Software Cost Estimating

Techniques for estimating in a
software development
environment

“Any sufficiently advanced technology is
indistinguishable from magic.”
- Arthur C. Clarke

I@Eﬁ A ﬁEBuI(' Unit IV - Module 12 1
~— (2

© 2002-2013 ICEAA. All rights reserved.

Acknowledgments

» ICEAA is indebted to TASC, Inc., for the
development and maintenance of the TASC
Cost Estimating Body of Knowledge (CEBoK®)

- ICEAA is also indebted to Technomics, Inc., for the ATeTchnomics
independent review and maintenance of CEBoK®

* ICEAA is also indebted to the following individuals who have made
significant contributions to the development, review, and maintenance of
CostPROF and CEBoK®

» Module 12 Software Cost Estimating

- Lead authors: Belinda J. Nethery, Allison L. Horrigan

- Assistant authors: Tara L. Eng, Heather F. Chelson

- Senior reviewers: Richard L. Coleman, Michael A. Gallo, Fred K. Blackburn
- Reviewer: Kenneth S. Rhodes

- Managing editor: Peter J. Braxton

- A, N Unit IV - Module 12 2
[@EAA ceBok
S (<

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

Unit Index

Unit | - Cost Estimating

Unit Il - Cost Analysis Techniques
Unit 11l - Analytical Methods

Unit IV - Specialized Costing

11. Manufacturing Cost Estimating
12. Software Cost Estimating

Unit V - Management Applications

[E@EAA cesox

Unit IV - Module 12 3

© 2002-2013 ICEAA. All rights reserved.

+ Key ldeas

- Cost Drivers
+ Size
+ Complexity
+ Capability

- SLOC vs. ESLOC vs.

Function Points
- Development Methodologies

Software Cost Estimating Overview

» Practical Applications
- ESLOC Sizing
- Software Effort Calculation
» Capability Adjustments
» Complexity Adjustments
- Schedule Determination
- Schedule Compression Factors

* Analytical Constructs
- ESLOC Equation
- COCOMO Il CER Equation

PM = A-Size® - [EM,

i=1

- COCOMO Il Schedule CER

[E@EAA cesox

+ Related Topics @
- Costing Techniques
- Parametric Estimating <3>
- Regression Analysis

Unit IV - Module 12 4

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

Software Cost Estimating Outline

» Core Knowledge
- Software Overview
- Software Development Approaches
- Software Cost Drivers
- Estimating Development Methodologies
- Estimating Techniques Applied to Software
- Challenges in Estimating Software
« Summary
* Resources

» Related and Advanced Topics
I@EAAMFEBUK Unit IV - Module 12 5

© 2002-2013 ICEAA. Al rights reserved.

Introduction

& - Software is a key component of almost every

system including:
- Custom Developed Software
- Commercial-Off-The-Shelf (COTS) Software
- Databases
- Enterprise Resource Planning (ERP) Tools

» Software development is both an art and a
science, as is estimating software
development

» Using equations from COCOMO Il developed
by Barry Boehm in many of the examples
- Leader in field of software cost estimation
- Research publicly available in texts

-) Unit IV - Module 12 6
[@EAA ceBok
S ("

© 2002-2013 ICEAA. Al rights reserved.

ICEAA 2016 Bristol - TRNO8

Software - What We Do (and Don’t) Know

Software isn’t easy to understand because it’s
not a tangible item

» Developing software can be extremely costly
and time consuming

“Chaos” has been downgraded

- Standish Group’s 1994 study was revisited in 2000
» Examined IT developed software projects

» Schedule overruns have significantly decreased from
222% over the original time estimates in 1994 down to
63% in 2000

» Cost overruns have gone from 189% over the original
cost estimates in 1994 down to 45% in the 2000 study

» Better tools have been created to monitor and control
progress

» Better management processes have emerged
| Extreme Chaos, copyright © 2001 The Standish Group International, Inc. |

I@Eﬁ A ﬁEBuI(' Unit IV - Module 12 7
~— (2

© 2002-2013 ICEAA. All rights reserved.

Software Development Process

» The same basic system engineering steps are followed
when developing software as when developing a
hardware system

Systems today usually consist of
both hardware and software.
& + System Engineering Steps for Software

QStep 1: System Requirements and Design (both hardware and
software)

Step 2: Software Requirements Analysis
Step 3: Software Preliminary and Detailed Design

Step 4: Code and Unit Test Coding is equivalent
Step 5: Unit Integration and Test to building a piece of
Step 6: Software System Test hardware

0 Step 7: System Test (both hardware and software)

| MIL STD 498, “Software Development and Documentation,” December, 1994 |

» These steps provide a framework for structuring the
Software WBS

- A, N Unit IV - Module 12 8
[@EAA ceBok
S (< ,

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

WBS for Software Programs

Sample Partial WBS - This is an example, each WBS will have a unique mapping

1.1 System SE/PM (Includes Step 1) | * Framework to break large projects into
1.2 System SIT&E (Includes Step 7) product oriented elements and processes
1.3 Hardware . . .
14 Software Used as a foundatlon for cost estlr_natln_g,
1.4.1 Build 1 schedule planning, progress tracking, risk
1.4.1.1 SE/PM (Includes Step 2 & 3) monitoring and many other management
1.4.1.2 SIT&E (Includes Step 5 & 6) functions
1.413CSCI1 0
1.4.1.4 CSCI 2 l » Dept of Defense mandates use of a WBS
1.41.4.1¢csc1 (Includes Step4) (guidance in Military Handbook 881A)
1'2';";&%820 2 * Industry has no mandated standard;
1.4.3 Build 3 however, use of WBS recommended by
Etc. IEEE IEEE/EIA 12207.2-1997, IEEE/EIA Guide,
Industry Imple jon of I jonal
— ltis important that the cost analyst understand the Standard ISO/IEC 12207; 1995, Standard
content associated with a particular cost e e VCEELEe, SEITETO S
Cycle Processes - Implementation
Consideration, April 1998

I@Eﬁ A ﬁEBuI(' Unit IV - Module 12 9
~— (™

© 2002-2013 ICEAA. All rights reserved.

Comparison to Hardware - Similarities

+ Same basic development processes
- Use same basic techniques for estimating @
(Analogy, Parametric, Build-Up)
* Both also have the same basic sustainment
costs
- Require Support, Maintenance, and Upgrades
» Factors that influence cost are similar
- Size

» Length, weight, volume, etc. vs. Source Lines Of Code
(SLOC), Function Points, etc.

- System Complexity
- Development Capability (Personnel, Facilities,
Tools, Etc.)

