I CEAA 2017 Professional Development & Training Workshop - www.iceaaonline.com/portland2017 BOOZ | Allen | Hamilton

SOFTWARE SCHEDULE & RESOURCE PLANNING WITH AGILE DELPHI ESTIMATION

ICEAA Conference 2017

JUNE 2017

BACKGROUND

AGILE DELPHI ESTIMATING

ASSESSING PLANNED SCHEDULE & RESOURCES

BACKGROUND

- Program analysts supporting Navy IT acquisition programs have been using a new estimating technique involving an agile-style Delphi process to provide the Basis of Estimate (BOE) for software development and integration costs
- Outputs of this process are well structured to inform uncertainty and trade space analysis
- Uncertainty-bounded effort estimates enable analysts to quantitatively assess realism of the project's planned schedule and resources

BACKGROUND

AGILE DELPHI ESTIMATING

ASSESSING PLANNED SCHEDULE & RESOURCES

AGILE DELPHI ESTIMATING PROCESS

AGILE DELPHI ESTIMATE OUTPUTS

• 3-5 effort estimates, with uncertainty ranges, for each requirement or capability

		Round 1									Round 2			2
		5	corer	1	S	corer	2	Scorer 3		1	2	З	4	
Req #	Req. Description	Exp.	Low	High	Exp.	Low	High	Exp.	Low	High	крі	k þi	k	Comments
1.1.1	The system shall enable the user to	8	6	10	8	6	10	6	4	8				Need to build API and widget XYZ
1.1.2	The system shall enable the user to	6	4	8	8	6	10	6	4	8				Need to edit data handling APIs
1.2.1	The system shall enable the user to	4	3	5	1	1	1	5	4	7				Need to build presentation widget
1.2.2	The system shall enable the user to	7	5	9	6	4	8	10	7	13	Π	Π	П	Need to integtrate XYZ COTS tool
1.2.3	The system shall enable the user to	7	5	9	10	7	13	4	3	5	Π		Π	Need to implement XYZ interface
2.1.1	The system shall enable the user to	2	1	3	4	3	5	1	1	1	Π	Π	Т	Need to implement XYZ function in data layer
2.1.2	The system shall enable the user to												Π	Effort included in estimate above
2.1.3	The system shall enable the user to	3	2	4	1	1	1	3	2	4			Π	Need to build presentation widget
							-				H	H	Ŧ	
									-		H		Ŧ	
		-	-					-	-	-				
											╉╋	╉	+Ŧ	
		-	-		-	-	-	-	-					
X.X.X	The system shall enable the user to	2	1	3	7	5	9	9	6	12				Need to build API and widget XYZ

 Documentation and diagrams describing assumptions for each requirement or capability estimated

SUMMARIZE ESTIMATES AT VARIOUS LEVELS

- Estimates can be summarized by any relevant grouping of the requirements/capabilities
 - Enables easy visualization of estimate size/uncertainty drivers

UNCERTAINTY ANALYSIS

- Ranges from multiple scorers provide many possibilities for uncertainty bounds
 - Average of Expected
 - Min of Low
 - Max of High
- Uncertainty can be applied at whatever level in requirements desired

					F	Round	1				Ro	bu	nc	12
			Scorer	1		corer	2		corer	\$	1	2	2	3
Req #	Req. Description	Exp.	Low	High	Exp.	Low	High	Exp.	Low	High	bi	k	1	þ
1.1.1	The system shall enable the user to	8	6	10	8	6	10	6	4	8		Π	Π	Π
1.1.2	The system shall enable the user to	6	4	8	8	6	10	6	4	8		Π	Π	Π
1.2.1	The system shall enable the user to	4	3	5	1	1	1	5	4	7		Π	Π	Π
1.2.2	The system shall enable the user to	7	5	9	6	4	8	10	7	13		Π	Π	Π
1.2.3	The system shall enable the user to	7	5	9	10	7	13	4	3	5		Π	Π	Π
2.1.1	The system shall enable the user to	2	1	3	4	3	5	1	1	1		Π	Π	Π
2.1.2	The system shall enable the user to											Π	Π	Π
2.1.3	The system shall enable the user to	3	2	4	1	1	1	3	2	4		Π	T	Π
												≣	⋕	▋
												≣	∄	▋
X.X.X	The system shall enable the user to	2	1	3	7	5	9	9	6	12		Ħ	Ħ	Π

