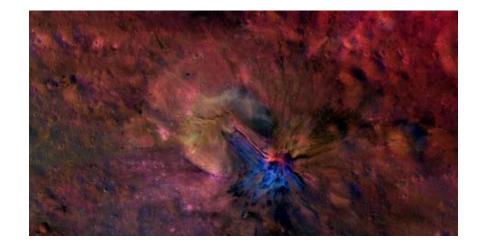


Exploring the of Results of two Methodologies for Unmanned Space Estimation: Space Missions Catalog – 2015 Hardware Catalog – 2016

ICEAA 2017 Portland Meeting

June 6-9, 2017


© 2017 PRICE Systems, LLC All Rights Reserved | Decades of Cost Management Excellence

- 1. Introduction
- 2. Overview of Projects
- 3. Validation Models
 - a) Space Missions Catalog
 - b) Hardware Catalog

4. Study Results

- a) Mission-level
- b) WBS-specific:
 - WBS 5 Payload
 - WBS 6 S/C Subsystems
 - WBS 1/2/3 PM/SE/MA
 - WBS 10 I&T

5. Lessons Learned

Abstract

Independent validations of two separate predictive analytics methodologies were performed over the last two years

In both cases, common detailed assessments of past missions' integrated technical and programmatic requirements were used to mimic a grass-roots bottom-up methodology

This presentation compares the process and top-level results from both approaches as well as explores lessons learned

Typical Needs: Integrating Estimation and Decision-Support into Business Process

FORMULATION Implementation IMPLEMENTATION **NASA Life** Approval **Cycle Phases** Pre-Systems Aquisition Systems Acquisition Operations Decommissioning Pre-PhaseA: Phase F: Phase A: Phase B: Phase C: Phase D: Phase E: **Project Life** Concept Concept & Preliminary Design First Design & Concept **Operations &** Closeout **Cycle Phases** Technology & Technology Studies Fabrication Systems Asembly, Sustainment Development Completion 1&T Test, Launch

Bid/No Bid ; RFP Response

Fast dynamic support of go-forward action without sacrifice of accuracy

AoA & Tech Trades

Well structured / defined models supporting cost estimates for conceptual systems

Cross-Check/ Benchmark

Data-driven defensible estimates, leveraging knowledge bases and new requirements

Affordability Analysis

Post-processing supports quick turn-around analysis, sensitivity analysis, and risk analysis for SRR and PDR decisions

Design To Cost

Rapid reconfiguration of product breakdown structure allows for design to cost, CAIV, and value engineering analysis

Understanding Space Projects well: The What, Why and How of Estimating Cost

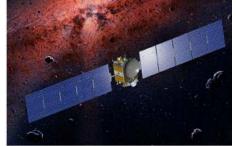
The WHAT: Know the ACTUAL cost.	 Know how much past space projects have cost Understand cost normalization (as spent vs. constant, inflation, accounting rules) Understand cost breakdown structure and cost objects
The WHY: Know what drives the cost.	 Know which are the cost drivers Understand the different cost drivers and their impact Understand cost driver behavior over time (dependent on technology?)
The HOW: Know how to control cost.	 Know how to use (or build, if needed) a cost model Understand how to model a space project Measure, make visible impacts on cost, and look for trends Identify targets for cost reduction

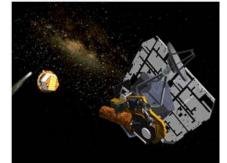

We cannot reduce the cost of space activities if we do not understand space project cost!

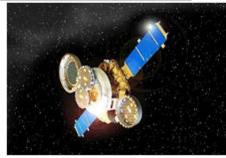
Presented at the 2017 ICEAA Professional Development & Training Workshop Two Projects Conducted

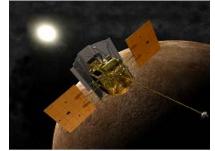
Studies

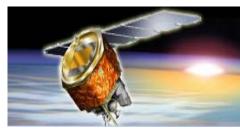
- Space Missions Catalog Validation (2015)
- Hardware Catalog Validation (2016) {using enhanced Equipment-Type Calculator}
- Team
 - Bruce Fad
 - Chris Price
 - Pete Stanley
 - John Swaren
 - Melissa Winter
- Partners
 - Mark Jacobs
 - Shawn Hayes

