
How Should We Estimate Agile Software Development Projects and What Data Do We Need?

Glen Alleman and Thomas Coonce

1

Abstract

This paper proposes and demonstrates how to estimate agile software projects using
collected data from prior similar projects. The authors discuss traditional ways of
estimating software projects and show why these approaches are not feasible in estimating
agile projects. They demonstrate estimating agile projects using actuals from historical
features. They recommend a few additions to DoD’s Software Resource Data Report
(SRDR) as well as a Standard Feature Breakdown Structure (FBS) to permit using this
approach.

Cost Estimating Methods

Estimating the cost of Department of Defense systems, the Office of Cost Assessment
and Program Evaluation (CAPE) recommends four cost estimation methods:

1. Analogy
2. Parametric (Statistical)
3. Engineering
4. Actual Costs

Estimating techniques for an acquisition program progresses from analogies to actual
cost method as the program matures and more information is known. The analogy method
is most appropriate early in the program life cycle when the system is not yet fully defined.
This assumes there are analogous systems available for comparative evaluation. As
systems become more defined (such as when the program enters the Engineering and
Manufacturing Development Phase (EMD), estimators are able to apply the parametric
method. Estimating by engineering tends to begin in the latter stages of EMD and the
Limited Rate Initial Production (LRIP) when the design is fixed and more detailed
technical and cost data are available. Once the system is being produced or constructed
the actual cost method can be more readily applied.

The analogy method is often used early in the program, when little is known about the
specific system to be developed. The parametric technique is useful throughout the
program, provided there is a database of sufficient size, quality, and homogeneity to
develop valid cost estimating relationships. The engineering estimate is used later in
program development and production, when the scope of work is well defined and an
exhaustive Work Breakdown Structure can be developed. Finally, estimating by actual
costs produces the lowest risk estimate due to the fact that the system cost is derived from
a trend from the current contract to estimate.1

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

How Should We Estimate Agile Software Development Projects and What Data Do We Need?

Glen Alleman and Thomas Coonce

2

Software Cost Estimating Methods

Software development effort estimation predicts a realistic amount of effort (in
person-hours) required to develop or maintain software based on incomplete uncertain and
noisy input. In spite of the above CAPE guidance, published surveys on the software
estimation practice suggest that expert estimation (engineering estimating or bottoms up)
is the dominant strategy when estimating software development effort. Many times, effort
estimates are over-optimistic. The mean effort overrun can be 30 percent and does not
decrease over time. 2

Software researchers and practitioners addressed the problems of effort estimation for
software development projects starting the 1960’s.3 Most of the research has focused on
constructing formal software effort estimation models that are parametric in nature and rely
upon some form of sizing input and modified by other factors. Common parametric
software estimating models include:

• COCOMO II by the University of Southern California
• SEER-SEM by Galorath, Inc.
• SLIM by Qualitative Software Management
• TruePlanning by PRICE Systems

Each of these models is based upon the actual results of historical projects
characterized by the operating environment, type of platforms, and calibrated for unique
factors like the amount of code re-use or other complexity factors unique to the application.
The cost models used in sea, space, ground, and air platforms by the DoD services are
generally based on the common effort formula shown below.4

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

How Should We Estimate Agile Software Development Projects and What Data Do We Need?

Glen Alleman and Thomas Coonce

3

Effort = A × SizeB × EM

Where:

 Effort in Person Months
 A is a constant derived from historical project data
 Size in source lines of code or other size measures
 B is a scale factor
 EM is an effort multiplier from cost factors.

The models use size expressed as lines of code, function points, object-oriented
metrics, and other measures. Each model has respective cost factors for the linear effort
multiplier term, and each model specifies the B scale factor in different ways (either
directly or through other factors). Some models use project type or application domain to
improve estimating accuracy.

For each commercial estimating model, the cost estimator needs to know the software
Size and other unique attributes of the project. The Size input is computed but requires a
design document, such as the Software Requirements Specifications (SRS). Function
Points are created from the SRS and converted to Effective Software Lines of Code
(ESLOC). Similarly, Use Cases or Objects are computed and used directly (by some of
the commercial models) or converted into ESLOC to drive the parametric model. Other
project attributes are obtained directly for the Cost Analysis Requirements Description or
imputed based on analyst judgement or other expert opinion.