- A, N Unit IV - Module 12 10
[@EAA ceBok
S ("

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

Comparison to Hardware - Differences

* You may build a piece of hardware over and over
again; you build software only once
- For hardware, you design, build, and test a system that you
1 then build multiple times in Production
- For software, you design, build, and test a system then
simply generate a copy
» Hardware (and, therefore, hardware cost estimating)
has been in existence for much longer than software
(and, therefore, software cost estimating)
- HW development processes are more mature and stable
- I(.J()Enlger period over which to collect historical data and refine
s
- Software estimating techniques lag behind those of
hardware
» Harder to find good clean data
 Less statistically based

I@Eﬁ A lﬁEBul(' Unit IV - Module 12 1
~— (™

© 2002-2013 ICEAA. Al rights reserved.

Software Development Approaches

» Software Development Methodologies
Waterfall

Agile

Incremental

Evolutionary

Spiral

« Programming Paradigms

- “Linear” (non Object-Oriented) vs. Object-
Oriented (OO)

[SEI-CMM] Capability Maturity Model for Software, Version 1.1, Paulk, Mark C. et.al.,
Software Engineering Institute, Carnegie Mellon University, February 1993

I@Eﬁ A lﬁEBul(' Unit IV - Module 12 12
~— (™

© 2002-2013 ICEAA. Al rights reserved.

ICEAA 2016 Bristol - TRNO8

Overview of Development
Methodologies

» Determines the sequencing of the steps of
the Software Development Process
- The Software Engineering Steps 1-7

» System level Requirements and Test are the
first and last steps, but the sub-system
building process can be:

- A single effort (Waterfall)

Short iterations (Agile)

In series (Evolutionary)

In overlapping series (Incremental)

Include additional Risk and Analysis phases

(Spiral) _
I@E ﬁ ﬁ ':.EBIJK' Unit IV - Module 12 13

© 2002-2013 ICEAA. All rights reserved.

Programming Paradigms

+ “Linear” Programming

- Every system is custom built line by line
+ Some ability to adapt code
 Large systems have problems with standardization and

modules nf)t itting” One man custom-building
» Examples include COBOL, FORTRAN| one gun from scratch

@- Object-Oriented (OO) Programming &
- System made up of pre-built, standardized,
interchangeable objects
» Objects can be used in any system
 Large systems don'’t have standardization or “fit”

problems One man building one part of the
» Examples include Ada 95, C++ | gun to a specified standard - The
Object-Oriented Programming: An Evolutionary gun is then assembled from
Approach, Brad J. Cox, Addison-Wesley, 1987 interchangeable parts
P .
- ? Unit IV - Module 12 14
[@EAA cesok
— N~ © 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

% Example Scenario

* New mail order business
- Expects significant growth over 5 years
- Increase in customers, inventory, and personnel
* Want a system with necessary capability and
minimal disruption of staff
- System to be developed in 18 months
* Preliminary estimate of the system is that it
will require 100,000 SLOC

- The development will be divided into 3 CSCls
» CSCI 1 has 45,000 SLOC
» CSCI 2 has 35,000 SLOC
+ CSCI 3 has 20,000 SLOC

-~) 2 Unit IV - Module 12 15
[@EAA cesok
S C

© 2002-2013 ICEAA. All rights reserved.

Cost Drivers

« Size
« Complexity
 Capability
I@Eﬁ A ﬁEBuI(' Unit IV - Module 12 16

ICEAA 2016 Bristol - TRNO8

Cost Drivers Overview

» Cost Drivers are used to create a Cost Estimating
Relationship (CER) between the drivers and the cost

- Although it is generally agreed that these are the main cost
drivers of software, the CERs based on the drivers differ

- The COCOMO Il CER is commonly used
+ COCOMO Il CER equation

o Where: PM = Person Months 0
PM =A @ H EMi A= Constant = 2.94
i-1 Size = SLOC in thousands (KSLOC

E = Sum of Scale Factors (Economies
or Diseconomies of Scale)

Size EM = Effort Multipliers
/
. R Software Cost Estimation with COCOMO I,
Complexity and Capability Boehm et al., Prentice Hall PTR, 2000
Y .
- : Unit IV - Module 12 17
[EEAA ceBok
— N~ © 2002-2013 ICEAA. All rights reserved.

Cost Drivers - Size

& . Size is the primary cost driver of
2 | software development costs

» Methods of measuring size include

- Source Lines of Code (SLOC)
» Equivalent Source Lines of Code (ESLOC)

- Function Points
- Object Points

A good assessment of size is
critical to a good estimate!

- A, N Unit IV - Module 12 18
[@EAA ceBok
S (<

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

& Source Lines of Code (SLOC)

* |nclude executable instructions and data declarations
& - Do not include comments, blanks, and continuation lines

Warning: This is just one
definition of SLOC, not the
definition of SLOC.

« Can be accurately and consistently counted after
completed development with automated counting tools
0 - Delivered source lines of code (DSLOC)

* Prior to development, must be estimated using
<2> standard estimating techniques

- Analogy is the most common

Guidelines for Successful Acquisition and Management of Software Intensive Systems:
Weapon Systems, Command and Control Systems, Management Information Systems,
Version 3.0, Dept of the Air Force, Software Technology Support Center, 2000

- A, N Unit IV - Module 12 19
[@EAA ceBok
S (<

© 2002-2013 ICEAA. All rights reserved.

SLOC Issues

» Advantages

- Widely utilized in real-time systems and many legacy IT
systems

- Easily counted; can use automated counters
- Less subjectivity in counting than with other measures
» Disadvantages
- Wide discrepancies occur even with standard definitions
* Logical vs. physical SLOC counts
- Driven by language choices

« Different software languages require a different number of lines
of code for same function

- Does not adequately address COTS-based systems

- A, N Unit IV - Module 12 20
[@EAA ceBok
S (<

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

Counting Reusable Code

» Software is often a mix of new code and code
developed in previous efforts

& - Reused code requires no modification

& Adapted code requires some amount of redesign,

reCOdIng7 and reteStlng Software Enginegﬂ'ngEconomic.s‘, Barry
. Rework may be major or minor W. Boehm, Prentice Hall, 1981

» Software estimating models are usually
based on new lines of developed code

- Provide input to models on amount of
reused/adapted code; or...

- Calculate equivalent new source lines of code

(ES LOC) Warning: There are many terms and
conventions to denote code from another
source, so defining terms is crucial

- A, N Unit IV - Module 12 27
[@EAA ceBok
S ("

© 2002-2013 ICEAA. All rights reserved.

Equivalent Source Lines of Code

&+ Equivalent Source Lines of Code (ESLOC)

4 - The effective size of reused and adapted code adjusted to its
equivalent in new code + The size of the new code

- The adjustment is based on the additional effort it takes to modify
the code for inclusion in the product

+ ESLOC Equation from COCOMO

ESLOC =SLOC * [(40% * % Design Modified) + (30% * % Code
Modified) + (30% * % Integration & Test)]

Assumes: - 40% of effort is for design

Example on
- 30% of effort is for coding e foIIF;)Win
ﬂ - 30% of effort is for test olide g

You may have to
change percentages
for your environment

Warning: Beware of claims that no
testing will be required.