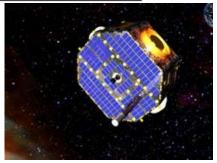



13 Past Unmanned Missions

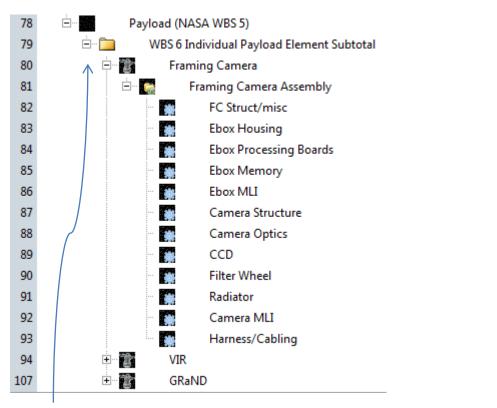

www.iceaaonline.com/portland2017





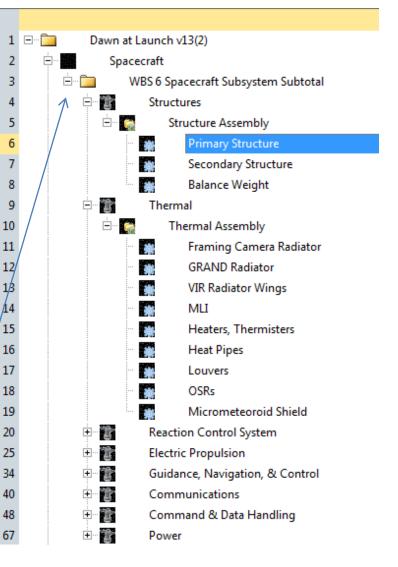


Presented at the 2017 ICEAA Professional Development & Training Workshop Missions Used for Validation Studies

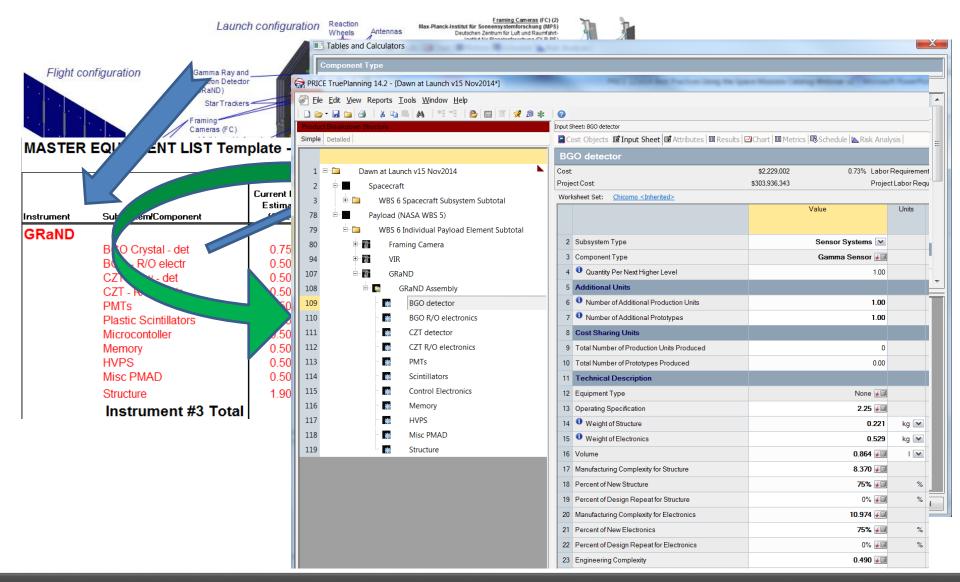

• 13 recent NASA robotic Earth and Space Science Missions

MISSION	NASA Program Type
Mission #1	Planetary
Mission #2	Astrophysics/SMEX
Mission #3	Astrophysics/Explorer
Mission #4	Planetary/Discovery
Mission #5	Planetary/New Frontiers
Mission #6	Astrophysics/Explorer
Missic	iscovery
Mission #8	Astrophysics/Explorer
Mission #9	Planetary/Discovery
Mission #10	Heliophysics
Missio	xplorer
Mission #12	Heliophysics
Mission #13	Planetary/New Frontiers
Mission #14	Planetary/Discovery
Missio	xplorer
Mission #16	Planetary/Discovery
Earth Sci	Heliophy
Astrophy	Planetary

