
How Should We Estimate
Agile Software

Development Projects And
What Data Do We Need?

Glen B. Alleman, Prime PM
Thomas J. Coonce, Institute for Defense Analyses

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

Agenda

 Overview of Software Development Life Cycle
Models

 Why traditional parametric estimating tools do not
help estimate a software project developed using the
Agile model

 Explain and demonstrate the “nearest neighbor”
analogy technique to estimate Agile software
projects

 Data and actions needed to implement the nearest
neighbor technique

2

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

Learning Objectives

 Understand different Software Life Cycle
Development Models

 Understand how traditional parametric tools are not
appropriate for agile-developed software

 Understand the cost and schedule drivers of an
Agile-developed SW project

 Understand a proposed “nearest neighbor” analogy
method of estimating Agile SW projects

 View minor revisions needed to DoD’s Software
Resource Data Report (SRDR) to support this method

3

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

Software Development Life Cycle
Models
 Waterfall

 Incremental development;

 Evolutionary development;

 Rapid application development (RAD);

 Spiral development; and

 Agile development

4

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

Waterfall Software Development
Model

5

Reprinted from Proceedings. IEEE WESCON. August 1970,
pages 1-9.
Copyright 1970, The institute of Electrical and Electronics
Engineers,_ 328
Inc. Originally published by TRW

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

Traditional “Waterfall” Development
Process

6Source: ACC.dau.mil

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

Incremental Development Model

 The incremental build model is a method where the
product is designed, implemented and tested
incrementally (a little more is added each time) until
the product is finished. It involves both development
and maintenance. The product is defined as finished
when it satisfies all of its requirements. This model
combines the elements of the waterfall model with
the iterative philosophy of prototyping.

Source: https://en.wikipedia.org/wiki/Incremental_build_model
7

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

+ Evolutionary Development Model
8

Source: http://myprojects.kostigoff.net/methodology/development_models/pages/evolutionary.htm

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

Rapid Application Development
Model
 Rapid Application Development model is a type of

incremental model. In RAD model, the components
or functions are developed in parallel as if they were
mini projects. The developments are time boxed,
delivered and then assembled into a working
prototype. This can quickly give the customer
something to see and use and to provide feedback
regarding the delivery and their requirements.

9

https://en.wikipedia.org/wiki/Software_development_process

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

Spiral Development Model

10

The spiral model starts with an initial pass through a standard waterfall life cycle, using a subset of the total requirements to
develop a robust prototype. The theory is that the set of requirements is hierarchical in nature, with additional functionality
building on the first efforts.

Source: The Incremental Commitment Spiral Model, Barry Boehm and Jo Ann Lane, Addison Wesley, 2014

Risk
analysis

Risk
analysis

Risk
analysis

Risk
analysis Proto-

type 1

Prototype 2
Prototype 3

Opera-
tional
protoype

Concept of
Operation

Simulations, models, benchmarks

S/W
requirements

Requirement
validation

Design
V&V

Product
design Detailed

design

Code
Unit test

Integration
testAcceptance

testService Develop, verify
next-level product

Evaluate alternatives
identify, resolve risks

Determine objectives
alternatives and

constraints

Plan next phase

Integration
and test plan

Development
plan

Requirements plan
Life-cycle plan

REVIEW

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

Agile Development Model

 Agile development model is also a type of
Incremental model. Software is developed in
incremental, rapid cycles. This results in small
incremental releases with each release building on
previous functionality. Each release is thoroughly
tested to ensure software quality is maintained. It is
used for time critical applications.

11

http://istqbexamcertification.com/what-is-agile-model-advantages-
disadvantages-and-when-to-use-it/

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

http://istqbexamcertification.com/what-is-agile-model-advantages-disadvantages-and-when-to-use-it/

Ways to Estimate Traditional
“Waterfall Developed” SW Projects
 Available Methods

 Analogy
 Parametric
 Engineering (Bottom Up)
 Extrapolation of Actual Cost

 Analogy and parametric methods usually used during early phases
 Analogy requires

 Capability descriptions of projects
 Final effort and durations
 Monthly average full time equivalent personnel
 Final software lines of code (SLOC) and defect data (optional)

 Parametric requires size and scaling factors:
 Effort = A × SizeB × C
 Where

 Effort is in person‐months;
 A is a calibrated constant;
 B is a size scale factor;
 C is an additional set of factors that influence effort; and
 Size is in terms of SLOC, Function Points, Object-Oriented metrics or other 12

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

Using Parametric Estimating Tools

 Need to know†

 Targeted Operating Environment

 Estimates of

 New, reused, modified, generated Source Lines of Code
(SLOC) that will be delivered

 Percent of adopted software that must be re-designed

 Percent of the reused and modified code that must
modified to adapt it to the targeted objectives and
environment

 Requirements volatility

 Team productivity attributes

13

† Abstracted from “Software Cost Estimation Metrics Manual”, Systems Engineering
Research Center (SERC), 2016

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

Estimating Challenge on Agile
Projects
 The traditional parametric approach fails us because

we do not have way of scaling the software
application
 Is this system bigger than a bread box?

