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Outline

 Introduction

 Review of Confidence Intervals

 Example Problems
 Learning Curve
 Weight Curve

 Practical Implementation and Summary
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Introduction

 Cost Estimates are models that contain uncertain 
parameters
 Parameters drive the model output uncertainty

 Most analysts use regression analysis to estimate 
parameters
 Computed values are based on the sample data

 Monte Carlo Methods are useful to assess the model 
uncertainty
 Some characterization of the parameter uncertainty is required
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Goal

 Review parameter confidence regions for linear and 
nonlinear regression models

 Compute the regions for some common (nonlinear) Cost 
Estimating Relationships (CERs)
 Determine just how “non-linear” the parameter confidence 

regions are

 Discuss current limitations and recommendations
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REVIEW OF CONFIDENCE 
INTERVALS
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One Variable

 Given data 𝒙𝒙𝒊𝒊 𝒊𝒊=𝟏𝟏
𝑵𝑵

 The confidence interval for the population mean 𝝁𝝁 is 

𝑷𝑷 �𝒙𝒙 − 𝒛𝒛∗
𝝈𝝈
𝑵𝑵

< 𝝁𝝁 < �𝒙𝒙 − 𝒛𝒛∗
𝝈𝝈
𝑵𝑵

> (𝟏𝟏 − 𝜶𝜶)

where: 
𝜶𝜶 is the specified significance level
𝒛𝒛∗ is the (two tail) critical value from 𝑁𝑁 0,1
𝝈𝝈 is the population standard deviation

 If 𝝈𝝈 is unknown then 𝒔𝒔 and the Student’s t distribution 𝒕𝒕∗ critical 
value can be used 

𝑷𝑷 �𝒙𝒙 − 𝒕𝒕∗
𝒔𝒔
𝑵𝑵

< 𝝁𝝁 < �𝒙𝒙 − 𝒕𝒕∗
𝒔𝒔
𝑵𝑵

> (𝟏𝟏 − 𝜶𝜶)
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Confidence Interval Interpretations

 For any significance level for any parameter, based on 
the data set, the Confidence Region for the mean value of 
that parameter is a fixed interval

 The mean value is either in the interval or its not
 The probability that the population mean is in the range is 0 or 1

 The interpretation must be about the confidence interval 
computation process providing the intervals that contain 
the true population 𝟏𝟏 − 𝜶𝜶 % of the time
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Marginal Confidence Intervals

 When solving for models involving more than one 
parameter typically regression is used

 Each parameter 𝜷𝜷𝒋𝒋 can be treated independently using 
the regression results 𝒃𝒃𝒋𝒋 , 𝒔𝒔𝒃𝒃𝒋𝒋

𝑷𝑷 𝒃𝒃𝒋𝒋 − 𝒕𝒕∗
𝒔𝒔𝒃𝒃𝒋𝒋
𝑵𝑵

< 𝜷𝜷𝒋𝒋 < 𝒃𝒃𝒋𝒋 + 𝒕𝒕∗
𝒔𝒔𝒃𝒃𝒋𝒋
𝑵𝑵

> (𝟏𝟏 − 𝜶𝜶)

 Result is a confidence interval “box” within the 
parameter space 
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Multivariate Models

 For a given confidence level (𝟏𝟏 − 𝜶𝜶) we can check to see 
if expectation model produces a significantly different 
answer at a new parameter value �𝜷𝜷 by computing

𝑺𝑺 𝒙𝒙𝒊𝒊, �𝜷𝜷 − 𝑺𝑺 𝒙𝒙𝒊𝒊, 𝒃𝒃 ≤ 𝒑𝒑 𝒔𝒔𝟐𝟐𝑭𝑭 𝒑𝒑,𝑵𝑵 − 𝒑𝒑, 𝟏𝟏 − 𝜶𝜶

where
𝒔𝒔𝟐𝟐 is the mean squared error of the estimate
𝑭𝑭 𝒑𝒑,𝑵𝑵 − 𝒑𝒑, 𝟏𝟏 − 𝜶𝜶 is the Fisher distribution

9

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017



I n t e g r i t y  - S e r v i c e  - E x c e l l e n c e

Multivariate Linear Models

 When the model is linear the Jacobian is constant and the can be 
evaluated for any different parameter as

�𝜷𝜷 − 𝒃𝒃 𝑻𝑻𝑫𝑫𝑻𝑻𝑫𝑫 �𝜷𝜷 − 𝒃𝒃 ≤ 𝒑𝒑 𝒔𝒔𝟐𝟐𝑭𝑭 𝒑𝒑,𝑵𝑵 − 𝒑𝒑, 𝟏𝟏 − 𝜶𝜶

where
𝑫𝑫 is the system Jacobian 

 With this formulation we can very quickly check lots of points using 
just matrix vector multiplication

 All confidence regions are also ellipses whose shape is determined 
by 𝑫𝑫
 Ratio of ellipse axes is related to Pearson Correlation coefficient
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Multivariate Nonlinear Models

 For Nonlinear models the Jacobian (𝑫𝑫) is not constant

 We could do one of the following to compute confidence regions of the 
parameters
 Evaluate the model a lots of different points to find the true confidence region
 Assume the Jacobian is constant or that it doesn’t change much that it is and use 

the same (𝑫𝑫) to compute a linear approximation to the true confidence regions

 Model evaluation probably not be as fast as matrix vector multiplication
 But it is embarrassingly parallel

 Sometimes a (nonlinear) transformation on the variables or the data (or 
both) can yield a linear model
 Not guaranteed to exist
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LEARNING CURVE MODEL
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Learning Curve Model