BACKGROUND AGILE DELPHI ESTIMATING ASSESSING PLANNED SCHEDULE & RESOURCES SUMMARY

1000

-800

600

400

200

180

mulative Frequer

ercentile-808 135.824431

160

170

ASSESSING RESOURCING PLANS

Estimated Total Developer Effort 1.00 • After uncertainty analysis is conducted 0.80 obability Density around scores, 0.60-Lower Bound x: 99 Upper Bound estimate ranges can 0.40be compared against 0.20 resourcing plans 0.00 70 100 110 120 130 140 150 Person-Months **Resourcing Plan**

ASSESSING SCHEDULE REALISM

• Uncertainty-adjusted effort estimates can be compared to planned resources and schedule to evaluate schedule realism

Schedule (months) [Monte Carlo result] = Scored Effort Estimates (total person-months) [Monte Carlo variable] / Planned Resources (Avg. FTEs per month) [Monte Carlo variable]

SCOPE TRADE-OFF ANALYSIS

• Given firm resource and schedule constraints, uncertaintyadjusted estimates enable CAIV-like scope trade-off analysis at lower levels of the requirement/capability hierarchy

			Uncertainty- Adjusted	
	Req #	Req. Description	Estimate	Cumulative
Requirements	1.1.1	The system shall enable the user to	5.5	5.5
ordorod by	1.1.2	The system shall enable the user to	5.0	10.4
olueleu by	1.2.1	The system shall enable the user to	11.4	21.8
priority	1.2.2	The system shall enable the user to	6.9	28.8
(highest to	1.2.3	The system shall enable the user to	6.4	35.2
	2.1.1	The system shall enable the user to	3.0	38.2
lowest)	2.1.2	The system shall enable the user to	0.0	38.2
	2.1.3	The system shall enable the user to	8.9	47.1
	2.1.4	The system shall enable the user to	8.9	56.0
	2.1.5	The system shall enable the user to	5.9	62.0
	2.2.1	The system shall enable the user to	7.4	69.4
	2.2.2	The system shall enable the user to	7.4	76.8
•	2.2.3	The system shall enable the user to	8.4	85.3
	2.2.4	The system shall enable the user to	8.9	94.2
	3.1.1	The system shall enable the user to	5.9	100.1
	3.1.2	The system shall enable the user to	8.4	108.6
_	3.1.3	The system shall enable the user to	10.9	119.5
_	3.2.1	The system shall enable the user to	6.9	126.4
	3.2.2	The system shall enable the user to	9.4	135.8

Conclusion:

PM can reasonably expect to:

- Complete 1.1.1 3.1.3
- Possibly complete 3.2.1
- Not likely complete 3.2.2

Resourcing at 50th Percentile
Resourcing at 80th Percentile

BACKGROUND AGILE DELPHI ESTIMATING ASSESSING PLANNED SCHEDULE & RESOURCES SUMMARY

SUMMARY

- Agile-style Delphi process can provide the Basis of Estimate (BOE) for software development and integration costs
- Outputs of this process are well structured to inform uncertainty and trade space analysis
- Uncertainty-bounded effort estimates enable analysts to quantitatively assess all aspects of the project plan
 - Resource Planning
 - Schedule Realism
 - Scope Tradeoff Analysis

THANK YOU

For more information, contact . . .

Blaze Smallwood Lead Associate	
	Booz Allen Hamilton
Booz Allen Hamilton Inc. Office 309.359.3160	
Mobile 619.850.6123 smallwood_blaze@bah.com	

BOOZALLEN.COM