CADRe used as source for technical, programmatic and cost data


www.iceaaonline.com/portland2017

Presented at the 2017 ICEAA Professional Development & Training Workshop With Space Missions Catalog

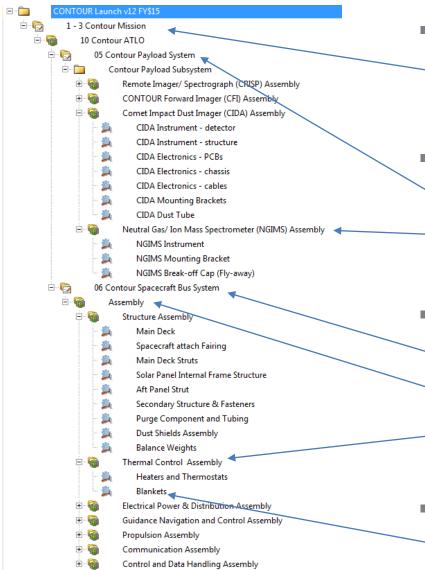


Use Folder to collect Subsystems; Instruments need Subsystem/Assembly pairings

Overall Bus Subsystem, but no Assembly at top-level; Bus subsystems need Subsystem/Assembly pairings.

Estimate to Level IV: Spacecraft Bus Components and Payload Instruments

Presented at the 2017 ICEAA Professional Development & Training Workshop Space Missions Calculator


Knowledge Based Wizard

RICE TruePlanning 14.2 - [AIM Proposal v9 FY\$15*]				2
File Edit View Reports Tools Window Help				×f
D - 2 - 6 X - 4 4 - 1 - 1 - 6 - 6 8	* * * 3	Tables and Calculators		XX
Product Breakdown Structure	Input Sheet: Star Tracker CT-633			
Simple Detailed	Cost Objects 🖬 Input			
	Star Tracker CT-	The Equipment Type describes typical equipments that		
1 ⊟-□ AIM Proposal v9 FY\$15	Cost		values, values are automatically calculated for Operating Spec nufacturing Complexity for Electronics based on industry standa	
2 🖻 😨 1 - 3 AIM Mission	Project Cost:	research on equipment types. These values may be ch	anged by the user if their organizational specific database indic	cates better values.
3 🖻 🍓 10 AIM ATLO	Worksheet Set: Space v4	4		Show Descriptions
4 05 AIM Payload System		Section Name	Input Field	Dese
38 ⊡ 🔂 06 AIM Spacecraft Bus System		Operating Environment	Unmanned Space - Earth Orbiting	
39 E S Assembly	1 Start Date	Function	Spacecraft Attitude Control	
40 Assembly Attitude Control (ADC) Assembly		Equipment Type Total Weight	Star Tracker	
		Heritage Structure	2.062	Copy refers to a component that is off the st
41 RW	3 Additional Units		-	
42 RW Electric	4 • Number of Addition		OTS/Block Buy	
43 🔤 🎘 Torque Rods	5 🔍 Number of Addition	d	Copy/Build to Print	
44 🛛 🖄 Mag	6 Cost Sharing Units	s	Minimal Mod Significant Mod	
45 Star Tracker CT-633	7 Total Number of Proc		New	
46 🛛 🚆 Coarse Sun Sensor	8 Total Number of Prot			
47 LN-200S rate sensor	9 Technical Descrip	Operating Specification	2.00	
48 Power Assembly	10 Equipment Type	Total Weight	2.062 kg	
57 🗉 🗑 CDH Assembly	11 Operating Specificati	Weight of Structure	2.062 kg	
69 🗉 🗑 Structure Assembly	12 • Weight of Structur	Weight of Electronics	0.000 kg	
72 🐨 📦 Thermal Assembly			3.218	
79 COMM Assembly	13 • Weight of Electro	Manufacturing Complexity for Structure Manufacturing Complexity for Electronics	9.647 0.000	
	14 Volume	Percent of New Structure	20.00% %	
	15 Manufacturing Comp	Percent of New Electronics	20.00% %	
	16 Percent of New Struc	Engineering Complexity	0.20	
	17 Percent of Desian R			
	18 Manufacturing Comp			
	19 0 Percent of New B			
	20 Percent of Design R	2		
	21 Engineering Comple			
	22 Labor Learning Curv			OK Cancel