Software Development Methodologies and the Challenges to the Estimator

How does one estimate the software development effort when requirements are not
fully known in the early stages? It can be argued that the development should not be
approved if the customer does not know requirements. However, to address both of these
concerns, one needs to understand the different types of software development methods (or
models), why they exist, and what challenges they present to the estimator.

Waterfall Development Model

In software engineering, a software development model (SDM) splits the software
development work into distinct phases (or stages) containing activities with the intent of
better planning and management. This approach is often considered a subset of the systems
development life cycle (SDLC) which emerged in the 1960’s.5 The idea of a SDLC is "to

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Systems_development_life_cycle
https://en.wikipedia.org/wiki/Systems_development_life_cycle

How Should We Estimate Agile Software Development Projects and What Data Do We Need?

Glen Alleman and Thomas Coonce

4

pursue the development of information systems in a very deliberate, structured and
methodical way, requiring each stage of the life cycle––from inception of the idea to
delivery of the final system––to be carried out rigidly and sequentially" within the context
of the framework being applied. The main target of this methodology framework was "to
develop large scale functional business systems in an age of large scale business
conglomerates. Information systems activities revolved around heavy data processing and
number crunching routines".6 This framework led to the “waterfall” development method
which is a sequential process, development flows steadily downwards (like a waterfall)
through several phases, typically:

 Requirements analysis resulting in a software requirements specification
 Software design
 Implementation
 Testing
 Integration, if there are multiple subsystems
 Deployment (or Installation)
 Maintenance

The waterfall principles are

• Project is divided into sequential phases, with some overlap between phases.
• Emphasis is on planning, time schedules, target dates, budgets and

implementation of an entire system at one time.
• Tight control is maintained over the life of the project via extensive written

documentation, formal reviews, and approval/signoff by the user and information
technology management occurring at the end of most phases before beginning the
next phase. Written documentation is an explicit deliverable of each phase.

Figure 1.0 depicts the waterfall concept and linear activities.7

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

How Should We Estimate Agile Software Development Projects and What Data Do We Need?

Glen Alleman and Thomas Coonce

5

Figure 1.0 Waterfall Software Development Concept

In 1985, the United States Department of Defense captured this approach in DoD-STD-
2167A, the standard for working with software development contractors, which stated
that "the contractor shall implement a software development cycle that includes the
following six phases: Preliminary Design, Detailed Design, Coding and Unit Testing,
Integration, and Testing.8 This methodology and associated processes is depicted in
Figure 2.0.9

These overlapping phases of requirements analysis, architecture and preliminary
design, detailed design, coding, and a series of tests beginning with software unit testing
followed by integration and associated qualification testing were established in the
1970’s.10 Qualified Software Configuration Items (SCIs) are integrated into subsystems
and finally into the complete system.

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

https://en.wikipedia.org/wiki/United_States_Department_of_Defense
https://en.wikipedia.org/wiki/DOD-STD-2167A
https://en.wikipedia.org/wiki/DOD-STD-2167A

How Should We Estimate Agile Software Development Projects and What Data Do We Need?

Glen Alleman and Thomas Coonce

6

Figure 2.0 Traditional Waterfall Software Development Process and Activities

This traditional waterfall approach discourages revisiting and revising any prior phase
once it is complete. This "inflexibility" has been a source of criticism by supporters of other
more "flexible" models. It has been widely blamed for several large-scale government
projects running over budget, over time, and sometimes failing to deliver on requirements
due to the Big Design Up Front (BDUF) approach. The main criticism is this approach
does not accommodate situations where the client does not know exactly what their
requirements are before they see working software and so change their requirements,
leading to redesign, redevelopment, and retesting, and increased costs.11

Designers may not be aware of future difficulties when designing a new software
product or feature, in which case it is better to revise the design than continue with a design
that does not account for newly discovered constraints, requirements, or problems. Except
when contractually required, the waterfall model has been superseded by more flexible and
versatile methodologies developed specifically for software development.5 The DoD has

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

How Should We Estimate Agile Software Development Projects and What Data Do We Need?