 Basic learning curve model form is

𝒚𝒚 = 𝑻𝑻𝟏𝟏𝒙𝒙 log𝟐𝟐 𝑳𝑳𝑳𝑳

where
𝑻𝑻𝟏𝟏 is the cost of the theoretical first unit
𝑳𝑳𝑪𝑪 is the learning curve slope percent

 Nonlinear model with 2 parameters and 1 variable
 Can be made linear by applying logarithm

 For production lot average cost we have

𝟏𝟏
𝑳𝑳 − 𝑭𝑭 + 𝟏𝟏

�
𝒌𝒌=𝑭𝑭

𝑳𝑳

𝒚𝒚𝒌𝒌 =
𝑻𝑻𝟏𝟏

𝑳𝑳 − 𝑭𝑭 + 𝟏𝟏
�
𝒌𝒌=𝑭𝑭

𝑳𝑳

𝒙𝒙𝒌𝒌
log𝟐𝟐 𝑳𝑳𝑳𝑳

where
𝑳𝑳 is the last unit in the lot
𝑭𝑭 is the first unit in the lot
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Learning Curve Model

 After an approximation for the sum we have

�𝒚𝒚 = 𝑻𝑻𝟏𝟏
𝑳𝑳 + 𝟎𝟎. 𝟓𝟓 log𝟐𝟐 𝑳𝑳𝑳𝑳+𝟏𝟏 − 𝑭𝑭 − 𝟎𝟎. 𝟓𝟓 log𝟐𝟐 𝑳𝑳𝑳𝑳+𝟏𝟏

𝑳𝑳 − 𝑭𝑭 + 𝟏𝟏 log𝟐𝟐 𝑳𝑳𝑳𝑳 + 𝟏𝟏

 Nonlinear model with 2 parameters and 2 variables
 L and F are not really independent variables
 Using a Lot midpoint can simplify to one variable

 The equation above has a lot midpoint of 

�𝒙𝒙 =
𝑳𝑳 + 𝟎𝟎. 𝟓𝟓 log𝟐𝟐 𝑳𝑳𝑳𝑳+𝟏𝟏 − 𝑭𝑭 − 𝟎𝟎. 𝟓𝟓 log𝟐𝟐 𝑳𝑳𝑳𝑳+𝟏𝟏

𝑳𝑳 − 𝑭𝑭 + 𝟏𝟏 log𝟐𝟐 𝑳𝑳𝑳𝑳 + 𝟏𝟏

𝟏𝟏
log𝟐𝟐 𝑳𝑳𝑳𝑳

 Simple heuristic

��𝒙𝒙 =
𝑭𝑭 + 𝑳𝑳 + 𝟐𝟐 𝑭𝑭 𝑳𝑳

𝟒𝟒
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Learning Curve Model

 With the Lot midpoints we are now to 

�𝒚𝒚 = 𝑻𝑻𝟏𝟏 �𝒙𝒙log𝟐𝟐 𝑳𝑳𝑳𝑳

 Still nonlinear, but only 1 variable

 Using the lot midpoint and applying a logarithm again we 
get a linear model 

ln �𝒚𝒚 = ln𝑻𝑻𝟏𝟏 + 𝒃𝒃 ln �𝒙𝒙

where 
𝒃𝒃 = log𝟐𝟐 𝑳𝑳𝑳𝑳 is the learning curve exponent
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Learning Data Set

 Representative data set used for all tests
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Transformed Model Results

 The product of marginal distributions is not the same as the joint 
confidence regions, even for the linear problem
 Ellipse captures the covariance of the parameters
 Points outside the ellipse shouldn’t be considered reasonable pairs at 

the specified confidence level
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Transformed Model Results

 The ellipsoidal confidence regions in the transformed space are non-
ellipsoidal in unit space
 The result of nonlinear transformations
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Nonlinear Regression Results

 The linear approximation method provides a good match to the 
model evaluation confidence region
 For this model and data set, the problem is only “slightly nonlinear”
 The true confidence region is not ellipsoidal
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Nonlinear Regression Results

 The Transformed OLS confidence regions actually overstate the true 
confidence region obtained from model evaluation

 If used, this could overstate the model outcomes

 The error assumptions
drive the differences
 Transformed OLS has lognormal 

errors in unit space
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WEIGHT CURVE MODEL
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Comparing Two “Similar” Models

 In this example, the parameter confidence regions for two weight 
CERs are compared

 The two models have “similar” fit statistics, but the model form 
yields drastically different confidence regions

 Model 1 – 𝒚𝒚 = 𝜽𝜽𝟏𝟏𝒙𝒙𝜃𝜃𝟐𝟐

 Model 2 – 𝒚𝒚 = 𝜽𝜽𝟏𝟏 𝟏𝟏 − 𝒆𝒆−𝜽𝜽𝟐𝟐𝒙𝒙
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Weight Data Set

 Representative data set used for all tests
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Model Fit Results

 Models were designed to have similar fit statistics
 Use 𝑆𝑆𝑆𝑆 to measure fit since 𝑅𝑅2 may not mean much for nonlinear 

problems
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Parameter Confidence Regions

 The regions are quite different in terms of scale and shape

 For both, the linear approximation is only a good approximation in a 
close neighbor hood of the solution 
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Practical Implementation and Summary

 How should we model parameter uncertainty?
 Excel based Monte Carlo tools treat inputs as independent, then apply a 

correlation
 Using Pearson’s Correlation can only yield the linear approximation
 Using Rank correlations is better but not the complete answer (fails if non-monotonic)

 There are methods that require some additional information
 Conditional Method
 Multivariate Inverse Transform sampling
 Copulas?

 The objective of this paper
 Highlight the parameter confidence intervals for nonlinear models

 Critical input to model uncertainty and quantification
 Provide some simple examples
 Solicit feedback from others
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QUESTIONS?
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