Presented at the 2017 ICEAA Professional Developme

BUREAU DU

OFFICE OF

THE PARLIAMENTARY BUDGET OFFICER

DIRECTEUR PARLEMENTAIRE DU BUDGET

Confusing Precision with Accuracy

How data availability informs budget sufficiency

ICEAA Canada

May 1-2, 2017

© 2017 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence

Presented at the 2017 ICEAA Professional Development & Training Workshop
Today's Presenters

www.iceaaonline.com/portland2017

Peter Weltman

Senior Director, Costing and Program Analysis Office of the Parliamentary Budget Officer

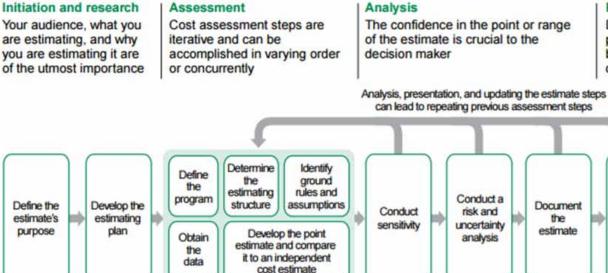
Zachary Jasnoff Vice President – Professional Services PRICE Systems, LLC

- The short history of PBO Budget Sufficiency Analysis
- § How data drives methodology and outcomes
 - Estimating for Budget Sufficiency
 - Precision vs. Accuracy
 - Modeling the PBS for Budget Sufficiency
- S Case Vignettes

Agenda

- JSS How Much to Set Aside for Program Success?
- AOPS Is a Given Budget Sufficient for a 6-8 Ship Program?
- S Advances in Best Practices
 - Template / Test Case Approach
- S Lessons Learned

- PBO, created in 2008, to provide independent analysis to Parliament and serve as a second data point to government "estimates"
- Economic and fiscal analysis:
 - PBO= 2007-08 recession would cause significant deficits
 - Gov't=2007-08 recession would pass Canada by and leave a small surplus
- Cost estimate of government programs:
 - PBO =JSF would cost \$30 billion acquisition and operating
 - Gov't (public) =JSF would cost \$75 million per plane
 - Gov't (private) = JSF would cost \$30 billion acquisition and operating


Presented at the 2017 ICEAA Professional Development & Training Workshop Cost Estimating Best Practices

www.iceaaonline.com/portland2017

§ ICEAA (GAO) steps

Figure 1: The Cost Estimating Process

Presentation

Present

estimate to

management

for approval

Documentation and presentation make or break a cost estimating decision outcome

Update the

estimate to

reflect actual

costs/changes

Source: GAO.

Presented at the 2017 ICEAA Professional Development & Training Workshop Modeling for Budget Sufficiency

- S What is Budget Sufficiency?
 - Sufficient funding to enable a program to deliver on its intended outcomes, and to avoid program failure
- § Example: Joint Support Ship
 - \$2.1MM in 2008, for 3 ships
 - Cancelled in 2009 => bids came back over budget
 - 2008 figures reveal only a point estimate
 - JSS 2: Budget of \$2.6MM in 2010, for 2 ships
 - Currently (2017) without any re-supply capability

Developing estimates that are more "precise" does not necessarily make them more "accurate". We don't know if the \$2.1 billion for JSS1 was precise but we do know it was wildly inaccurate.

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017 Precision vs. Accuracy – According to the Dictionary

- **§** Precision according to Merriam Webster:
 - the degree of refinement with which an operation is performed or a measurement stated
- S Accuracy according to Merriam Webster
 - freedom from mistake or error

=> "what if" JSS 1 budget had been increased by 500MM in 2008 dollars (Accuracy)
=> "what if" decision makers had been aware of the distribution of the estimate (Precision)
=> "what if" Canada had adopted the GAO 80% rule in 2008? (Degree of Accuracy)

Solution No estimate is "free from mistake or error"

- Probability of achieving a given estimate is exactly zero! In other words, our cost estimates will always be exactly wrong!
- In cost estimating, accuracy is best thought of as achieving a given level of confidence based on the degree of inherent uncertainty in underlying parameters.
- S A key decision early in an estimate is "appropriate" level of modeling of the Product Breakdown Structure.
 - Sets the stage for everything else including the "fidelity" of the estimate
 - Need to consider the ultimate outcome of the estimate.

The estimate only needs to provide necessary and sufficient decision-support information- nothing more and nothing less.

Presented at the 2017 ICEAA Professional Development & Training Workshop Asking the "right" questions to drive level of modeling for budget sufficiency

Audience: Who is the ultimate "consumer" of the estimate and requirements?

> *What:* What is being estimated (entire program, component, acquisition, LCC)?

> > Why? What is the "Question" asked and level of detail required ?.

Program phase?: At what level does the existing data and technical parameters exist?

Data? What is the depth and accuracy of historical costs / performance / technical data of similar programs.

For "Budget Sufficiency" we only want to know if the resulting estimate will fit within a given "budget envelope". Is budget envelope being properly informed? What is basis of budget envelope?