Glen Alleman and Thomas Coonce

7

a stated preference against waterfall-type methodologies, starting with MIL-STD-498
(superseded by IEEE 12207).12

The weakness of the waterfall model led to the development of other software
development approaches to reduce client uncertainty and risk and unfavorable cost and
durations. Some of these approaches are

 Incremental development
 Evolutionary development
 Spiral development
 Rapid application development
 Agile development

Incremental Development Model

The incremental life cycle model was one of the first variations to be derived from
the waterfall model. The assumption behind the model is that the requirements can be
segmented into an incremental series of the products, each of which is developed somewhat
independently. The series of releases is referred to as “increments”, with each increment
providing more functionality to the customers. After the first increment, a core product is
delivered, which can already be used by the customer. Based on customer feedback, a plan
is developed for the next increments, and modifications are made accordingly.

This process continues, with increments being delivered until the complete product is
delivered. The incremental model has the following advantages: (1) Less cost and time is
required to make the first delivery. (2) Less risk is incurred to develop the smaller systems
represented by the increments. (3) User requirement changes may decrease because of the
quicker time to first release. (4) Incremental funding is allowed; that is, only one or two
increments might be funded when the program starts.13

From the estimators point of view, under this model (like the waterfall model), the
client must define all requirements upfront and the estimator can use any number of the
above parametric models to obtain reasonable estimates of the person months involved.
But what if the client does not know all his specific requirements up front?

The Evolutionary Development Model

The next step in life cycle development is the evolutionary model, which explicitly
extends the incremental model to the requirements phase. In this model, the customer
defines the requirements for “Build 1” and after delivery, he uses his experience with the
first build to define the requirements for the next build. This process continues until all the

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

https://en.wikipedia.org/wiki/MIL-STD-498

How Should We Estimate Agile Software Development Projects and What Data Do We Need?

Glen Alleman and Thomas Coonce

8

requirements are satisfied. The advantage of this approach is that there is greater user
involvement and feedback that in the Incremental or classic waterfall models.14

From the cost estimators point of view, these parametric models can be used to
estimate “Build 1” based on the stated requirements (and derived sizing factors), but the
estimator has little information for estimating “Build 2” due to changes that the client may
make after reviewing “Build 1.” This is a significant challenge for the estimating
community. In many cases, the total project is incrementally funded and the cost estimator
may obtain requirements for each build and thus able to produce credible estimates for each
build.

Rapid Application Development Model

The Rapid Application Develop (RAD) software development methodology favors
iterative development and the rapid construction of prototypes instead of large amounts of
up-front planning. The "planning" of software developed using RAD is interleaved with
writing the software itself. The lack of extensive pre-planning generally allows software to
be written much faster, and makes it easier to change requirements. The rapid development
process starts with preliminary data models and business process models using structured
development techniques. In the next stage of RAD, requirements are verified using
prototyping, refining the data and process models. These stages are repeated iteratively;
further development results in "a combined business requirements and technical design
statement to be used for constructing new systems.

The basic principles of Rapid Application Development are:

 Fast development and delivery of a high quality system at a relatively low
investment cost.

 Attempts to reduce inherent project risk by breaking a project into smaller
segments and providing more ease-of-change during the development process.

 Produce of high quality systems quickly, primarily via iterative Prototyping (at
any stage of development), active user involvement, and computerized
development tools. These tools may include Graphical User Interface (GUI)
builders, Computer Aided Software Engineering (CASE) tools, Database
Management Systems (DBMS), fourth-generation programming languages, code
generators, and object-oriented techniques.

 Emphasis is on fulfilling the business need, while technological or engineering
excellence is of lesser importance.

 Project controls for prioritizing development and defining delivery deadlines or
“time-boxes”. If the project starts to slip, emphasis is on reducing requirements to
fit the time-box, not in increasing the deadline.

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

https://en.wikipedia.org/wiki/Iterative_development
https://en.wikipedia.org/wiki/Data_model

How Should We Estimate Agile Software Development Projects and What Data Do We Need?

Glen Alleman and Thomas Coonce

9

 Generally includes joint application design (JAD), where users are intensely
involved in system design, via consensus building in either structured workshops,
or electronically facilitated interaction.

 Active user involvement is imperative.
 Iteratively producing production software, as opposed to a throwaway prototype.
 Produces documentation necessary to facilitate future development and

maintenance.
 Standard systems analysis and design methods can be fitted into this framework.12

It is difficult from the cost estimator’s point of view to develop credible estimates for
these efforts because there is no set of stable requirements to use as the sizing for the
estimating model. A key attribute of this approach is the client and developer are permitted
to reduce requirements to fit a time-box, while not increasing the deadline. Many cost
estimators will estimate the effort associated with the prototype based on the stated
requirements and then extent the personnel resources over the total projected development
duration. If requirements are not known, the estimator is left to bounding the amount of
effort by using the results of prior analogous efforts.

