝟓𝟓 log𝟐𝟐 𝑳𝑳𝑳𝑳+𝟏𝟏

𝑳𝑳 − 𝑭𝑭 + 𝟏𝟏 log𝟐𝟐 𝑳𝑳𝑳𝑳 + 𝟏𝟏

𝟏𝟏
log𝟐𝟐 𝑳𝑳𝑳𝑳

 Simple heuristic

��𝒙𝒙 =
𝑭𝑭 + 𝑳𝑳 + 𝟐𝟐 𝑭𝑭 𝑳𝑳

𝟒𝟒
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Learning Curve Model

 With the Lot midpoints we are now to 

�𝒚𝒚 = 𝑻𝑻𝟏𝟏 �𝒙𝒙log𝟐𝟐 𝑳𝑳𝑳𝑳

 Still nonlinear, but only 1 variable

 Using the lot midpoint and applying a logarithm again we 
get a linear model 

ln �𝒚𝒚 = ln𝑻𝑻𝟏𝟏 + 𝒃𝒃 ln �𝒙𝒙

where 
𝒃𝒃 = log𝟐𝟐 𝑳𝑳𝑳𝑳 is the learning curve exponent
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Learning Data Set

 Representative data set used for all tests
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Transformed Model Results

 The product of marginal distributions is not the same as the joint 
confidence regions, even for the linear problem
 Ellipse captures the covariance of the parameters
 Points outside the ellipse shouldn’t be considered reasonable pairs at 

the specified confidence level
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Transformed Model Results

 The ellipsoidal confidence regions in the transformed space are non-
ellipsoidal in unit space
 The result of nonlinear transformations
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Nonlinear Regression Results

 The linear approximation method provides a good match to the 
model evaluation confidence region
 For this model and data set, the problem is only “slightly nonlinear”
 The true confidence region is not ellipsoidal
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Nonlinear Regression Results

 The Transformed OLS confidence regions actually overstate the true 
confidence region obtained from model evaluation

 If used, this could overstate the model outcomes

 The error assumptions
drive the differences
 Transformed OLS has lognormal 

errors in unit space
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WEIGHT CURVE MODEL
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Comparing Two “Similar” Models

 In this example, the parameter confidence regions for two weight 
CERs are compared

 The two models have “similar” fit statistics, but the model form 
yields drastically different confidence regions

 Model 1 – 𝒚𝒚 = 𝜽𝜽𝟏𝟏𝒙𝒙𝜃𝜃𝟐𝟐

 Model 2 – 𝒚𝒚 = 𝜽𝜽𝟏𝟏 𝟏𝟏 − 𝒆𝒆−𝜽𝜽𝟐𝟐𝒙𝒙
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Weight Data Set

 Representative data set used for all tests
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Model Fit Results

 Models were designed to have similar fit statistics
 Use 𝑆𝑆𝑆𝑆 to measure fit since 𝑅𝑅2 may not mean much for nonlinear 

problems
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Parameter Confidence Regions

 The regions are quite different in terms of scale and shape

 For both, the linear approximation is only a good approximation in a 
close neighbor hood of the solution 
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Practical Implementation and Summary

 How should we model parameter uncertainty?
 Excel based Monte Carlo tools treat inputs as independent, then apply a 

correlation
 Using Pearson’s Correlation can only yield the linear approximation
 Using Rank correlations is better but not the complete answer (fails if non-monotonic)

 There are methods that require some additional information
 Conditional Method
 Multivariate Inverse Transform sampling
 Copulas?

 The objective of this paper
 Highlight the parameter confidence intervals for nonlinear models

 Critical input to model uncertainty and quantification
 Provide some simple examples
 Solicit feedback from others
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QUESTIONS?
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