Software Engineering Economics, Barry
W. Boehm, Prentice Hall, 1981

- A, N Unit IV - Module 12 2
[@EAA ceBok
S ("

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

ESLOC Example

» Suppose from the Example Scenario that the code sizes
given are Reused and Adapted Code
191 ™. Find the ESLOC given:

» Total Reused and Adapted Code =(100,000 SLOC

* CSCI 1-45,000 SLOC; 20% retest
* CSCI 2-35,000 SLOC; 80% redesign, 100% recode and retest
« CSCI 3-20,000 SLOC; 50% recode and retest

e Calculations:
\ ESLOC = SLOC * [(40% * % Design) + (30% * % Code) + (30% * % Test) | \

CSCI 1-ESLOC =45,000 * [(40%*0%)+(30%*0%)+(30%*20%)] = 2,700
CSCI2-ESLOC = 35,000 * [(40%*80%)+(30%*100%)+(30%*100%)] = 32,200
CSCI 3-ESLOC = 20,000 * [(40%*0%)+(30%*50%)+(30%*50%)] =6,000

Total ESLOC = 2,700 + 32,200 + 6,000 40,9000 |

You may need to adjust the mix of total effort applied to design, code,
and test for the project you are estimating. Ask the engineers!

A5 V. Unit IV - Module 12 23
[@EAA cesok
— -

© 2002-2013 ICEAA. All rights reserved.

Code Size Growth

* Delivered project is bigger than estimated
* Increase driven by:

- Poor understanding of requirements initially
- New requirements added during development

- Underestimate of required SLOC Warning: Beware
- Code reuse optimism requirements creep!

* Key is to know the track record and account
for expected growth

- Some commercial tools have options for the
confidence level of the size estimates

- Use industry metrics to adjust

A5 V. Unit IV - Module 12 24
[@EAA ceBok
— N~

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

Function Points #

» Considers the number of functions being developed based on
T the requirements specification

The requirements of a system can be gathered from:

- People: The Program’s Primary Users. Program Developers, System
Analysts, Project Managers

- Documents: Architecture diagrams, Data models, Detailed design
specifications and requirements, Business function/process models, User
manuals, Screen prints, Function Point Counting Practices Manual

* FP Analysis can be performed with as many/few of these
documents as long as sufficient understanding can be gained

FP Counting Process

Count the Data
Function Types

Indentify the Scope
and the Boundaries
of the Application

9

Determine the Type
of FP Count

Function Point Analysis: Introduction and Basic Overview

Calculate the
Unadjusted Functior:
Count the Points (UFP)
Transaction Function
Types

Calculate the
Adjusted Function
Points (AFP)

as an Alternative to SLOC-based Estimation. Moore,
Tucker. 2010, TASC, Inc.

[E@EAA cesox

.
Determine the Value
Adjustment Factor
(VAF)

Unit IV - Module 12 25

© 2002-2013 ICEAA. All rights reserved.

Functions

» Transaction Files - Made up of the processes exchanged between
the user, the internal files, and the external files
- External Inputs (El): User inputs that provide data
- External Outputs (EO): Output to users such as reports, screens, error
message
- External Inquiries (EQ): Data sent to other applications
- Each Transaction Function is broken down into File Types Referenced
(FTRs) and then into Data Element Types (DETSs)
» Data Functions - Made up of the Internal and External “resources”
that affect the system
- Internal Logical Files (ILF): Online input that results in software response
- External Interface Files (EIF): Machine readable interfaces used to
transmit information to another system (disks and tapes)

- Each Data Function is broken down into Record Element Types (RETs)
and then into Data Element Types (DETSs)

Software Engineering, A Practitioner’s Approach, 3 ed,
Roger S. Pressman, McGraw Hill, Inc., 1992

Unit IV - Module 12 26

[E@EAA cesox

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

FP Calculations

Tables are used to calculate the number of UFPs

El Table Shared EO & EQ Table UFP Conversion
FIR's DATA ELEMENTS FIR's DATA ELEMENTS Rating _
14 515 |= 15 15 6-19 [=19
0-1 Low Low | Awe 0-1 Lowr Low | Ave Low 4 3 3
2 Low Ave | High 23 Low Ave | High Awerage | 5 4 4
Formore | Ave High | High >3 Ave High | High High 7 3 6
LF/EIF Table UFP Conversion
RET s DATA ELEMENTS
119 [20-50]>50
1 Low Low Aye 7 5
25 Low Ave High 10 7

>3 HAwe Hish Hish 15 10

A Value Adjustment Factor (VAF) is then computed

- Based on 14 general system characteristics (GSCs) that rate the general
functionality of the application being counted by degree of influence (0-5)

- Using the IFPUG Value Adjustment Equation: VAF = 0.65 + [(Ci) / 100], where i
=is from 1 to 14 representing each GSC

The final Function Point Count is obtained by multiplying the VAF

times the UAF: FP = UAF * VAF | Software Metrics, http:/www.softwaremetrics.com, 2009.

A5 V. Unit IV - Module 12 27
[@EAA cesok
— -

© 2002-2013 ICEAA. All rights reserved.

Function Points Issues

» Advantages
- Countable early in the development effort
- Language/technology independent

» Disadvantages
- Subjectivity involved in counting

- Don’t capture non-functional requirements (how SW must

perform) or technical and design constraints (fow SW will be
builf)

* International Function Point Users Group (IFPUG),
http://www.ifpug.org

- Provides information and training on how to count and use
function points

- Certified Function Point Specialist (CFPS) certification

Software Engineering, A Practitioner’s Approach, 34
ed, Roger S. Pressman, McGraw Hill, Inc., 1992

A5 V. Unit IV - Module 12 28
[@EAA cesok
— -

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

Response of Cost to Size

« Cost increases as size

Increases $ i COCOMO Il Scale Factors
* The nature of the increase ﬁ o pd
depends on development s10 // fe’y“’w
factors such as the £ / it
£
management of ue 7 High
. . 4 .
communication and) | :/ T VervHigh
. . = Extra High
coordination 0 , : ‘ ‘ ’
. . 0 200 400 600 800 1000
+ Economies of scale occur if: size (K5LOC)
- Project big enough to warrant
tools purchase]])
- Can manage communication Diseconomies of scale occur if:
and coordination problems - Tools are insufficient
- Cannot manage communication and
Software Cost Estimation with COCOMO I, . .
Boehm et al., Prentice Hall PTR, 2000 coordination problems 5

29

a5 Unit IV - Module 12
I@E AA\EEBI:K

© 2002-2013 ICEAA. All rights reserved.