The Spiral Model

A current development approach is the Spiral model that combines some key aspects
of the waterfall model and with rapid prototyping methodologies in a top-down and
bottom-up concept. 12 The Spiral model is a risk-driven controlled prototyping approach
that develops early deliverables to specifically address risk areas followed by assessment
of prototyping results and further determination of risk areas to prototype. Prototyped areas
frequently include user requirements and algorithm performance. Prototyping continues
until high risk areas are resolved and mitigated to an acceptable level.

This model is appropriate for exploratory projects that are working in an unfamiliar
domain or with unproven technical approaches. The iterative nature allows the knowledge
gained during early stages to inform subsequent stages. During each iteration or loop, the
system is explored at greater depth and more detail is added.14

The spiral model starts with an initial pass through a standard waterfall life cycle,
using a subset of the total requirements to develop a prototype. The set of requirements is
hierarchical in nature, with additional functionality building on the first efforts.15 With the
assumption that functionality can be dropped, the estimator can use the parametric
estimating tools. Use of similar historical results also lends credibility to the estimate.

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

https://en.wikipedia.org/wiki/System_design

How Should We Estimate Agile Software Development Projects and What Data Do We Need?

Glen Alleman and Thomas Coonce

10

The Agile Development Model

The Agile software paradigm is a collection of software development methods where
solutions evolve through collaboration between self-organizing, cross-functional teams.
Agile promotes adaptive planning, evolutionary development, continuous delivery,
continuous improvement, and rapid and flexible response to change.12

Development methods exist on a continuum from adaptive to predictive. Predictive
methods, such as the classical waterfall model, focus is on analyzing and planning the
future in detail and cater for known risks. In the extremes, a predictive team reports what
features and tasks are planned for the entire length of the development process.

Predictive methods rely on effective early phase analysis and if this goes very wrong,
the project may have difficulty changing direction. Agile methods lie on the adaptive side
of this continuum where the focus is on adapting quickly to changing realities. When the
needs of a project change, an adaptive team changes as well.5

While the use of the Agile model has been applied in the commercial environment
where scope is often open ended, the DoD, and other federal agencies have been
encouraging the use of the Agile model when the system being developed needs to rapidly
adapt to emerging user needs.16 Federal government and DoD have emphasized the
necessity to shorten acquisition timelines to be responsive to increasing operating tempo
and warfighter need with more rapid capability development. In 2009, the Defense Science
Board wrote that “The fundamental problem DoD faces is that the deliberate process
through which weapon systems and information technology are acquired does not match
the speed at which new IT capabilities are being introduced in today’s information age”. 17

Additionally, requirements for any given system are likely to evolve between the
development of a system concept and the time at which the system is operationally
deployed as new threats, vulnerabilities, technologies, and conditions emerge, and users
adapt their understanding of their needs as system development progresses. With budgets
constrained, ops tempos increasing, and requirements perpetually evolving, software
development and acquisition practices must evolve in a way that facilitates faster capability
deployment and flexibility in approaching system requirements.18

Iterative, incremental software development methodologies commonly referred to as
“Agile” methods have been gaining ground in efforts throughout the DoD and federal
agencies as a means to achieving these objectives for the acquisition of software-intensive
systems and improving visibility into development execution to enable early detection of
problems that can derail programs.18

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

How Should We Estimate Agile Software Development Projects and What Data Do We Need?