Presented at the 2017 ICEAA Professional Development & Training Workshop Modeling with Hardware Catalog

www.iceaaonline.com/portland2017

_	_	
	lop	Level

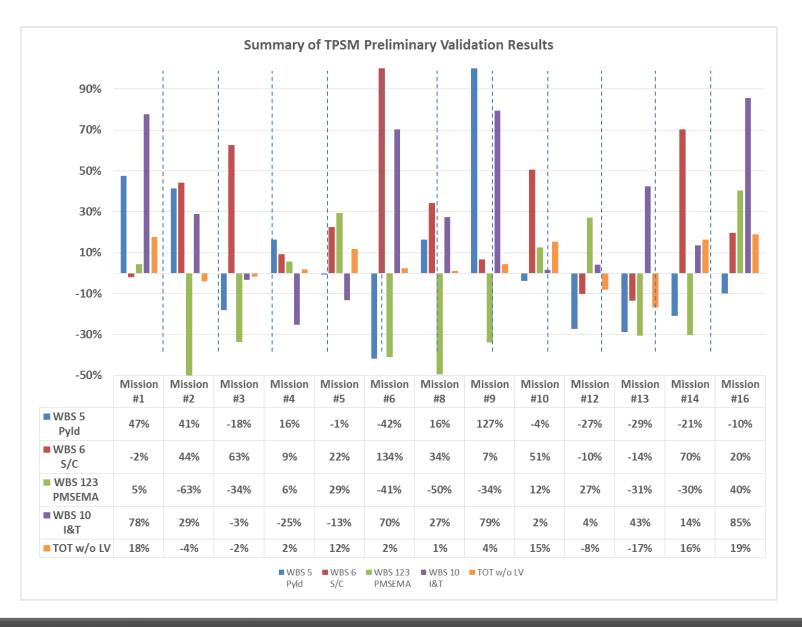
- System & Assembly Object
- Missions PMO & ATLO
- Payload Level
 - System Object for Payload PMO
 - Assembly Object at each Payload Summary for Integration
- Spacecraft Level
 - System Object for S/C PMO
 - Assembly Object for S/C I&T
 - Assembly Objects at each Subsystem Level for I&T
- Component Level
 - Hardware Objects