Cost Drivers - Complexity €

» Factors that relate to the software itself

- Language Warning: These are

- Function (intended use) generally assumed to be cost
Lo drivers, but this is difficult to

- Hardware Limitations show statistically

- Number of Modules

- Amount of Integration

- Percent of New Code

- Quality of Development (for maintenance)

‘ Names and groupings may vary from model to model. ‘

PRICE S Users Manual, Price Systems, Software Cost Estimation with COCOMO /l,
http://www.pricesystems.com Boehm et al., Prentice Hall PTR, 2000

30

a5 Unit IV - Module 12
I@E AA\EEBI:K

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

* Vary in complexity

Complexity - Language

from Machine to Spoken HOL Advantages
Very High Order Language -Easier to read and write
(4G L) -More Human-efficient
. -More user-friendly
* Models adjust for S— -Attuned to modern design
differences in Human Level Language methods
Programmer
language Assembler Advantages
i -More machine
c?mplexny, length, Ig‘;:frﬁ:mr Higher- efficient
etc. P Order Language / | -Less application
* Drives the amount dependent
of design vs. code Computer R
ssembler
vs. test Language
- Object-Oriented
. Assembler A
languages require R LMachlne
more design and . T\ angusge
6 less code and test Programming Languages

Quantitative Management of Software, Graduate School of Logistics and
Acquisition Management, Air Force Institute of Technology, Air University, 1995

[E@EAA cesox

Unit IV - Module 12 31

© 2002-2013 ICEAA. All rights reserved.

- String Manipulation

- Graphical Functions

- Control Functions
- Multi-media

0 - Real Time
- Interactive
- Operating System
- Logical Functions

[E@EAA cesox

Complexity - Function

» Function: purpose of software and required reliability

. Typlcal Applications include:
Statistical/Mathematical

- Graphical User Interface (GUI)
- Data Storage and Retrieval

- On-line Communications

Warning: This is the PRICE S
model definition of the Application
(APPL) cost driver - other models
will have other unique
terminology/definitions

PRICE S Users Manual, Price Systems,
http://www.pricesystems.com

Unit IV - Module 12 32

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

Complexity - Other Factors

» Hardware Limitations: hardware on which
software will run may drive the need for more
8 | efficient code, requirements uncertainty,
schedule delays

* Number of Modules: drives integration,
standardization, communication and
coordination

» Quality of Developed Software (for
Maintenance): better software requires less
and easier-to-perform maintenance

- A, N Unit IV - Module 12 33
[@EAA ceBok
S (<

© 2002-2013 ICEAA. All rights reserved.

Response of Cost to Complexity

e Costincreases as o Product EMs by Rating
complexity increases ..

o . 120 4_____‘EEEEEE!EE:;;-_-151447
Effortis greatestat =~ = _—— —
the highest levels of o= "
complexity ——

0.00
VeryLow Low Nominal High VeryHigh ExtraHigh

* Relationship is
generally thoughtto

be exponential o —

0.80

Platform EMs by Rating

Software Cost Estimation with COCOMO /I, 0.60
Boehm et al., Prentice Hall PTR, 2000 040 —TIME
——STOR
0.20
PVOL
0.00
Very Low Low Nominal High VeryHigh Extra High
Y .
-~ : Unit IV - Module 12 34
& CEBoK
— N~ © 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

Cost Drivers - Capability €

» Factors that relate to the developers
and the development environment

Warning: These are generally

App"cation ExperienceA assumed to be cost drivers, but this

is difficult to show statistically

Skl ” Warning: For these cost drivers, large
Schedule Constraints A eltive 1 th underying reoet daabise
Tools Expe rience Walfnin_g: These cost drivers are

subjective in nature and so may
Development Location A

introduce bias

‘ Names and groupings may vary from model to model.

PRICE S Users Manual, Price Systems, Software Cost Estimation with COCOMO /I,
http://www.pricesystems.com Boehm et al., Prentice Hall PTR, 2000

- A, N Unit IV - Module 12 35
[@EAA ceBok
S (<

© 2002-2013 ICEAA. All rights reserved.

Capability

» Overall Skill of Developer: Better skill requires less
effort - Increased productivity offsets higher cost

» Experience with the Application: No learning required

» Experience with Development Tools: No learning
required

» Schedule Constraints may cause developers to:

- Increase the number of programmers leading to
communication problems

- Minimize requirements analysis and design which leads to
more expensive fixes in code and test

- Limit documentation leading to higher maintenance/reuse
costs
» Development Location: Separation makes
communication and coordination more difficult

- A, N Unit IV - Module 12 36
[@EAA ceBok
S (<

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

Response of Cost to Capability

» Costs decrease as capability increases
* Impact is greater between lower and nominal

Ca pa bl I |ty Software Cost Estimation with COCOMO /I,
Boehm et al., Prentice Hall PTR, 2000
1.60 < 1.60 ~
ProductEMs by Rating Personnel EMs by Rating

[

=_

\

x

= ACAP
——PCAP
==PCON

——=TOOL
o SITE

o APEX

SCED

e LTEX

Very Low Low Nominal High VeryHigh Extra High Very Low

Unit IV - Module 12

[E@EAA cesox

Low Nominal High VeryHigh Extra High

37

© 2002-2013 ICEAA. All rights reserved.

A T

=), Cost Drivers Example - Size

» For the mail order business Example
Scenario, suppose the Developer
proposes 3 solutions

» Find the cost for each given:

10| “Barebones” Solution: 50,000 SLOC

- Original Solution: 100,000 SLOC

- “Bells & Whistles” Solution: 150,000 SLOC
13 | - Nominal Complexity

- Nominal Capability
- Labor Rate $16,000/month fully burdened
- COCOMO II CER for software dev effort

COCOMO Il CER

PM = A-Size® -] JEM,

i=1

Where: PM = Person Months

A = Constant = 2.94

Size = KSLOC

E = Sum of Scale Factors

EM = Effort Multipliers

Software Cost Estimation with COCOMO I,
Boehm et al., Prentice Hall PTR, 2000

 Calculations:

50,000 SLOC =y 2.94 *50 1097 * {1 * $16 000 =/4$3,473,959
100,000 SLOC = 2.94 * 100 19997 * 1 * $16,000
150,000 SLOC ™ 2.94* 150 1097 * 1 * $16,000 =$11,628,26

$7,445,045

[E@EAA cesox

Unit IV - Module 12 38

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

?ﬂﬂ Cost Drivers Example - Complexity

COCOMO Il CER
* For the Example Scenario suppose the

100,000 SLOC solution is chosen, but the
complexity of the solution varies

* Find the cost for each given:

PM = A-Size® -] JEM,

i=1

- Low Complexity: EM = 0.6

- Nominal Complexity: EM = 1.0

- High Complexity: EM = 3.5

- Nominal Capability

- Labor Rate $16,000/month fully burdened

Where: PM = Person Months

A = Constant = 2.94

Size = KSLOC

E = Sum of Scale Factors

EM = Effort Multipliers

Software Cost Estimation with COCOMO I,

- COCOMO Il CER for software dev effort Boehm et al., Prentice Hall PTR, 2000

« Calculations:

Low: EAF =0.6 wm 294 *100 '0997*0.6 * $16,000 #'$4,467,027
Nom: EAF = 1.0 = 294 *100 1097 * 1,0 * $16,000(= $7,445,045
High: EAF =3.5 m 294~ 100 1097 *35* $16,000 $26,057,697/

[E@EAA cesox

Unit IV - Module 12 39

© 2002-2013 ICEAA. All rights reserved.

T

Lﬂﬂ Cost Drivers Example - Capability

, COCOMO Il CER
» For the Example Scenario suppose the

100,000 SLOC solution is chosen, but the
potential programmer capability varies
* Find the cost for each given:
- Best Programmers: EM = 0.33
 Labor Rate $20,000/month fully burdened
- Average Programmers : EM = 1.0
 Labor Rate $16,000/month fully burdened
- Junior Programmers: EM = 5.22
 Labor Rate $14,000/month fully burdened
- Nominal Capability
- COCOMO Il CER for software dev effort

PM = A-Size® -] JEM,

i=1

Where: PM = Person Months

A = Constant = 2.94
Size = KSLOC

E = Sum of Scale Factors
EM = Effort Multipliers

Software Cost Estimation with COCOMO I,
Boehm et al., Prentice Hall PTR, 2000

 Calculations:

Best EM=0.33 =) 2.94 * 100 9997 * 0.33 * $20,000 #'$3,071,081
Avg:EM=1.0 = 2094 *100 997 *1,0* $16,000 = $7,445,045
Jr: EM =5.22 =) 294 * 100 1097 * 522 * $14,000 $34,005,249

Unit IV - Module 12

[E@EAA cesox

© 2002-2013 ICEAA. All rights reserved.

40

ICEAA 2016 Bristol - TRNO8

Development Schedule

* Often have to estimate schedule as well as cost

* Issues
- Schedule driven by contract or need date not by

20

reality
- Developers don’t have a good understanding of

scheduling

+ Schedule vs. Effort

& - Schedule months = Number of calendar months to
develop

& - Effort months = Number of calendar months * the

number of people working per month (Person
Months)

- A, N Unit IV - Module 12 2
[@EAA ceBok
S (<

© 2002-2013 ICEAA. All rights reserved.

= Schedule Example

465 Person months
1 Person month = 152 hrs
SCED% = 1.0 (100%)

Let’s suppose the Owner wants + Given:
to know how long the schedule
(TDEV) would be with no

11 | compression (SCED % = 1.0) E=1.1433
— for the 100,000 SLOC solution - COCOMO Il CER for schedule
Person Mos vs Schedule Mos COCOMO If Schedule CER
. (SCED% =1) TDEV = [C*(PMy)fT*SCED% |
D30 e
£ c TDEV = [C*(PM\)©*0Z EBI[*SCEDY |
=20 / L
e / Where: TDEV = Calendar time in months
§m / E = Sum of Scale factors
5, C = Constant = 3.67 B = Constant = 0.91
o . D = Constant = 0.28 F=D+0.2 X (E-B)
0 200 400 600 800 PMys = Person Months (un-scaled)
Person Months SCED% = The amount of schedule
compression or stretch-out as a percent of the
+ Calculations: nominal value

‘ TDEV = [3.67*(465) (-28+27(1.143-91))] * q @_28 month}t) with COCOMO /, Boehm et

Software Cost Estimation

al., Prentice Hall PTR, 2000

., A, N Unit IV - Module 12 22
[@EAA ceBok
= (=

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

~2Schedule Compression Example

, COCOMO Il Schedule CER
» Let’s suppose the Owner wants
to know the Compression TDEV = [C*(PMy)]*SCED%

|

(1-SCED%) the Developer is

counting on to meet the 18 TDEV=[C*(PM,,)®**-2"[E-BN]*SCED% ‘
month deadline for the 100,000 .
SLOC solution Where: TDEV = Calendar time in months
Software Cost Estimation F=D+0.2X(E-B)
with COCOMO I, Boehm et C=367
. Given: al., Prentice Hall PTR, 2000 PMNS = Person Months (un-scaled)
- 18 month Schedule D=0.28
- 465 Person months E = Sum of Scale factors
- E=1.1433 B=0091

SCED% = The amount of schedule
compression or stretch-out as a
percent of the nominal value

- COCOMO Il CER for schedule

« Calculations:

TDEV = [3.67*(465) (28+2(1.143-91) | * SCED% = 18 months
SCED% = 18/ [3.67*(465) (28+2*(0.14-91) | = 66%
(1-SCED%) = (1-66%) £ 33%

- A, N Unit IV - Module 12 43
[@EAA cesok ,
S (" ,

© 2002-2013 ICEAA. All rights reserved.

Post-Deployment Software Support

» Like hardware, software has an operational phase
- Costs must be accounted for in life cycle cost (LCC)
* Operations and support (O&S) for software termed
& Post-Deployment Software Support (PDSS)
- Includes software maintenance
- Also includes help desk/trouble ticket functions
* Models only account for software maintenance
- Other areas need to be addressed outside of model

Remember, how well software was originally developed has a major impact on
software support costs. You pay in development or you pay in support.

- A, N Unit IV - Module 12 44
[@EAA cesok ,
S (" ,

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

Software Maintenance

» Software doesn’t degrade or wear out like hardware
- Use may uncover bugs not addressed in testing
- When introduced to a new environment, software may “break”
0 » Software Maintenance includes:
- Corrective: Fixes defects in the code

0— Adaptive: Modifies the software to accommodate changes in the
external environment

0 Perfective: Extends the software beyond its original functional
requirements

» For Software, there is overlap between Maintenance
and Development
- Portions of code may need maintenance during development

- When additional capability is added, Software maintenance can
be thought of as a mini-development effort

» Cost drivers are the same + the quality of the code

17

be N g main ta ne d Software Engineering, A Practitioner’s Approach, 34
ed, Roger S. Pressman, McGraw Hill, Inc., 1992

I@Eﬁ A ﬁEBuI(' Unit IV - Module 12 45
~— (™

© 2002-2013 ICEAA. All rights reserved.

Estimating Development
Methodologies
» Waterfall
- Agile
» Other Methods

I@Eﬁ A ﬁEBuI(' Unit IV - Module 12 |< 46
~— (™

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

F¢ < Waterfal

» Traditional Development method follows a basic
System Engineering process

System
Requirements

Benefits: Waterfall Method

& Desig H 2
* Good when there are = o (Also called “Grand Design”)
stable requirements - feiee

provides structure to
development

Pitfalls:

* Doesn't allow
prototyping

» No product to look at
until completely done

* Not attuned to S
evolving needs

Quantitative Management of Software, Graduate School of Logistics and PRICE S Users Manual, Price Systems,
Acquisition Management, Air Force Institute of Technology, Air University, 1995 || http://www.pricesystems.com

A5 V. Unit IV - Module 12 47
[@EAA cesok | 4
— -

© 2002-2013 ICEAA. All rights reserved.

@ Agile

» lterative development which prioritizes evolution of requirements and
solutions through collaboration of cross-functional teams
- Each iteration is a full software development cycle

- Atthe end of an iteration, the product can be reviewed and evaluated by the
customer for feedback

» Agile development stresses team work and face-to-face communication

s e)

Build Build

ey K

Benefits:

L6
+ Adaptable to change G~ AKAScrum

» Prioritizes customer satisfaction and communication
* Focus on business need and business value

"Agility XL", Schaaf, R.J., Systems and Software

* Sustainable development pace Technology Conference 2007, Tampa, FL, 2007

Pitfalls:
» Not structured enough for architecture design or re-design work
» May need to be combined with waterfall methodology to fit organizational needs

| Are Parametric Techniques Relevant for Agile Development Projects?, Minkiewicz, Arlene. PRICE Systems, 2012.

) 3 Unit IV - Module 12 48
[@EAA cesok | 4
— N~

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

\ﬁﬁ € Evolutionary

» Begins with a prototype containing core capability. Customer
provides feedback; prototype is adjusted and additional capability
added. Process is repeated until the system is complete

T . Evolutionary:
Requirements Evolutionary Method « Need general objectives,
and Design not requirements to start
CSCl CSCl » Prototypes are paper,
W Bea e software model, working

product, existing product

Benefits:

* Gets a product to customer
quickly and encourages
customer involvement

Pitfalls:

* More time consuming than
other methods for final
product

* Must have a plan for
Quantitative Management of Software, Graduate School of Logistics and execution even without
Acquisition Management, Air Force Institute of Technology, Air University, 1995 complete requirements

A5 V. Unit IV - Module 12 49
[@EAA cesok | 4
— -

© 2002-2013 ICEAA. All rights reserved.

\ﬁﬁ Modeling Evolutionary

* Model as multiple Waterfalls

- Model each pass as a separate Waterfall including
the previous pass as reused and/or adapted and
deleted code

* Include all phases (system requirements through system
test) in each pass but make adjustments for reused and
adapted code

- Passes are sequential therefore may need to
adjust productivity for later passes
* Have to determine what will be done in each
pass even though requirements are not
complete

‘ We'll look again at our example for Evolutionary ‘

A5 V. Unit IV - Module 12 50
[@EAA cesok | 4
— -

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

= @ |ncremental

+ Software is built in increments, complete requirements for the entire
system are defined up front and allocated to increments
Increments:
Incremental Method I « Normally sequential;
. can be concurrent

* Includes design, code
and test for
requirements in that
increment

Benefits:

* Increased
communication

* More frequent and
faster deliveries

Pitfalls:

* Requirements must
be defined

* Need a sound

architecture
Quantitative Management of Software, Graduate School of Logistics and “ « Only deliver a small
Acquisition Management, Air Force Institute of Technology, Air University, 1995 part of a system at a

I@Eﬁ ﬁ CEBIJK' Unit IV - Module 12 |< time 51
P N~

© 2002-2013 ICEAA. All rights reserved.

System
Requirements;
and Design

=" Modeling Incremental

* Model as multiple Waterfalls
- Model each increment as a separate Waterfall - use effort
estimated from CSCI design through test
» For system costs, model entire system as a single
Waterfall and use only system level costs such as
requirements analysis and system test
* Increment may be at lower level with CSCI treated as
system level
» If increments are sequential:
- May need to adjust productivity for later increments

- May need to estimate system test after each increment is
delivered- including only those parts of the code being tested

We'll look again at our example for Incremental

A5 V. Unit IV - Module 12 52
[@EAA cesok | 4
— -

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

#3\ Evolutionary Example

» Recommendation of third consultant

Run 1: First Evolution or Pass Adjust factors to
= Customer Order
Management System

- Core Capabilities
- Prototype Interface

reflect that is only a
prototype

2 COTS Package 2 el Helse e ic ESLOC or make
= Customer Order Mgt System adjustments for reduced

* COTS Package 1['g,;5 2. Second Evolution or Pass /(Adapted code - use

/ = COTS Packag/e%/\ design, code and test
O Adapted code

= Prototype Interface from Pass 1

0 New code Run 3: Third Evolution or Pass
= Built in double checks | QRe-test code

Reused code treate d\/y = Customer Order Mgt System

. - = COTS Packages
e Qadapted code
rg-t i = Prototype Interface from Pass 2
e-tes UNew code

= Auto-generated notification

A5 V. Unit IV - Module T2 53
[@EAA cesok | 4
— -

© 2002-2013 ICEAA. All rights reserved.

& Spiral

» Breaks effort into pre-defined spirals to allow for Risk Assessment

I > Spirals:

1 § + Breaks effort into 4

DETERMINE OBJECTIVES, EVALUATE ALTERNATIVES,
ATENAIVES AD IDENTIFY AND RESOLVE RISKS quadrants

* Uses other methods and
adds risk review

— - Waterfall

cbjectives, =") g - Incremental
Constraints /Alterratives, .

~ - Evolutionary
i/ Priee e oot Benefits:
Review Concex of H i
Sorem Gl & * Emphasizes alternative
Sy analysis

* Risk driven approach
Pitfalls:

* Hard to use contractually
+ Takes longer to develop

Software Engineering, A Practitioner’s
Approach, 31 ed, Roger S. Pressman,
PLAN NEXT PHASE DEVELOP NEXT LEVELPRODUCT | [McGrraw Hill, Inc., 1992

A5 V. Unit IV - Module 12 54
[@EAA cesok | 4
— -

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

@ Modeling Spiral

* Model as multiple passes - similar to
Evolutionary

- Model each spiral as a separate pass - but include
previous spiral as reused and/ or adapted code

* Include only those phases actually addressed in that
spiral and make adjustments for reused and adapted
code

- For example, in the spiral diagram, the second spiral only
has software requirements specification and system
software specification - Later spirals have just code and
test

» Spirals are sequential therefore may need to adjust
productivity for later passes
- If model or CER doesn’t accommodate spiral, may
need to add effort for risk assessment, planning,
and analysis of objectives

-) ; Unit IV - Module 12 55
[GEAA ceBax [«
" L

© 2002-2013 ICEAA. Al rights reserved.

Development Methodologies

» A software development methodology is an overall
approach to system development
- Need to understand methodology being used for proper
modeling, calibration, and CER development
« Commonly used methodologies are
- Waterfall: conventional, “theoretical” methodology
- Adgile: based on iterative and incremental development

- Other common methods

16 » Incremental: breaks development into clearly-defined, stand alone system
increments

» Evolutionary: built to satisfy requirements as they evolve
» Spiral: risk based analysis of alternatives approach
» More detailed information provided in the advanced topics

15

Guidelines for Successful Acquisition and Manag of Software Intensive Sy - Weapon Systems, Command and Contro/
Systems, Management Information Systems, Version 3.0, Dept of the Air Force, Software Technology Support Center, 2000

© 2002-2013 ICEAA. Al rights reserved.

- ~) ; Unit IV - Module 12 56
[GEAA ceBax [«
" L

ICEAA 2016 Bristol - TRNO8

Estimating Techniques
Applied to Software

« Analogy
 Parametric @

- A, N Unit IV - Module 12 60
[@EAA ceBok
S (<

© 2002-2013 ICEAA. All rights reserved.

%E Analogy

Analogy: Performing a comparative analysis of similar systems
with adjustments to account for differences between new and
analogous systems @
» Example:
- Let’s suppose for our mail order example that the owner chooses
12 the First consultants Waterfall methodology solution
- The First consultant from Waterfall methodology must estimate his
cost to set up the COTS software
- Using “ACME” Office and a new COTS package for human
resources, accounting, and inventory management functions
- Consultant just completed a similar effort using 4 COTS products
for a company twice the size of the Mail Order company
- Previous effort was:
» Set up software - 280 hours
» Load Data - 80 hours
» Implement at customer’s site - 100 hours
» Train users - 20 hours

- A, N Unit IV - Module 12 61
[@EAA ceBok
S (<

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

{__F ¢ Analogy Example

» Differences in new effort:
- 2 COTS packages reduces effort by 20%

- Data load same- company is smaller but
data is not as automated

- Engineers say the implementation is
expected to require 15% less effort
because the company is smaller

» Calculations:

Warning: The basis for this
analogy is not strong. This is
a YELLOW BOE at best. The
comparison between the two
programs has been simplified
for purposes of the example

Hours

Set-up COTS product: 280 - (280 * 0.2) = 224 224

Data Load: 80 80

Implementation: 100 - (100 * 0.15) = 85 85

Training: 20-(20 *0.15) = 17 17

Total 406
Given a labor rate of $100K/year:

(406 Hrs / 1920 Hrs/Year) * $100,000

- A, N Unit IV - Module 12 62
[@EAA ceBok
S (<

© 2002-2013 ICEAA. All rights reserved.

o |]
@‘@ Parametric

* Most common estimating technique for software development
- Commercial models are parametric based
* Parametric based method is a mathematical relationship
between a physical (size) or performance (reliability) parameter
and the cost of a system
+ Example:
- Mail order company continued - First Consultant’s waterfall solution
- Must estimate cost of custom code
» 5,000 + 7,500 + 3,000 + 1,000 + 2,500 = 19,000 SLOC
- Vendor uses COCOMO Il to estimate jobs - has calibrated to his
company
» E =1.0405 (calibrated on similar efforts)
+ EM = 0.38 (skilled development team)
» No adjustments were necessary for the code itself
- Labor rate is $16,000/month

- A, N Unit IV - Module 12 63
[@EAA ceBok
S (<

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

et |
@ € Parametric Example - SLOC

. . COCOMO Il CER
* Mail order company continued -

First Consultant’s waterfall T
solution PM = A-Size® -] JEM,
* Given: i=1
- Must estimate cost of custom Where: PM = Person Months
code (19,000 SLOC) A= Constant = 2.94
- Labor rate is $16,000/month Size = KSLOC

E = Sum of Scale Factors
EM = Effort Multipliers

Software Cost Estimation with COCOMO I,
Boehmet al., PrAenticAe HaAII P'I:R, 2900

» Calculations: et
Person Months = 2.94 * 19 1.0405* 9 38 = 23.92

Cost = 23.92 * $16,000 £$382,643

- A, N Unit IV - Module 12 64
[@EAA ceBok
S (=

© 2002-2013 ICEAA. All rights reserved.

[] .
% € Parametric Example - Schedule

. . . COCOMO Il Schedule CER
» Mail order company continued - First
Consultant’s waterfall solution TDEV =
+ Given: [C*(PM) P*02*E-BN]*SCED%
- Must estimate schedule for

development of custom code (19,000 | Where: e
SLOC) TDEV = Calendar time in months
- Person Months = 23.92 E = Sum of Scale factors
— - C=3.67 B=0.91
- E=1,50F=0.298 D=0.28 F=D+0.2X (E-B)

- Nominal schedule, SCED% = 1.0 PMys = Person Months (un-scaled)

SCED% = The amount of schedule
» Calculation: compression or stretch-out as a percent
of the nominal value

Schedule Months = 3.67 * 23.92 029 * 1.0

Software Cost Estimation with COCOMO I,
Boer:m e} aI.,APrer}ticeAHaII PTR, 2000

- A, N Unit IV - Module 12 65
[@EAA ceBok
S (<

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

Software CER Development

» Software CER development is the same as
hardware or other CER development processes
- Allows statistical inferences to be made
- Underlying assumption is that future reflects the past
- Expanded discussion in Modules 2, 3 and 8
* Important reminders when developing your CERs
- Variable selection process very important @
Stay within the relevant range

- Normalize the data <3>
- Test relationships
- Perform regression
=y .
- : Unit IV - Module 12 66
I @EAA _F EBDK © 2002-2013 ICEAA. All rights reserved.

Challenges in
Estimating Software

» System Definition

» Sizing and Tech

* Quality

« COTS

» Calibration

« Databases

» Growth and Demand

- A, N Unit IV - Module 12 67
[@EAA ceBok
S ("

© 2002-2013 ICEAA. Al rights reserved.

ICEAA 2016 Bristol - TRNO8

Challenges - System Definition

» Obtaining System Definition
- Must work with experts

- Define notional system based on known
requirements and include risk assessment for
unknowns

- Definition often at a high level

- May include use of COTS software
» Talk to commercial vendors for inputs
» Multiple packages may be used

- For custom code, look at similar systems for
functions that are required

- Assess need for both internal and external interfaces
- Refine definition over time as system takes shape

I@E [.‘.EBIJI(Unit IV - Module 12 68
oI/ \ / &_'

© 2002-2013 ICEAA. Al rights reserved.

Challenges - Sizing and Tech

 Sizing Is An Estimate Too
- Use standard estimating methods @

» Rapid Technology Change

- Changes during the development process
may have to be addressed
» COTS Upgrades

- May have to reintegrate
- Simple retest to complete redo or no change at all -
depends on COTS
» Development Tool Changes
- Newer tools may simplify effort (but still require learning)
- May force change to the development process

I@E [.‘.EBIJI(Unit IV - Module 12 69
oI/ \ / &_'

© 2002-2013 ICEAA. Al rights reserved.