Glen Alleman and Thomas Coonce

11

Under Agile, an exhaustive set of requirements is not locked down at the start of the
program. Rather, Agile development assumes that system and software requirements will
evolve over time, rather than be definitized prior to system development. With Agile, high-
level vision for the system is defined up front, but specific requirements are fixed at the
iteration (or “Sprint”) level according to an established cadence. The development team
and user representative (generally referred to as a “Product Owner”) agree to a set of
requirements to accomplish during the defined time interval associated with the iteration.
This serves to time-box the delivery of software: increments are completed on a regular,
predictable basis. At the end of a sprint or increment, prioritized software requirements are
agreed to for the next development iteration. The understanding of the user requirements
evolves, guided by the high-level vision (or roadmap), as the software product continues
to be developed. [Wrubel, p. 8]

While there are multiple ways for Agile project to be implemented, and there is
disagreement in the terms used, the DoD’s Performance Assessment and Root Cause
Analyses (PARCA) office recently issued a Program Manger’s Guide on Agile which
clarified processes and terms.19 The guide states that a program’s “High Level Vision”
should be communicated to the implementing contractor as “Capabilities” and these in turn
and decomposed into features. The guide states that “capabilities” refers to a group of
Features that are traceable to the technical and operational requirements of the product
being delivered.[McGregor, p. 6] One way to view how the high level vision statements
are decomposed into capabilities, features and user “stories” is depicted in Figure 3.0.

Figure 3.0. Decomposing Customer’s Vision into Capabilities, Features and Stories

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

How Should We Estimate Agile Software Development Projects and What Data Do We Need?

Glen Alleman and Thomas Coonce

12

PARCA’s PM Guidebook on Agile and Earned Value Management (EVM) provides
useful term definitions and they are reproduced in Table 1.0 below. [McGregor, p. 14]

Table 1.0. PARCA’s Agile Term Definitions

The Software Engineering Institute recommends that “…when a program pursues
incremental delivery approaches, a clear high-level vision (e.g., a concept of operations, or
CONOPS) is placed on contract—one that describes Agile concepts and principles and
desired outcomes but does not specifically mandate Agile.” [Wrubel, p. 27]

Figure 4.0 illustrates how customers’ desired capabilities are integrated into the
contractors’ oversight of Agile efforts after the contract is awarded. The program office
either contracts for the full set of Capabilities stated in the CONOPS, or incrementally
funds (and baselines) each release of capabilities or epics.

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

How Should We Estimate Agile Software Development Projects and What Data Do We Need?

Glen Alleman and Thomas Coonce

13

Figure 4.0 How Customer Capabilities Are Developed Using the Agile Model

A Proposed Way to Estimate Agile Software Development Efforts

So how does DoD prepare an estimate for a major software effort that only has a high
level vision statement and desired capabilities and features? To answer this question, we
first must understand what we are given and what drives the amount of effort and duration
of an agile software project.

Before contract award, all we know is the government CONOPS and set of desired
features, but we also know from the lessons learned from the data used to drive the
parametric models, that effort and duration outcomes are highly dependent on the
experience and “productivity” of the team which can vary significantly from one developer
to another and is dependent on the extent of common software libraries and automated
development tools used. Experienced developers in the application domain may have made
extensive use of libraries and modern automated tools are far more productive than teams
who are not experienced or make use of existing code and automated tools.

The authors propose that Agile software project can be estimated by using the
historical experience of the features of historical analogies, in short, a nearest neighbor
analogy method. Such historical development actuals would include feature descriptions
and indications about the amount of common library use and extent of automated
development tools. With the desired features described in the customer’s CONOPS, the
cost estimator could find the “nearest neighbor” within the historical actuals. If the cost
estimator knew more about the developer’s use of libraries and automated tools, the effort

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

How Should We Estimate Agile Software Development Projects and What Data Do We Need?

Glen Alleman and Thomas Coonce

14

and duration actuals can be selected that comes closest to matching the one in the historical
database. If there is no information about the developer and their use of libraries and tools,
the estimate of effort and duration can be calculated from historical means.

A notional Feature development example is shown in Figure 5.0 for an Unmanned
Air Vehicle to autonomously execute a mission received from its ground station.

Figure 5.0. Notional Nearest Neighbor Estimating Example

Each data point reflects the historical outcome of similar development efforts for this
Feature and each contains information about the extent of library and tool automation
use. Table 2.0 reflect these data point attributes. The cost estimator would select the
historical outcome pair nearest to the specifics for the project (if known) or use the means
(14.4 months and 79 person-months) if not known.

20

44

68

92

116

140

8 10 12 14 16 18 20 22

Pe
rs

on
-M

on
th

s

Months

Person-Months & Durations to Develop Autonomous
UAV Control SW Feature

AVG (14.4, 79)

Prog 1

AVG (14.4, 79)

Prog 1

Prog 10

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

How Should We Estimate Agile Software Development Projects and What Data Do We Need?

Glen Alleman and Thomas Coonce

15

Table 2.0. Data Attributes of Notional Historical Feature Data in Figure 5.0

Data Needed to Estimate the Using the Nearest Neighbor Approach

Historical features, their attributes, and actual effort and durations are needed to use
this approach. There are many hundreds of software features that have been (and are
being) developed that have different outcomes depending on the operating platform and
application domains. So, some form of grouping or standardization would be needed.
Fortunately, the DoD’s CAPE has recently modified it Software Resource Data Report
(SRDR) to capture Agile actuals and attributes on future programs. The draft SRDR
contains Agile planned and actual hours by the contractor’s feature identifier. Most
significantly, the draft SRDR requests the development contractor to categorize the effort
by operating platform and primary application domain.20 These applicable platforms and
primary applications are shown in Table 3.0.

Prog ID Feature DevProc Lib Use Tool Use Durr PM

Prog 1
Auto Exc
Pilot Mission Agile None None 20 120

Prog 2
Auto Exc
Pilot Mission Agile Min Min 18 108

Prog 3
Auto Exc
Pilot Mission Agile Min Mod 16 96

Prog 4
Auto Exc
Pilot Mission Agile Min Heavy 15 90

Prog 5
Auto Exc
Pilot Mission Agile Mod Min 14.5 87

Prog 6
Auto Exc
Pilot Mission Agile Mod Mod 14 70

Prog 7
Auto Exc
Pilot Mission Agile Mod Heavy 13 65

Prog 8
Auto Exc
Pilot Mission Agile Heavy Min 12 60

Prog 9
Auto Exc
Pilot Mission Agile Heavy Mod 11 55

Prog 10
Auto Exc
Pilot Mission Agile Heavy Heavy 10 40

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

How Should We Estimate Agile Software Development Projects and What Data Do We Need?

Glen Alleman and Thomas Coonce

16

Table 3.0. CAPE SRDR Operating Environments and Primary Application

Domains

Within the Primary Application Domain, the CAPE has promulgated about 200
subdomains examples that will go a long way to organizing a feature-rich historical
repository. Table 4.0 depicts the possible set of data fields that would be necessary to use
the nearest neighbor analogy approach to estimate features contained within a UAV
illustrated in Figure 5.0 and Table 2.0. Note the attribute fields of Operating
Environment, Application Doman/Sub-domain are in accordance with the SRDR
requirements. Also note the field called Dev Process. This is also per the SRDR and
valid fields include: Agile, Hybrid-Agile, Spiral, RAD, and Waterfall. This helps qualify
the historical record.

 The Library and Tool Use levels are suggested additions to the SRDR that seem
importation productivity differentiators. Personnel experience level would also be useful,
but was omitted from the table for clarity of the concept. Also note the inclusion of the
attributes called Feature Description and Feature Category. The Feature Description
appears to be missing from the draft SRDR and would need to be added. The Feature
Category constitutes a Feature Breakdown Structure (FBS) and would need to be

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

How Should We Estimate Agile Software Development Projects and What Data Do We Need?

Glen Alleman and Thomas Coonce

17

developed by the estimating community over time similar to the standardized Work
Breakdown Structure. This would ease the estimator effort of finding suitable analogies.

Table 4.0. Sample Attributes Needed in Feature Repository for UAVs

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

How Should We Estimate Agile Software Development Projects and What Data Do We Need?

Glen Alleman and Thomas Coonce

18

Conclusions and Recommendations

The traditional parametric estimating tools are not effective in helping a DoD analyst
estimate the effort and duration of an evolutionary software project because detailed
requirement are not available to generate software sizing inputs. The authors have shown
that estimating a planned agile developed project can be done by using a nearest neighbor
analogy technique built upon the actual development effort and durations and attributes of
completed similar software features. To do this requires the following actions:

1. The DoD customers must produce a clear set of capabilities and desired features
in the CONOPS.

2. Development contractors must submit the following data about each feature
developed on CAPE’s SRDR

a. Brief Feature Description;

b. An indication of the level of standard library and automated tool use;

c. Categorization of standardized Operating Environment and Domain and
Subdomains;

d. The type of development method (Agile, Hybrid Agile, Spiral, RAD or
Waterfall); and

e. Actual development hours and duration

3. The CAPE must verify the submitted data and make it available to the authorized
estimating community, and

4. The estimating community must develop a standardized Feature Breakdown
Structure from the collected software feature repository.