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaa Case Study Vignettes: Canadian Joint Support Ship

Question	Response
Who?	Parliament
What?	Joint Support Ship total acquisition cost
Question Asked?	How much to set aside to ensure program success?
Program Phase	 No ship design nor detailed specifications No cost details No recent analogous acquisitions
Depth/Accuracy of historical data	High-level public domain
Product Breakdown Structure	Modelled at total ship level, not WBSNo sub-system data available

Presented at the 2017 ICEAA Professional Development & Training Workshop

www.iceaaonline.com/portland2017

Modeling The PBS for Budget Sufficiency Which is more accurate? Which is more precise?

4 Level 68 "Cost Object" PBS Vs. § 2 Level 2 "Cost Object" PBS Ş

1	8 🗀	JSS v1		
2	8 🗀	4Lev	el PBS	s
3	8	S 8	E/PM	
4		6-8	Ship	Assembly
5		8.0	H	full Asssembly
6			A	Shell and Supports
7			ā.	Huli Structural Bulkheads
8			2	Hull Decks
9			A :	Deck House Structure
10			ŝ.	Special Structure (Air Ops-Flight Deck for Helos)
11			彝	Masts and Kingposts
12			5	Foundations
13			4	Special Purpose Systems
14			ä.	Huli Pietorm_Flets
15		8 🗑	F	Propulsion Plant Assembly
16			2	Propulsion Units
17				Main Machinary
18			- 24	Babcock & Wilcox boilers
19			- 2	Single Shaft
20			- 2	Bow Thruster
21			à.	Transmission and Propulsor
22			A :	Support Systems
23			<u>A</u>	Propulsion Supply System
24			8	Special Purpose System
25		8 8	E	Bectric Plant Assembly
56			A .	Electric Power Generation
27			8	Power Distribution System

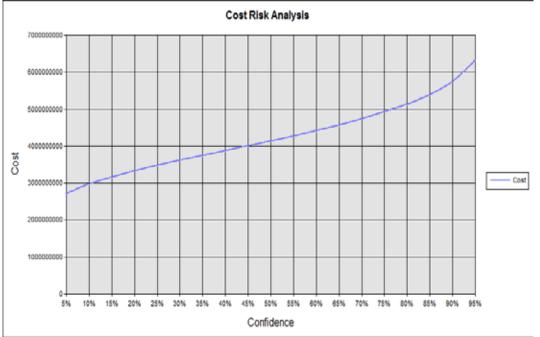
http://www.navy-marine.forces.gc.ca/en/fleet-units/jss-home.page

Joint Support Ship

...depends on reliability of the models and strength of the underlying CERs

- Available level of historical data
- Calibrated to level of historical data

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaa Case Study Vignettes: Canadian Joint Support Ship

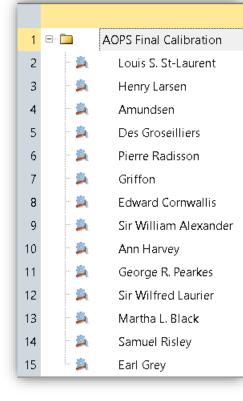

PBO DPB	PRIGE .
CANADA	

Question	Response
System Cost Object	 Tasks associated with the overall planning, directing, and controlling of the definition, development, and production of a system 1 Hardware Cost Object
Basis of Estimate	 SE/PM, design and manufacturing costs calibrated with analogous ship programs Heavily reliant on the True Planning model, which holds industry average data and estimating relationships Modified slightly with input data

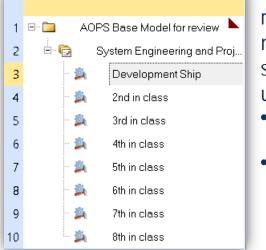
Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017
Canadian Joint Support Ship - Outcome

§ Cost of 2 ships: 2.73 to 6.31 \$B

- Lack of data, even when relying on industry standard CERs, does not allow for either a precise nor an accurate estimate
- Does not provide meaningful decision-making support. Increases the risk to program failure as decision-makers get fixated on the point estimate and "contingency"



Question	Response	
Who?	Parliament	
What?	AOPS acquisition cost	
Question Asked?	Is \$2.8B sufficient to purchase 6-8 ships?	
Program Phase	• No comparable design: parabolic hull and broad beam for ice vs longer streamlined hull for open waters	
Depth/Accuracy of historical data	 Statement of Operating Requirements "unavailable" No recent analogous acquisitions But: reliable cost and schedule data from coast guard ships 	
Product Breakdown Structure	 Modelled at total ship level, not WBS No sub-system data available But: "shocking" the model for construction delays and quantity changes requires 8 hardware cost objects 	



Presented at the 2017 ICEAA Professional Development & Training Workshop WWW. Modeling The AOPS PBS for Budget Sufficiency

