NATIONAL RECONNAISSANCE OFFICE

Update to NRO CAAG Space System Test Schedule Estimating Model

Daniel Barkmeyer NRO Cost and Acquisition Assessment Group

ICEAA International Conference and Symposium Portland, OR June, 2017

SUPRA ET ULTRA

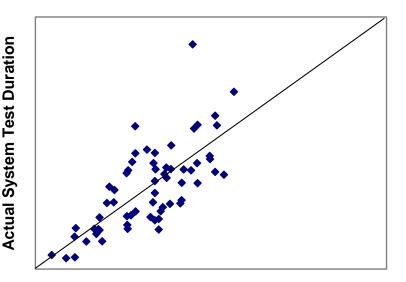
Objective

- NRO CAAG system test schedule model was last updated in 2007
 - Based on NRO and Air Force programs
 - Few programs with ATP after 2000
- Update nearly doubles size of dataset
 - Includes government civil programs
 - Includes more modern programs

Space System Test Scope

- From beginning of system test...
 - Point in time when electrical power is applied to an integrated satellite consisting of bus and payload components.
 - Exceptions are made for certain appendages such as antennas and solar arrays, and for secondary payloads.
- ... To launch availability
 - Actual launch date less storage time that occurred during or after system test
- Consistent with Aerospace Corporation studies
 - Tosney & Quintero, 1995
 - Arnheim, 2004

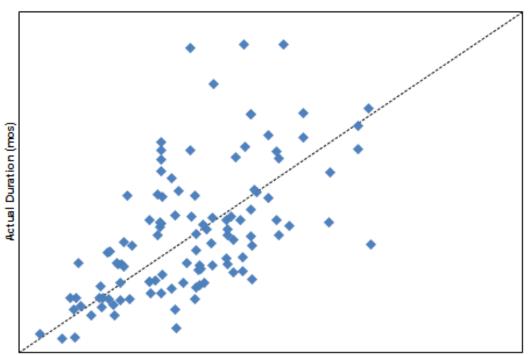
Updating the 2007 System Test Schedule Model


2007 System Test Schedule Model

Time from System Test Start to First Launch Availability (months)

= -5.5 + 0.44 [Dry Weight (lbs)]^{.24} [Design Life (mos)]^{.427} (0.75^[COMM]) + 7.8 [# mission types]

COMM – Satellite primary mission is communications Mission Types – count of the number of categories of payload from this list: Communications, Signals Intelligence, Optical, Active Sensing, Other Scientific


- Previous model was developed in 2007
 - Based on 61 NRO and AF programs
 - No civil programs
 - SPE: 37%
 - R²: 0.52
- Update adds 49 new datapoints
 - 28 NRO and AF
 - 21 government civil
 - 21 awarded since year 2000

Estimated System Test Duration

Performance of 2007 SER Against New Dataset

Estimated Duration (mos)

DOF	104
SPE	49%
R ²	0.35
Bias	7%

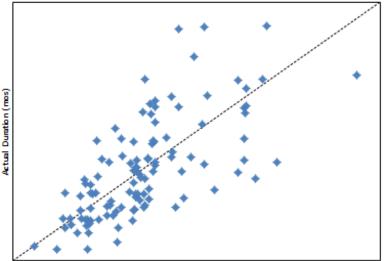
- 2007 Model performance degrades when considering new data
- Tends to underestimate longer programs
- Non-military programs appear in family with military/intelligence programs

Potential Schedule Drivers

Candidate Continuous Drivers	Population %
Design Life	100%
Dry Wt.	100%
BOL Power	84%
Number of Types of Missions (1-5)	100%
Number of Distinct Mission Payloads	99%
Wet Mass	19%
Max Data Rate	20%
On Board Data Storage Capacity	2%
Number of Band Regimes	23%
1/Pointing Accuracy	46%
Total Battery Capacity	10%
Bus Nominal Voltage	5%
Prop Wt	54%
Solar Array Area	14%
RCS No. of Thrusters	17%
RCS lsp	6%
Total Thrust	6%
Instrument Weight	77%
Instrument Mass Fraction	74%
No. of Distinct Instrument Types	75%
Bus New Design Factor	16%
Instruments New Design Factor	16%
No. Customers	76%
No. Organizations	71%

Candidate Binary Drivers	Population %
Joint or Foreign-Led Spacecraft	99%
Demo	100%
Block Change/New Program	100%
Incumbent Contractor	100%
New program	100%
Option on Prior Contract	99%
Remote Sensor	99%
Optical Payload	100%
Storage Period	100%
COMSAT	100%
GFE PL	78%
Class A/B or Class-C/D	93%
Qual Unit	35%
LEO Orbit	100%
HEO/MEO Orbit	100%
GEO Orbit	100%
Interplanetary	100%
Complex Deployment	15%
High Gain Antenna	1%
Active Thermal Control	74%
Cryogenic Control	74%
3-Axis Stabilization	69%
Ni-H or Li Battery	16%
Deployed Solar Array	83%
Traditional RCS	18%

49 potential drivers collected


- Data collection focused on populating strong drivers
- Expected weaker drivers have missing data
- Developed candidate SERs with fully-populated drivers
- Employed regression imputation with some restrictions
 - Fully-populated (green) drivers must account for 75% or more of the score (total variation possible in estimates)
 - Very sparse (red) drivers do not contribute to the score
 - Consistent with best results of CAAG
 tests of imputation methods
- Drivers with missing data that appeared strong
 - Pointing Accuracy
 - GFE Payload
 - Payload Mass Fraction
- + Final result relationship driven by only fully-populated drivers!
- + Led back to traditional analysis with the chosen combination

[Duration (mos)] = 1.80 * [Design Life (mos)]^{0.19} * [Dry Weight (lbs)]^{0.16}

* 1.34[Mission Types] * 1.40[Storage Period] * 0.89[Comsat]

Estimated Duration (mos)

DOF	104
SPE	40%
R ²	0.46
Bias	0%

- Solved using LOLS
- Civil data appears in-family
- Similar drivers to 2007 model
 - New driver, whether vehicle had a storage period, is strong
 - Storage could be responsible for longer schedules in multiple ways

Could Storage *Really* Extend Test Schedule by 40%?

- Test schedule data does not include time in storage, but includes test time before and after storage period
- Storage generally happens for one of two reasons

	Reasons	Consequences
•	Planned (e.g. ground sparing, launch-on-need) Unplanned (e.g. late payload delivery, LV failure investigation)	 Re-work Re-test Additional prep time Slower pace of test operations Interruption of test facility flow As much as ~1 year of
		additional time in test

Significant re-test effort can be required post-storage

Aerospace Findings*

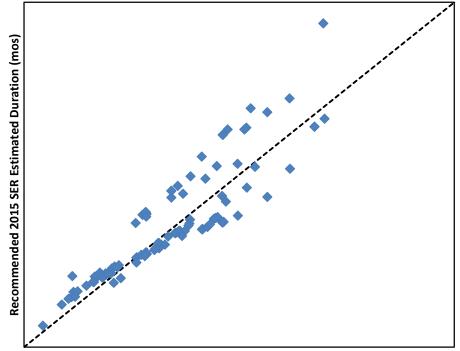
- Disturbing the Vehicle While in Storage is a Major Source of Failures/Anomalies
- Low Humidity (RH<50%) Inhibits Degrading Processes, But ESD Control Precaution Must Be Taken
- Nitrogen Purge Inhibits Degrading Processes
- Removal of Batteries, Reaction Wheels, Gyros is Application Dependent
 - Benefit of Controlling their Environment Independent of Vehicle Needs to Be Balanced Against the Need to Not Disturb the Vehicle
- Thermal Vacuum Testing Has Proven to Be Most Perceptive Post-Storage Test
 - Benefits Need to Be Weighted Against the Risks Associated With Disturbing the Vehicle
 - Thermal Cycling (at Ambient Pressure) May Be Adequate in Many Cases
- Storage Periods Greater Than 3 Years Leaves Significant Likelihood of Remaining Failures Upon Recall From Storage

*Sources:

Elias, J.D., "General Satellite Storage and Post-Storage Testing Requirements", ATM 90(5436-03)-1, The Aerospace Corporation, 18 April 1990 Laube, R.B., "Testing of Satellites After Storage, ATM-87(2902-06)-1, The Aerospace Corporation, 20 November 1986. Hamburg, O., "Satellite Storage Test Requirements", Aerospace ATM 91(6904-40)-1, 17 December 1990 GE Astro-Space Division, "Defense Satellite Communication Systems Phase 3 Program – Final Report on the Effects of Extended Storage", CDRL No. 043A17, 1988. Slaughter, R.G., "DSCS III TWTA Storage Concerns B8/B9 (and other) Satellites IRR Team Review" (briefing), The Aerospace Corporation, August 1988.

Storage Related Risk

- Failures Caused By Vehicle Handling
 - For >3 Years- More Vehicle Handling Likely Due to Uncovering of Part Issues
 - Include Electrical Breaks Within Assemblies and Interfaces, TWTA Degradation (If Direct Handling)
- Poor Storage Environment Conditions Caused By High Relative Humidity Levels
 - Degradation of Electronic Piece Parts, Pyrotechnic Devices- Caused By High Level of Relative Humidity
 - Capacity Loss of NiH Batteries- If Not Kept in Cold Storage
- Failures Most Likely Be Exposed By Thermal Cycling/Vacuum
 - Thermal Testing More Perceptive Than Ambient Test
 - Per Aerospace Study- Lack of SV Thermal Testing For Storage > 3 Years Leaves High Risk of Undetected Failures
- Planned storage periods for many vehicles can greatly exceed 3 years
 - Requires re-test due to duration alone


Sources:

Elias, J.D., "General Satellite Storage and Post-Storage Testing Requirements", ATM 90(5436-03)-1, The Aerospace Corporation, 18 April 1990 Laube, R.B., "Testing of Satellites After Storage, ATM-87(2902-06)-1, The Aerospace Corporation, 20 November 1986. Hamburg, O., "Satellite Storage Test Requirements", Aerospace ATM 91(6904-40)-1, 17 December 1990 GE Astro-Space Division, "Defense Satellite Communication Systems Phase 3 Program – Final Report on the Effects of Extended Storage", CDRL No. 043A17, 1988. Slaughter, R.G., "DSCS III TWTA Storage Concerns B8/B9 (and other) Satellites IRR Team Review" (briefing), The Aerospace Corporation, August 1988.

Recommended SER vs. 2007 SER

Updated SER Estimates vs. 2007 SER Estimates

- Estimates for some programs may change by up to ~10 months, but not consistently shorter or longer than previous estimates
- New programs are estimated consistently between the two models

Summary

• Recommended SER for System Test Schedule:

$[Duration (mos)] = 1.80 * [Design Life (mos)]^{0.19} * [Dry Weight (lbs)]^{0.16} * 1.34^{[Mission Types]} * 1.40^{[Storage Period]} * 0.89^{[Comsat]}$

COMM – Satellite primary mission is communications Mission Types – count of the categories of payload from this list: Communications, Signals Intelligence, Optical, Active Sensing, Other Scientific

- Recommended SER improves upon 2007 SER by incorporating 49 new datapoints
 - $61 \rightarrow 110 \text{ programs}$
 - Includes non-military/intelligence programs for the first time
- Recommended SER produces estimates in line with 2007 SER
- More data collection could lead to further improvements

NATIONAL RECONNAISSANCE OFFICE

SUPRA ET ULTRA