It is the authors’ understanding the all projects are required to develop a CONOPs
that describe the end-state vision, capabilities and features so item 1 above is already being
done. The CAPE’s SRDR already contains most of the data elements needed and CAPE
is currently vetting the submitted data and making the data available to authorized
estimators. Only items 2 (a) and (b) would need to be added to the SRDR. Once the data
is collected, the estimating community would surely rise to the occasion to create a
standardized feature breakdown structure.

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

How Should We Estimate Agile Software Development Projects and What Data Do We Need?

Glen Alleman and Thomas Coonce

19

References

1 https://dap.dau.mil/acquipedia/Pages/ArticleDetails.aspx?aid=8e8f5bf3-f517-4e98-
8c07-80bb8670a830

2 Jorgensen, Michel J., and Molokken, Kjetil. 2003. “A review of Studies on Expert
Estimation of Software Development Effort”. International Symposium on Empirical
Software Engineering, 2003

3 Nelson, E. A. 1966. “Management Handbook for the Estimation of Computer
Programming Costs”, AD-648750, Systems Development Corp

4 Clark, Brad, and Madachy, Raymond, 2015. “Software Cost Estimation Metrics
Manual for Defense Systems”, Software Metrics, Inc.

5 https://en.wikipedia.org/wiki/Software_development_process
6 Elliott, Geoffrey, 2004. “Global Business Information Technology: an integrated

systems approach”. Pearson Education .87
7 http://www.acqnotes.com/acqnote/careerfields/software-development-approaches
8 DoD-STD-2167A, Defense System Software Development, 4 June 1985
9 https://acc.dau.mil/CommunityBrowser.aspx?id=518290
10 Royce, Winston. August 1970 “Managing the Development of Large Software

Systems,” Proceedings IEEE WESCON, 1-9.
11 https://en.wikipedia.org/wiki/Waterfall_model
12 Larman, Craig and Basili, Victor. 2003. "Iterative and Incremental Development: A

Brief History". IEEE Computer (June ed.).
13http://myprojects.kostigoff.net/methodology/development_models/development_model

s.htm
14 http://www.acqnotes.com/acqnote/careerfields/software-development-approaches
15 http://www.testingexcellence.com/spiral-model-sdlc/
16 Welby, Stephen, November 21, 2013. Deputy Assistant Secretary of Defense for

Systems Engineering, “Thinking About Agile in DoD”, AFEI Agile for Government
Summit

17http://www.marcorsyscom.marines.mil/Portals/105/FRO/The%20Point%20Archive/Th
e%20Point%20January%202013.pdf.pdf

18 Wrubel, E., Gross, J., August 2015. “Contracting for Agile Software Development in
the Department of Defense: An Introduction”, Software Engineering Institute,
TECHNICAL NOTE CMU/SEI-2015-TN-006,

19 McGregor, John. 03 March 2016 . “Agile and Earned Value Management: A Program
Manager’s Desk Guide”, OUSD AT&L (PARCA)

20 ERP SRDR Form 3026-3 dated 2017January19

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

http://www.testingexcellence.com/spiral-model-sdlc/

	Abstract
	Cost Estimating Methods
	USoftware Cost Estimating Methods
	Effort = A × SizePBP × EM
	Software Development Methodologies and the Challenges to the Estimator
	UWaterfall Development Model
	The waterfall principles are
	Figure 1.0 Waterfall Software Development Concept
	Figure 2.0 Traditional Waterfall Software Development Process and Activities
	UIncremental Development Model
	UThe Evolutionary Development Model
	URapid Application Development Model
	UThe Spiral Model
	UThe Agile Development Model
	Figure 3.0. Decomposing Customer’s Vision into Capabilities, Features and Stories
	Table 1.0. PARCA’s Agile Term Definitions
	A Proposed Way to Estimate Agile Software Development Efforts
	Figure 5.0. Notional Nearest Neighbor Estimating Example
	Table 2.0. Data Attributes of Notional Historical Feature Data in Figure 5.0
	Data Needed to Estimate the Using the Nearest Neighbor Approach
	Table 4.0. Sample Attributes Needed in Feature Repository for UAVs
	Conclusions and Recommendations