S Highly Calibrated Historical Data

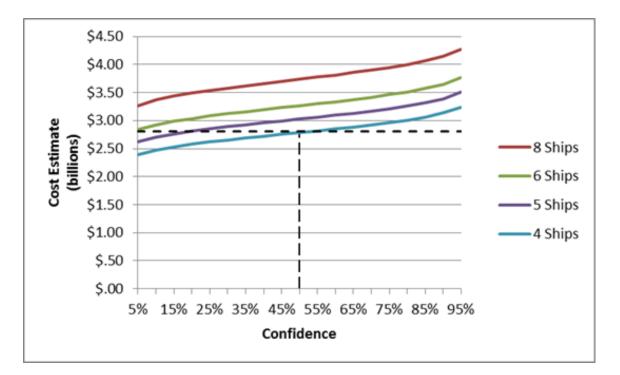
S Allows modeling of multiple production ships

...depends on reliability of the models and strength of the underlying CERs

- Available level of historical data
- Calibrated to level of historical data

Arctic Offshore Patrol Ship

Presented at the 2017 ICEAA Professional Development & Training Workshop Case Study Vignettes: AOPS



Question	Response
System Cost Object	• Tasks associated with the overall planning, directing, and controlling of the definition, development, and production of a system
Hardware Cost Object	 Modeled at ship level, not WBS level, 8 ships therefore 8 hardware cost objects
Basis of Estimate	 SE/PM, design and manufacturing costs Calibrated against manufacturing complexity of analogous ships Heavily reliant on the True Planning model, which holds industry average data and estimating relationships Calibrated to reliable cost and schedule data

Presented at the 2017 ICEAA Professional Development & Training Workshop AOPS - Outcome

§ 6 ships cost \$3.27B; Gov't budget was \$2.6B

- Build 4 8 ships?
- Build 3-4 ships with one-year delay
- Build 3-4 ships with two-year delay
- Can afford 4 ships at 50% CI no delay
- 3 ships at 80% CI with one-year delay
- 3 ships at 75% CI with two-year delay

Presented at the 2017 ICEAA Professional Development & Training Workshop Bridging Precision and Accuracy – Templates/Test Cases

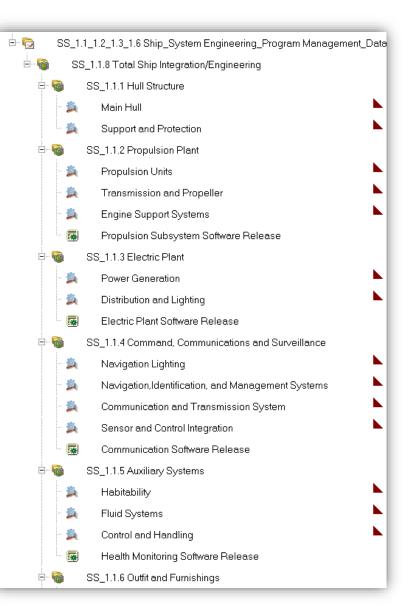
- S Recognizing the need to bridge precision with accuracy, starting in 2016, PRICE Systems developed (and continues to develop) templates that serve as actionable starting points for future estimates.
 - A Template represents a specific product type that bypass the need for client creation of product structure from scratch and which can be adapted to represent a specific product of the type.
 - A Test Case is application of <u>publicly</u> available case (a known product) information to a template in order to gauge reasonableness of the template for it's intended purpose (to be a reasonable starting point for modeling a specific product of a product type).
 - A test case is a template scaled to size, time frame, and quantities of the case.

Surface Vehicle Test Case- Humvee

Aircraft Carrier Sea Systems Test Case-

Aircraft Test Case- F15 Eagle

Planetary Spacecraft Test Case-Juno


Submarine Sea Systems Test Case-SSN774 Virginia

Reasonableness is the comparison of test case estimate against publicly available cost.

Presented at the 2017 ICEAA Professional Development & Training Workshop Bridging Precision and Accuracy

- Seridge between precision and accuracy accomplished by high level modeling of JSS and A/OPS based on lower levels validated PBS
 - The starting point would be building out Supply Ship and Artic Ship Class Templates
 - Development of a "Test Case" against the known historical data (unit cost, schedule, weight, quantity)
 - Ability to run the test case against known historical program to test reasonableness of the test case.
 - Once validated used as a start point for future ship estimates.
 - Can be used at both a high level and lower level PBS depending on known program information.

Presented at the 2017 ICEAA Professional Development & Training Workshop

Lessons Learned

- PBO DI CANAD
- 1. **Precision**: Lack of precision can limit the usefulness of an estimate. In the case of the JSS, the confidence interval is so wide that the risk tolerance of decision-makers can become over-emphasized.
- 2. Accuracy: Reliable cost and scheduling data allow a much narrower range of estimates, even when no sub-system level data is available, as long as CERs are well developed and stable.
- 3. Depth of Accuracy: Focus on CI and range allows decision-makers to test meaningful options and identify risks to budget by shocking the model. Focusing on program outcomes (i.e. number of ships) rather than single-point budget estimate creates space for a discussion of program success.
- 4. Bridging Precision and Accuracy: Importance of matching level and quality of data to drive the appropriate level of modeling. Templates / Test Case methodology provides actionable starting points for future estimates.

Questions?

© 2017 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence