

Engineering, Test & Technology Boeing Research & Technology

Machine Learning Approach to Cost Analysis

Karen Mourikas, Joe King, Denise Nelson ICEAA Workshop, June 2017

Copyright © 2017 Boeing. All rights reserved.

Machine Learning Approach to Cost Analysis

Machine Learning

- & Cost Estimating
- **Random Forest Prediction**

Applications

What is Machine Learning?

Simply,

when a machine mimics "cognitive" functions such as "learning" and "problem solving" *

Machine Learning (ML) is a method in which algorithms ...

A. teach themselves to grow (i.e. learn) from data

Algorithms ...

- analyze, generalize and learn from relationships & trends
- derive a complex model that produces data-driven predictions
- B. learn without being explicitly programmed

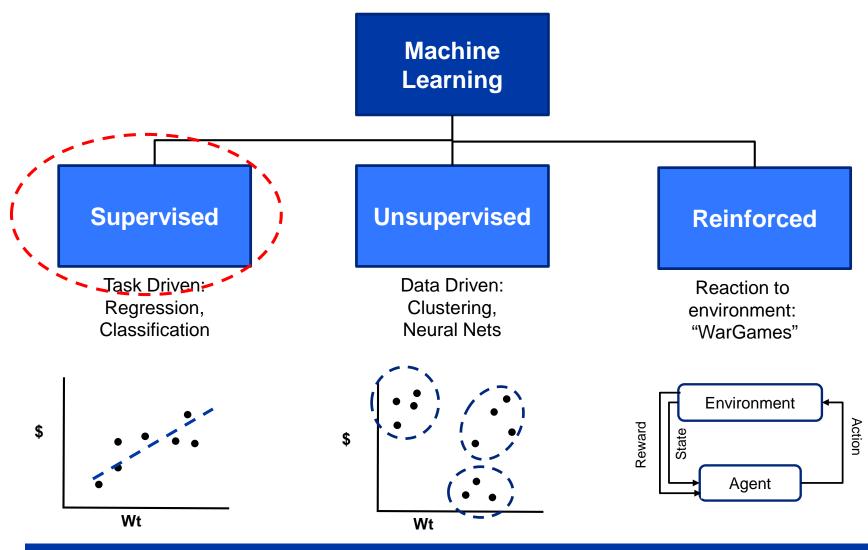
Machine Learning ...

- does not require prior knowledge of relationships between inputs & outputs
- implies "dummy-proof system" but it's not

* Russell, Stuart J.; Norvig, Peter ; Artificial Intelligence: A Modern Approach, 2003 & 2009

Machine Learning is a type of Artificial Intelligence

Three types of Machine Learning



Our focus is on Supervised Regression

Machine Learning for Cost Estimating & Analysis

Typical Cost Estimating

- Analogies
- Engineering / Bottoms up
- Parametric Equations / Top down

Machine Learning

- Alternative to traditional cost estimating
- Age of Big Data
- Messy Data
- Interactions and non-linear behavior
- Relationship not well understood nor apparent
- Relatively easy to implement

Could we use Machine Learning techniques for cost estimating?

Machine Learning Approach to Cost Analysis

Machine Learning & Cost Estimating

Random Forest Prediction

Applications

Engineering, Test & Technology

Presented at the ICEAA 2017 Professional Development & Training Workshop - www.iceaaonline.com/portland2017

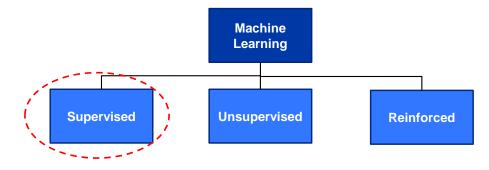
Machine Learning: Random Forest Prediction

Supervised Learning

- Regression
- **Ensemble Approach**

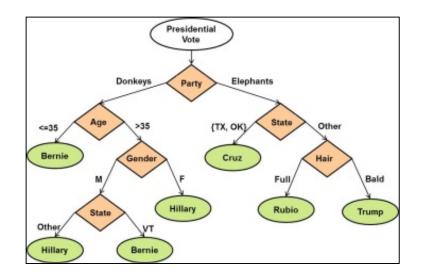
Decision Tree Theory

Randomness



Decision Tree

- Easily interpretable model
- Represents a set of decisions & outcomes
- Similar to "20 Questions"



Random Forests popular with machine learning community

Trees and Forests

A Single Decision Tree

- Interpretable, but ...
- Not a great predictor

An Ensemble of trees

- Not as easy to interpret, but ...
- Provides greater prediction accuracy & more stability

Random Forests

- Ensemble of decision trees "randomly" constructed
 - Advantages of an ensemble, plus ...
 - More accurate predictions and reduced error

Random Forest Background

History of Random Forests

- Fairly recent introduced in late 90s
- Leo Breiman father of Random Forests
- Combined "bagging" with random selection methods*
- Incorporated variable importance via permutation and out-of-bag error

Two phases of Random Forest modeling

- Training building the model
- Prediction estimating response of new input

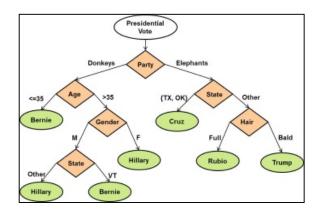
*Introduced independently by Ho, and by Amit and Geman

Bridging gap between Statistics and Computer Science

Building a Random Forest model

To grow Random Forest trees (Training Phase)

- Select a random subset of data
- Select with replacement from subset (predictors and responses)
 - Bootstrapping Aggregation (Bagging)
- Search over *random subset* of the values to select split point
- Continue until number of observations in node small
 - Response is average of all observations in terminal node
- Repeat



To Predict a new response (Prediction Phase)

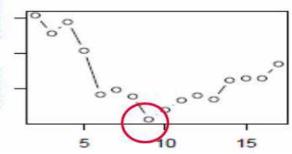
Run new input down each tree and average result from terminal nodes

Similar to building Decision Trees but with variation among trees

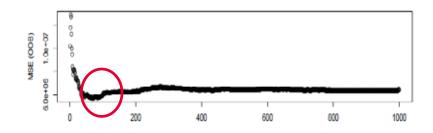
"Random" Advantages

OOB data to minimize errors and determine optimal predictors

- Using different (random) training sets reduces correlation between trees
- Reducing size of random subset reduces correlation
 - But also strength



- Optimal number of randomly selected predictors at each split node
- Optimal number of trees
 - From a few hundred to several thousand



Algorithm incorporates randomness for better prediction

Engineering, Test & Technology

Presented at the ICEAA 2017 Professional Development & Training Workshop - www.iceaaonline.com/portland2017

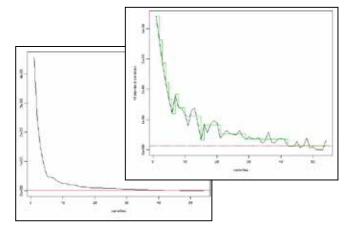
Variable Selection Process*

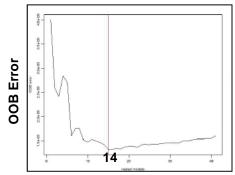
Three Step Process

- 1) Thresholding
 - Eliminate irrelevant variables from the dataset
 - Original dataset: >50 potential predictors
- 2) Interpretation
 - Select all variables related to the response for interpretation purpose
 - 14 "most important" predictors

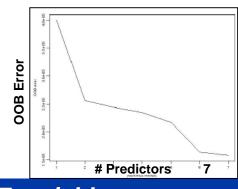
- Refine the selection by eliminating redundancy in the set of variables from step 2
- Final set contains 7 predictors

Random Forest model reduced from ~70 to 7 variables

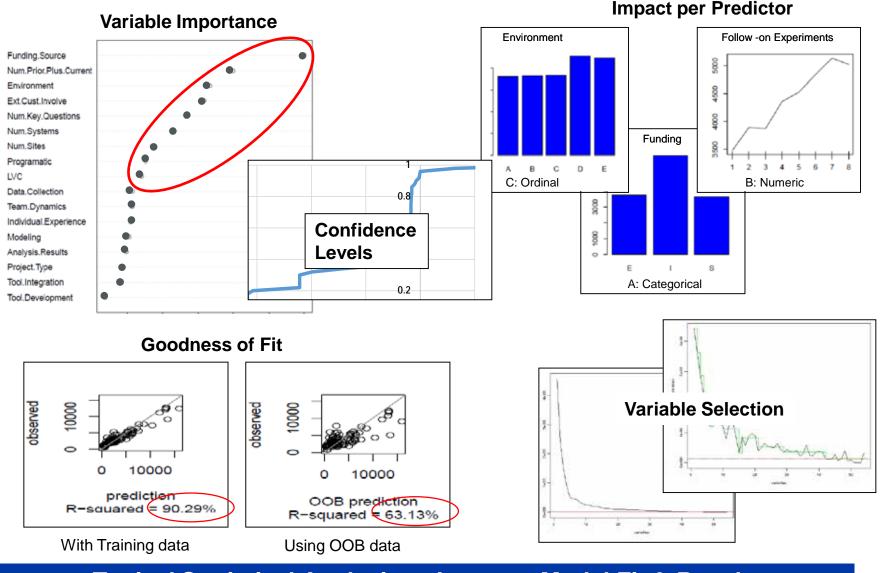




Predictors



Tools to Understand the Model & Results



Typical Statistical Analysis to Interpret Model Fit & Results

General Applications & Uses

- **Agriculture / Forestry**
- **Pollutants**
- Astronomy
- **Medical and Health fields**
- Manufacturing
- Marketing
- **Buying patterns**
- **Remote sensing**
- **Object recognition**

Random Forests widely used in other fields

Copyright © 2017 Boeing. All rights reserved.

Presented at the ICEAA 2017 Professional Development & Training Workshop - www.iceaaonline.com/portland2017

Why use Random Forest Prediction?

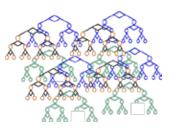
Advantages

- § Excellent predictors
- § Useful if relationship between inputs and outputs is unclear
- S Captures non-linear and interaction behavior
- § Handles qualitative data as well as missing values
- § Relatively stable due to diversity in trees
- § Estimates variable importance
- § Handles problems with small population size and large number of predictors
- § Lower generalization error than other methods
- § Runtime very fast

Disadvantages

- Not so easily interpreted
- Predicts a numeric value (cost) Not a parametric equation (CER)

Versatile Approach



Machine Learning Approach to Cost Analysis

Machine Learning & Cost Estimating

Random Forest Prediction

Applications

RFP Application: BPDS Cost Savings

Objective of *BPD***\$***aves*

- Develop a simple-to-use estimation model to identify cost savings that programs could achieve with BPDS methods
- Develop a comprehensive program-focused model for predictive valuing of future BPDS projects

BPDS methods used to reduce costs

Engineering, Test & Technology

Presented at the ICEAA 2017 Professional Development & Training Workshop - www.iceaaonline.com/portland2017

BPD\$aves Model and Data

Characteristics of Model

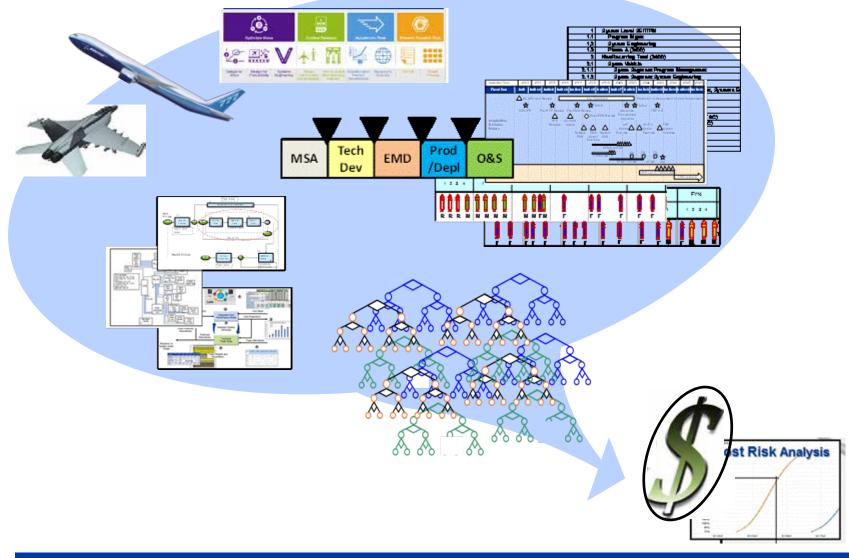
- NRE/RE, all phases
- Limited number of inputs
- Quick turn-around & credible ROM results

Limited, disparate data set

- Common and unique variables for each BPDS method
- Relatively small dataset
- Numerous potential predictors
- Qualitative data as well as missing values
- Multiple data sources

18

BPD\$aves: Characteristics of Data Set



Limited inputs identify savings opportunities

BPD\$aves Model Statistics

Goodness of Fit

- Predicted $R^2 = 0.82$
 - Measure of variability in the data sample explained by the model
 - Cross-validation approach to measure model fit to predict new values
- Mean Square Error = 0.15
 - Measure of variance of residuals (non-fit) in the population

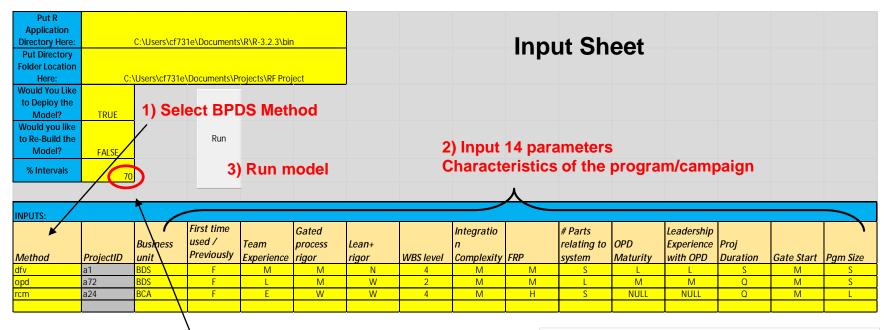
Prediction Test

- 7 new projects, multiple domains
- Predicted savings within 20% of program actual savings
 - Some high, some low

Average Results							
Average High	17.3%						
Average Low	-20.1%						

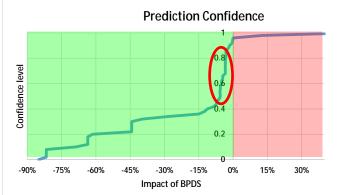
Model predicts savings within 20% of actuals

BPD\$aves Input Sheet & Results Sample



Prediction interval based on selected input (70%)

		Lower	Upper
	Prediction:	Prediction	Prediction
ProjectID	% Impact*	Interval	Interval
n1	-3.4%	-3.1%	-63.5%



Simple Excel-based interface

4) Outputs

Example R code in BPD\$aves Model

```
#### Function to find predictors that are of most importance
if(VI bool==TRUE){
                                                             Variable Importance Analysis
rFmodel2 <- VSURF(xTRAIN,yTRAIN,ntree=100)
jpeg('Plots and Performance/Variable Selection
Plots.jpg',width=1200,height=1000)
plot(rFmodel2)
dev.off()
keepthese <<- names(xTRAIN)[rFmodel2$varselect.pred]
buildModel(finalFrame,VI bool=FALSE)
                                                   Building the model
rFmodel <<- randomForest(x=xTRAIN,
               y=yTRAIN,
               ntree=100,
               importance=TRUE)
qrfModel <<- quantregForest(xTRAIN,yTRAIN, keep.inbag=FALSE)
save(list = c('qrfModel','rFmodel'),file="rFmodel.RData")
```

Built-in functions in R for Random Forest modeling

Analyzing the Model's fit with R

```
Mean Square Error
```

```
#MSE
(theMSE <<- sum((CVstat$yhat-CVstat$yobs)^2)/length(CVstat$yobs)*10^6)
#### make R Squared value
                                                                      Predicted R Squared Val
r2 check <- sum((CVstat$yobs - CVstat$yhat)^2)/sum((CVstat$yobs -
mean(CVstat$yobs))^2)
r2 check <- 1 - r2_check
                                                           Goodness of fit chart
###### save predicted vs. actual plots
jpeg('Plots and Performance/Predicted vs. Actual.jpg', width=800, height=600)
print(qqplot(CVstat, aes(x = yobs, y = yhat)) +
 geom_point() +
 geom_abline(color = "red") +
 ggtitle(paste("OOB Goodness of Fitness for: RandomForest Regression in R r^2=",
r2 check, sep="")) +
 labs(x="ACTUAL OBSERVATION", y="PREDICTED OBSERVATION"))
dev.off()
```

Typical statistical functions in R

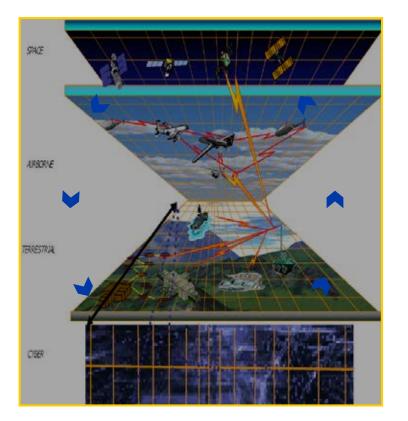
Boeing Research & Technology | Enterprise Initiatives

Presented at the ICEAA 2017 Professional Development & Training Workshop - www.iceaaonline.com/portland2017

RFP Application: Project Budgeting

Experimentation

§ Experimentation Estimation



Co\$t-X model estimates cost of experimentation projects

Co\$t-X based on Random Forest Prediction

Engineering, Test & Technology

Presented at the ICEAA 2017 Professional Development & Training Workshop - www.iceaaonline.com/portland2017

Co\$t-X Model

Assumptions

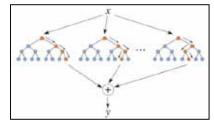
- Non-linear model
- Expect interaction

Project Data

- 70 Completed Projects
 - Various characteristics
 - Incorporated reuse & learning
- Data Issues
 - Relatively small (70 data points)
 - Numerous potential predictors (18 attributes)
 - Lots of qualitative (2 categorical and 10 ordinal with various levels) data

Model Method Options

- Linear Regression
- Random Forest Prediction

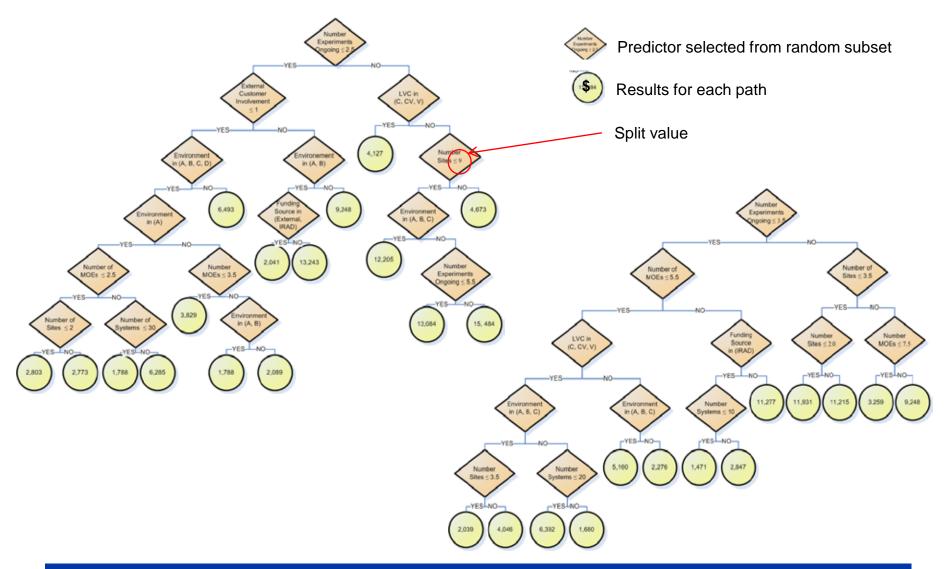


*Not required

Random Forest selected for Co\$t-X model

		Reusability										Team		
	Project ID	Modelir	Tool ng Developm	Tool t Integration	Enviror	nment Pi	rogramatic	Dat Collec		Analysi Results		dividual perience	Team Dynamics	
	a1	В	В	E+	А	L.	А	В		A		E	E	
	a2	С	А	B-	В	ł	В	С		B-		B+	В	
	Proj	Info	Con	nplexity	/	Exe	cutio	n	C	ost/	Sch	ed	D	
Project ID	PO		Туре	Num Sys	VCL	Num MOE:			Mths	Co	st (\$K)	POP	E	
a1	John Sm	ith	Modeling	5	С	0	1		4	\$	90	4Q 2008 mar 07-	B B	
a2	Pocahon	tas	Analysis	12	С	4	2		10	\$	450	dec 07		
a3	Hilary Cli	nton	Analysis	3	С	2	5		4	\$	61	Jun - Sep 08		
a4	Meriweth	er Lewi	Modeling	20	С	4	1		8	\$	870	Oct 08- may 09		
a5	William C	Clark	Experiment	4	v	6	4		16	\$	1,350	Sept 07 Dec 08 Jan 05-		
a6	Clara Ba	rton	Analysis	7	С	5	1		12	\$	400	Dec0 5	J	

Two Experimentation Trees Produced



Randomness in Predictor Nodes and Split Values

Experimentation Prediction Analysis Results

Random Forest Model developed based on 70 data points

- Adjusted R² (90%) based on training data (optimistic)
- Predicted R² (63%) based on OOB data (more realistic)

Compared Random Forest Results to Actual costs

- For 34 newly completed projects
- Goal: predict within 20% of actual costs

Results of Random Forest Predictions ...

Lower than Actual Costs

Well within Goal!

RFP Application: Huge Data

Logistics of Manufacturing

- Objective: determine best locations to manufacture products and parts
- Thousands and thousands of data points
- Messy data

Initial Plan: Multi-variate Regression

- Very cumbersome
- Manual partitioning

Random Forest Prediction

- No need to clean up the data
- Automatic partitioning & different perspectives
- Very easy to implement, execute, and analyze

Random Forest Prediction facilitates big data analysis

Challenges for Cost Analysis Community

Machine Learning for cost analysis & estimating

- Different from traditional methods
- Black box method
- Not so easy to interpret
- Not so easy to follow input-to-output logic
- Predicts a numeric value (cost)
- Not a parametric equation (CER)

Do Benefits outweigh Challenges?

Engineering, Test & Technology Boeing Research & Technology

Questions?

Copyright © 2017 Boeing. All rights reserved.