Hardware Knowledge Based Wizard

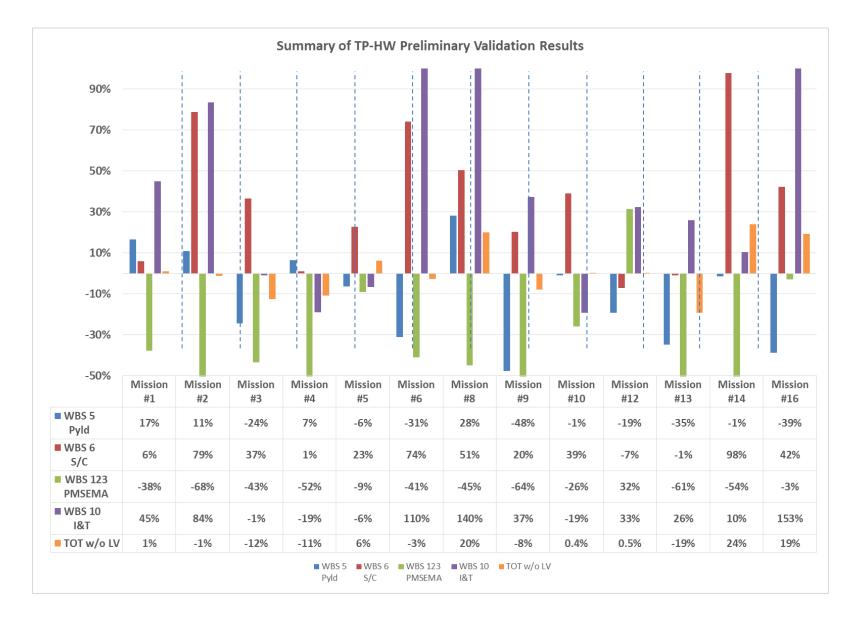
www.iceaaonline.com/portland2017

Minimal Mod Significant Mod

New


😭 Tables and Calculators			×					
When you select an Equipment Type fr of Structure, Volume, Manufacturing Co	equipments that are commonly developed and produ rom the available values, values are automatically ca omplexity for Structure, and Manufacturing Complexity pment types. These values may be changed by the	alculated for Operatir y for Electronics bas	ed on industry standard values from					
P			Show Descriptions					
Section Name Operating Environment Function Equipment Type Total Weight Heritage Structure	Input Field Unmanned Space - Earth Orbiting Thermal Control Heater/Thermister/Thermostat 19.3038 Significant Mod		Aerospace Commercial Airborne Commercial Land Mobile Military Airborne	2				
		2 000	Military Land Mobile Military Water Mobile	[- Propulsion			
Operating Specification Total Weight Weight of Structure Weight of Electronics Volume Manufacturing Complexity for Str Manufacturing Complexity for Ele Percent of New Structure Percent of New Electronics Engineering Complexity		2.000 19.3038 bs 19.3038 bs 0.0000 bs 0.483 ft ³ 3 7.789 0.000 80.00% % 80.00% % 0.800	Missile Legacy Unmanned Space Unmanned Space - Plan Unmanned Space - Eart	netary	Spacecraft A Electrical Pov Payload Spacecraft E	lectronic Chassis nd Mechanisms trol		
			OK Cancel			Heater/Then Mirror Miscellaneou	-	
0 50 0					,		OTS/Block Buy Copy/Build to Print	

Over 520 data-driven analytics recently added independent of the Space Missions Catalog



Study Results: Space Missions Catalog (2015) Hardware Catalog (2016)

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017 Space Missions Catalog – Validation Results (2015)

Presented at the 2017 ICEAA Professional Development & Training Workshop Hardware Catalog – Validation Results (2016)

Space Missions Catalog Validation – Results Summary (2015)

(adjTPSM - adjActual)/ adjActual	WBS 5 Pyld	WBS 6 S/C	WBS 123 PMSEMA	WBS 10 I&T	TOT w/o LV
Mean	7%	33%	-12%	30%	5%
sd	47%	42%	31%	36%	11%
cv	6.20	1.28	2.49	1.19	2.31
Avg.Abs.	31%	37%	31%	36%	9%
sd	32%	37%	17%	31%	7%
cv	1.05	0.99	0.53	0.86	0.76

<u>PRI@E</u>

Hardware Catalog Validation – Results Summary (2016)

(adjTPHW - adjActua)/ adjActual	WBS 5 Pyld	WBS 6 S/C	WBS 123 PMSEMA	WBS 10 I&T	TOT w/o LV
Mean	-11%	36%	-36%	46%	1%
sd	23%	33%	28%	59%	13%
CV	2.16	0.93	0.78	1.28	9.55
Avg.Abs.	20%	37%	41%	53%	10%
sd	15%	32%	20%	52%	9%
cv	0.73	0.86	0.49	0.99	0.89

Space Missions Catalog Validation (2015) – Results Summary

(adjTPSM -					
adjActual)/	WBS 5	WBS 6	WBS 123	WBS 10	TOT w/o
adjActual	Pyld	S/C	PMSEMA	1&T	LV
Mission #1	47%	-2%	5%	78%	18%
Mission #2	41%	44%	-63%	29%	-4%
Mission #3	-18%	63%	-34%	-3%	-2%
Mission #4	16%	9%	6%	-25%	2%
Mission #5	-1%	22%	29%	-13%	12%
Mission #6	-42%	134%	-41%	70%	2%
Mission #8	16%	34%	-50%	27%	1%
Mission #9	127%	7%	-34%	79%	4%
Mission #10	-4%	51%	12%	2%	15%
Mission #12	-27%	-10%	27%	4%	-8%
Mission #13	-29%	-14%	-31%	43%	-17%
Mission #14	-21%	70%	-30%	14%	16%
Mission #16	-10%	20%	40%	85%	19%
Mean	7%	33%	-12%	30%	5%
sd	47%	42%	31%	36%	11%
cv	6.20	1.28	2.49	1.19	2.31
Avg.Abs.	31%	37%	31%	36%	9%
sd	32%	37%	17%	31%	7%
cv	1.05	0.99	0.53	0.86	0.76

Hardware Catalog Validation (2016) –

Results Summary

(adjTPHW - adjActua)/ adjActual	WBS 5 Pyld	WBS 6 S/C	WBS 123 PMSEMA	WBS 10 I&T	TOT w/o LV
Mission #1	17%	6%	-38%	45%	1%
Mission #2	11%	79%	-68%	84%	-1%
Mission #3	-24%	37%	-43%	-1%	-12%
Mission #4	7%	1%	-52%	-19%	-11%
Mission #5	-6%	23%	-9%	-6%	<mark>6%</mark>
Mission #6	-31%	74%	-41%	110%	-3%
Mission #8	28%	51%	-45%	140%	20%
Mission #9	-48%	20%	-64%	37%	-8%
Mission #10	-1%	39%	-26%	-19%	0.4%
Mission #12	-19%	-7%	32%	33%	0.5%
Mission #13	-35%	-1%	-61%	26%	-19%
Mission #14	-1%	98%	-54%	10%	24%
Mission #16	-39%	42%	-3%	153%	19%
Mean	-11%	36%	-36%	46%	1%
sd	23%	33%	28%	59%	13%
CV	2.16	0.93	0.78	1.28	9.55
Avg.Abs.	20%	37%	41%	53%	10%
sd	15%	32%	20%	52%	<mark>9%</mark>
CV	0.73	0.86	0.49	0.99	0.89

Validation Study Comparison-Observed Error Band

Error-Band					
Delta Analysis		2016 Validation	2015	Validatio	n
		TRUE-HW	т	PSM	
Mean		1%		5%	
St. Dev.		13%		11%	
Coeff. Var.		9.55		2.31	
% Delta = (PRICE	E Estimate	e) – (Actual "As E	Built") / Actual	"As Bui	lt" x 100%

www.iceaaonline.com/portland2017

Validation Study Comparison-Absolute Error Band

Error-Band		
Delta Analysis	2016 Validation	2015 Validation
	Hardware Catalog	Space Missions Catalog
Avg.Abs.	10%	9%
St. Dev.	9%	7%
Coeff. Var.	0.89	0.76
% Delta = (PRICE Esti	mate) – (Actual "As Bui	lt") / Actual "As Built" x 100

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017 Lessons Learned: Normalizing Assumptions

- Adjustments Performed Outside Models
 - Typical fee/burden arrangements were accounted for in estimates where applicable
 - Adjustments were mission-unique
- Removed: Contributed Hardware
- Removed: External Impacts
 - Covers costs for items identified in Actuals as beyond scope (or outside a project's ability to control)
- Items Not Accounted For:
 - Launch Vehicle and Education & Public Outreach costs were not included
 - Pre-launch DSN/Ground Network costs were not included in the TPSM value, although may be part of MOS Project costs (relatively small with minor impact)

Lessons Learned: Difficulties Comparing Results

- Most projects have their own way of covering management, systems engineering, mission assurance, and I&T functions
 - Similar PM/SE/MA/I&T functions may be carried in WBS 1/2/3/10 by one project and in WBS 5/6 in another, skewing results
 - Some I&T allocations needed to be estimated if cost detail was not available
 - Comparisons include all Project PM/SE/MA/I&T functions against the WBS 1/2/3/10 estimate
- Programmatic differences also affect comparisons
 - Issues related to IAT, Full Cost Accounting, and other programmatic issues/initiatives may not be fully captured

Final Thoughts: Tool Comparison

- Space Missions Catalog
 - Allocates costs to Design, Fabrication, AI&T and Launch Opns phases
 - Estimates System-level "wrap" support functions: project management, mission analysis, system engineering, safety & mission assurance, science/ technology, MOS, A&I support, system test, GSE
 - Allows for distinction between Mission Classes: A/B vs C/D
 - Has dedicated CER models for Laser, Thermal, Electric Propulsion, Ion Thruster, Radar Altimeter and Parachute
 - Based on NASA-mission calibrations
- Hardware Catalog
 - Supports use of previously calibrated input drivers
 - Supports existing post-processors for system-level wrap functions
 - Works with other System, Assembly and Hardware objects
 - Based on combination of data sources: PRICE Knowledge Network, spacecraft bus component calibrations and PRICE-proprietary tools

www.iceaaonline.com/portland2017

Questions?

© 2017 PRICE Systems, LLC All Rights Reserved | **Decades of Cost Management Excellence**