 No sizing possible since requirements are not fully specified
at the outset

 All we have from the customer is a vision statement, desired
capabilities and features, typically included in the customers
Concept of Operations (ConOps) document

 Even though specific capabilities and features
may not be finally delivered, we still must develop a
credible estimate of cost and schedule for those
planned 14

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

Decomposing Vision into
Capabilities and Features

15

Vision

Goal/Outcome # 1 Goal/Outcome # 2

Epic/Capability

Feature Feature Feature

Story Story Story

Feature Feature

Epic/Capability

Source: David Bulkin, Lithespeed.com

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

+ The Agile Manifesto does not fit well
with FAR Part 15 Procurement

16

But we still need to deliver on the customer Vision with emerging requirements

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

+ The 12 Principles of the Agile
Manifesto
1. Customer satisfaction by early

and continuous delivery of
valuable software

7. Working software is the principal
measure of progress

2. Welcome changing requirements,
even in late development

8. Sustainable development, able to
maintain a constant pace

3. Working software is delivered
frequently (weeks rather than
months)

9. Continuous attention to technical
excellence and good design

4. Close, daily cooperation between
business people and developers

10. Simplicity—the art of maximizing
the amount of work not done—is
essential

5. Projects are built around
motivated individuals, who should
be trusted

11. Best architectures, requirements,
and designs emerge from self-
organizing teams

6. Face-to-face conversation is the
best form of communication (co-
location)

12. Regularly, the team reflects on
how to become more effective,
and adjusts accordingly

17Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

+ DoD Agile Acquisition Process
18

Customer Required Capabilities are on Baseline in SOW/ConOps

Customer Emerging Features for these Capabilities over time

Feature 1,2,3
Feature 4, .. ,8

Feature 9, …,12

Release n PP’s

WP
PP

SLPP
in IMS

CA

Release 2

Milestones

Data Items

Releases

Capabilities in a Release

Agile Development Control Account

Contractor’s Proposed Agile Implementation Plan at Integrated Baseline Review
Release 1

w/ Capability 1
Release 2

w/ Capability 2

Performance Measurement Baseline (PMB)

Release m
w/ Capability n

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

Cost Drivers of Agile Developed
Software
 Vision, Capabilities, and Features that implement

that Capabilities

 Same attributes needed using parametric tools
 Operating Environment, e.g. Unmanned Aircraft, Sea Systems,

Space Systems, etc.

 Application Domain, e.g., Communication, C2, Enterprise
Information System, etc.

 Productivity Factors

 Team experience

 Extent use of existing code (common libraries or existing
code)

 Extent use of automated tools

19

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

Proposal: Estimate Agile Software Projects
Using the Nearest Neighbor Analogy
Technique
 For a proposed future agile application for a given operating

environment and application domain and stated features, the
estimator should be able to query on a standardize feature list
and obtain:
 Actual staff hours to produce the feature
 Actual duration to produce the feature
 Extent of software reuse and sources
 Extent of use of automated tools
 Team experience

 For each feature, estimator would array historical dependent
effort and durations and other attributes and compare to
targeted feature

 For proposed new feature with given planned library and
automated tool use, find nearest neighbor with similar reuse
and tool use and extract effort and duration

 If no knowledge of reuse and automated tool use, use the means 20

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

+ Nearest Neighbor Notional Example for
Autonomous UAV Flight Control Feature

21

Prog ID Feature DevProc Lib Use Tool Use Durr PM

Prog 1
Auto Exc
Pilot Mission Agile None None 20 120

Prog 2
Auto Exc
Pilot Mission Agile Min Min 18 108

Prog 3
Auto Exc
Pilot Mission Agile Min Mod 16 96

Prog 4
Auto Exc
Pilot Mission Agile Min Heavy 15 90

Prog 5
Auto Exc
Pilot Mission Agile Mod Min 14.5 87

Prog 6
Auto Exc
Pilot Mission Agile Mod Mod 14 70

Prog 7
Auto Exc
Pilot Mission Agile Mod Heavy 13 65

Prog 8
Auto Exc
Pilot Mission Agile Heavy Min 12 60

Prog 9
Auto Exc
Pilot Mission Agile Heavy Mod 11 55

Prog 10
Auto Exc
Pilot Mission Agile Heavy Heavy 10 40

Mean 14.4 79
Std 3.1 25.2

To estimate the effort
and duration of a
future UAV
Autonomous Flight
Execution Feature,
select data point
nearest attributes of
future system.
If no knowledge of
future attributes,
select means

Note: Historical Data was pre-
filtered for Operating
Environment and Application
Domain/Subdomain

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

+ Nearest Neighbor UAV Flight
Control Feature

22Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

+ Extract of Notional Feature
Repository

23Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

Data Needed to Use the Nearest
Neighbor Technique
 Feature Description

 Operating Environment, e.g. Air Vehicle, Space Systems,
Ordnance Systems, etc.

 Application Domain, e.g., Vehicle Payload, Vehicle Control,
Command and Control, Enterprise Information System

 Extent of software reuse (use of common SW Libraries)

 Extent use of Automated Tools

 Feature Category

 Actual staff hours to produce the feature

 Actual duration to produce the feature

24

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

Source of Feature Data

 OSD CAPE has proposed revisions to Software
Resource Data Report (SRDR) to collect software data
that are developed using the Agile model
 Most of the data needed is contained in the SRDR

 Only items bolded in black on previous page appear to be
missing (Action)

 Feature Category would need to be added after the
community created a Feature Breakdown Structure
from the submitted data (Future Action)

25

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

Some Conclusions

 Agile-developed software estimating is challenging
because we don’t know all the requirements up front so
we can’t generate traditional size measures and use
parametric tools

 For Agile efforts, we only know the customer’s vision,
desired capabilities and stated features

 Analogy-based nearest neighbor estimating approach is
a feasible technique if we have requisite data from
historical projects

 This presentation explains and demonstrates this
estimating approach, identifies the data needed and
offers suggestions to SRDR to make this estimating
approach possible

26

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

+ Wrap Up
27

Let’s not get all wrapped up in the notion of Agile
Software Development

We still have to apply the core principles of cost
estimating in the presence of uncertainty

Agile let’s us focus on modeling the cost of the
Capabilities and Features

The Result is a cost model from the Capabilities
Breakdown Structure for the Feature Costs

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

Questions???

28

28Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

29

Backup

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

+ Software Resource Data Report
(SRDR) Background
 The SRDR is DoD’s record of contractor or government entities’ planned and

actual software resources embedded within Major Defense Acquisition
Programs (MDAPs) or Major Automated Information Systems (MAIS)

 Applicability
 The SRDR is required on contracts and subcontracts regardless of contract type valued in

excess of $20 Million
 Reported resources are required on individual Work Breakdown Structure (WBS) elements

(or group of WBS elements) within Major Defense Acquisition Programs (MDAPs) and
Major Automated Information System (MAIS) programs as specified in approved Cost and
Software Resource Data Report (CSDR) Plans

 Initial, Interim and Final Reports for each SW Release is required throughout the complete
life cycle to include the Operating and Support (O&S) phase of a program

 Is used to
 Build credible size, cost, and schedule estimates of future software-intensive systems
 Support Analysis of Alternatives
 Perform Cost Research
 Assist in Program Progress Reviews

30Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

+ SRDR (Concluded)
 Report comes in three formats

 DD Form 3026-1 – Software Development Report
 Part 1: Planned and actual software development size, context, and technical

information, e.g. defects, at the Release and CSCI level of detail
 Part 2: Actual hours and dollars expended by month for each Release and

CSCI
 DD Form 3026-2 – Software Maintenance Report
 Part 1: Actual software development size, context, and technical information

at the Release level
 Part 2: Actual hours for each WBS element within a release by ISO 12207 SW

maintenance activity categories
 DD Form 3026-3 – Enterprise Resource Planning (ERP) Software Development

Report
 Part 1: Planned and actual software development size, context, and technical

information for a release, including planned and actual agile metrics, e.g.
epics, features, stories and story points*

 Part 2: Actual hours per release to plan & analyze, design/build, test, deploy
support the system, and provide other direct labor, e.g. PM, ST&E and data

31

* A “Release” in an agile project is a time-box covering a fixed calendar period (for
example 90 days), and not a specifically designed software end item.

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

The New SRDR Provides Some of the Data Needed

32

CSCI ID SECTION 3.3.2.2.1

Outsourced Development Organizations SECTION 3.3.2.4

Name Primary SECTION 3.3.2.4.3

Outsourced Development comment

Name Primary

Outsourced Development comment etc.

Product and Development Description SECTION 3.3.2.5

Functional Description SECTION 3.3.2.5.1

Software Development Characterization

Software State of Development (Check one only) SECTION 3.3.2.5.3 Prototype Production-Ready Mix

Operating Environment(s) (Check all that apply) SECTION 3.3.2.5.4

Surface Fixed Surface Vehicle Ordnance Systems Other

Surface Mobile Air Vehicle Missile Systems If Other, provide explanation

Surface Portable Sea Systems Space Systems

SECTION 3.3.2.5.5

Manned Unmanned

Primary Application Domain (Check one only) SECTION 3.3.2.5.6

Microcode and Firmware Communication Software Tools

Signal Processing System Software Mission Planning

Vehicle Payload Process Control Custom AIS Software

Vehicle Control Scientific and Simulation Enterprise Service System

Other Real-Time Embedded Test, Measurement, and Diagnostic Equipment Enterprise Information System

Command and Control Training

 Application Domain Comments

Location

Location

SECTION 3.3.2.4.2

SECTION 3.3.2.5.2

SECTION 3.1.3 UNCLASSIFIED

SECURITY CLASSIFICATION

SOFTWARE DEVELOPMENT REPORT, FORMAT 1: Part 1 Software Development Technical Data, Release-CSCI Level SECTION 3.3.2

WBS Element Name SECTION 3.3.2.3.2WBS Element Code SECTION 3.3.2.3.1

Release ID SECTION 3.3.2.1.1 Release Name SECTION 3.3.2.1.2

CSCI Name SECTION 3.3.2.2.2

OMB Control Number 0704-0188
Expiration Date: 8/31/2016

The public reporting burden for this collection of information is estimated to average 16 hours per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington
Headquarters Services, Executive Services Directorate, Directives Division, 4800 Mark Center Drive, East Tower, Suite 02G09, Alexandria, VA 22350-3100 (0704-0188). Respondents should be aware that notwithstanding any other provision of law,

no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR COMPLETED FORM TO THE ABOVE ORGANIZATION.

SECTION 3.3.2.4.1

SECTION 3.3.2.4.4

DD Form 3026-1, Part 1, contains required operating environments and application domains

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

SRDR Planned Agile Data Elements

33

Days per Sprint:

Item Quantity
Planned

Quantity Actually
Developed

Total Features

Total Epics/
Capabilities

Total Stories

Total Story
Points

Total Feature
Hours

Total Sprints

Days per
Release:

10

35. Agile Measures: 3.3.5.3

Planned
Hours per
Feature by

Epic

Planned and Achieved Development
(by Feature per Epic) 3.3.5.3.2

5

Release Map 3.3.5.3.1

Actual Stories
Planned Story

Points per
Feature by Epic

Actual Story
Points

Planned Stories
per Feature by

Epic

ex: AAAA 1.x.x

Actual Feature
Hours

Feature
Identifier

15 200

ENTERPRISE RESOURCE PLANNING SOFTWARE RESOURCES DATA REPORTING, FORMAT 3:
PART 1: Software Development Technical Data (Other Sizing) SECTION 3.3

D.2 - Alternative Product Size Reporting 3.3.5

(NOTE: Insert rows as needed to account for all Features and Epics mapped to this Release.)

Summary Totals for This Release 3.3.5.3.3
(Sum of all rows with data by Feature by Epic)

180

Epic/
Capability
Identifier

3

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

Observations on SRDR Planned Agile
Metrics
 In Agile development Capabilities are baseline,

Requirements in agile development emerge as the
project progresses.

 Collecting story points does not seem to help the
estimator
 Story points represent the relative (UN‒calibrated) effort

involved to deliver a Product Backlog Item, when it is
selected for development

 Story points are not scope, cost or duration

 Story points counting is not standard between development
teams much less between development entities

 Story points are not known before the contract begins

34

Presented at the 2017 ICEAA Professional Development & Training Workshop www.iceaaonline.com/portland2017

	Slide Number 1
	Agenda
	Learning Objectives
	Software Development Life Cycle Models
	Waterfall Software Development Model
	Traditional “Waterfall” Development Process
	Incremental Development Model
	Evolutionary Development Model
	Rapid Application Development Model
	Spiral Development Model
	Agile Development Model
	Ways to Estimate Traditional “Waterfall Developed” SW Projects
	Using Parametric Estimating Tools
	Estimating Challenge on Agile Projects
	Decomposing Vision into Capabilities and Features
	The Agile Manifesto does not fit well with FAR Part 15 Procurement
	The 12 Principles of the Agile Manifesto
	DoD Agile Acquisition Process
	Cost Drivers of Agile Developed Software
	Proposal: Estimate Agile Software Projects Using the Nearest Neighbor Analogy Technique
	Nearest Neighbor Notional Example for Autonomous UAV Flight Control Feature
	Nearest Neighbor UAV Flight Control Feature
	Extract of Notional Feature Repository
	Data Needed to Use the Nearest Neighbor Technique
	Source of Feature Data
	Some Conclusions
	Wrap Up
	Questions???
	Slide Number 29
	Software Resource Data Report (SRDR) Background
	SRDR (Concluded)
	The New SRDR Provides Some of the Data Needed
	SRDR Planned Agile Data Elements
	Observations on SRDR Planned Agile Metrics