ICEAA 2016 Bristol - TRNO8

Challenges - Quality

+ Difficulty in Assessing Quality
“Don’t know how good it is until you’re done”
- Good planning impacted by tight schedules and other
constraints
- Software quality measures may help
» Defects Identified

« Defects Fixed Space Systems Cost Analysis Group Software Methodology
« Failed Fixes Handbook, Version 1.0, June 1995, https://sscag.saic.com/

» Severity of Defects

* Location of Defect

» Degree of Cohesion and Coupling
* Requirements satisfied

» Depth of testing

» Adequacy of Documentation

e MTTD Errors

* McCabe’s cyclomatic complexity

- A, N Unit IV - Module 12 70
[@EAA ceBok
S (<

© 2002-2013 ICEAA. All rights reserved.

Challenges - COTS

0 » Using Commercial Off-the-Shelf (COTS) Software

- No code visibility Warning:

- Difficult to customize - no source code COTS # Cheap!

- Effort dependent on the software architecture

- Might be too rigid to handle changing requirements

- Assumes many users will find errors - need additional testing
- Upgrades to COTS may force reintegration with custom code

- Support costs for custom code may be affected and will vendor
need support for COTS

- Still must perform requirements definition, design, and test of
the overall system

- Dealing with licensing, royalties, incompatibilities between
packages, lack of source code and understanding package

- Estimation of COTS integration not mature

- A, N Unit IV - Module 12 7
[@EAA ceBok
S (<

© 2002-2013 ICEAA. All rights reserved.

14

ICEAA 2016 Bristol - TRNO8

Challenges - Calibration

» Calibration of models

- Most models built on industry averages therefore
calibration may increase accuracy

- Adjusts relationships/values to achieve <3>
representative known outcomes

- Understand how your model calibrates
- Must collect cost, technical and programmatic data
- Check content of actual data vs. content of model

- Generally models have a calibration mode but
may need to tweak the model

Calibration of models must be done with care but is
generally an improvement over default values

I@Eﬁ A lﬁEBul(' Unit IV - Module 12 72
~— (™

© 2002-2013 ICEAA. Al rights reserved.

Challenges - Databases

& . Database Development

- Most models don’t address major database
development

- Must estimate outside of model using other @
estimating techniques

- Consider
* Number of feeder systems
* Number of data elements
* Number of uses
* Number of users

» COTS database software for development and feeder
systems

I@Eﬁ A lﬁEBul(' Unit IV - Module 12 73
~— (™

© 2002-2013 ICEAA. Al rights reserved.

ICEAA 2016 Bristol - TRNO8

Challenges - Growth and Demand

* Requirements and Code Growth
- Delivered project is bigger than estimated

- Increase driven by:
» Poor understanding of requirements initially

* New requirements added during development
+ Underestimate of required SLOC Warning: Beware
» Code reuse optimism requirements creep!
- Key is to know the track record and account for
expected growth

* Supply and Demand of Labor

- Affects personnel availability and cost of qualified
personnel

- A, N Unit IV - Module 12 74
[@EAA ceBok
S ("

© 2002-2013 ICEAA. Al rights reserved.

Software Cost Estimating Summary

» Understanding software cost estimation is critical
because software is part of almost every estimate

+ Software cost estimating is in many ways similar to
hardware estimating

» There are a variety of software development
approaches that can affect development cost and
must be modeled accordingly to estimate

* Analogy and Parametric are commonly used to
estimate software development costs

* There are a number of commercial parametric
models available to estimate software costs

+ Software provides a number of specific challenges for
the estimator

© 2002-2013 ICEAA. Al rights reserved.

- A, N Unit IV - Module 12 75
[@EAA ceBok
S ("

ICEAA 2016 Bristol - TRNO8

Resources

[Pressman] Software Engineering, A Practitioner’s Approach, Third Edition, Roger
S. Pressman, McGraw Hill, Inc., 1992

[Boehm 81] Software Engineering Economics, Barry W. Boehm, Prentice Hall, 1981
[Boehm 2000] Software Cost Estimation with COCOMO [/, Boehm et al., Prentice
Hall PTR, 2000

[ISPA 1999] Spring 2" Edition Joint Industry/Government PARAMETRIC
ESTIMATING HANDBOOK , http://www.ispa-cost.org/PEIWeb/toc.htm

[GSAM 2000] Guidelines for Successful Acquisition and Management of Software
Intensive Systems: Weapon Systems, Command and Control Systems,
Management Information Systems, Version 3.0, Dept of the Air Force, Software
Technology Support Center, 2000

[AFIT] Quantitative Management of Software, Graduate School of Logistics and
Acquisition Management, Air Force Institute of Technology, Air University, 1995
[IFPUG] /nternational Function Point Users Group, http://www.ifpug.org

[Taylor] Object-Oriented Technology: A Manager’s Guide, David A. Taylor,
Addison-Wesley, 1990

[Cox] Object-Oriented Programming: An Evolutionary Approach, Brad J. Cox,
Addison-Wesley, 1987

SEER-SEM, Galorath Inc., http://www.galorath.com

[STSC] Crosstalk - The Journal of Defense Software Engineering,
http://www.stsc.hill.af.mil/CrossTalk/2003/07/index.html

-) ; Unit IV - Module 12 76
[@EAA ceBok
" (™

© 2002-2013 ICEAA. All rights reserved.

Resources

[Reifer] “Quantifying the Debate: Ada vs. C++,” Donald J. Reifer, Crosstalk:
The Journal of Defense Software Engineering, Vol. 9, Number 7, July 1996
[Jensen] “Software Estimating Model Calibration,” Randall W. Jensen, Crosstalk:
The Journal of Defense Software Engineering, Vol. 14, Number 7, July 2001
[Jones 1] Applied Software Measurement: Assuring Productivity and Quality, 2"
ed, Capers Jones, McGraw Hill, 1996

[Jones 2] Estimating Software Costs, T. Capers Jones, McGraw Hill, 1998
COCOMO /I, http://sunset.usc.edu

[PRICE S] PRICE S Users Manual, Price Systems, http://www.pricesystems.com
[MIL STD 498]Military Standard 498, “Software Development and
Documentation,” December 1994

[|EEE] /EEE/EIA 12207.2-1997, IEEE/EIA Guide, Industry Implementation of
International Standard ISO/IEC 12207; 1995, Standard for Information
Technology, Software Life Cycle Processes - Implementation Consideration,
April 1998

[MIL-HDBK-881A] Department of Defense Handbook Work Breakdown
Structures for Defense Materiel ltems, July, 2005

[SEI-CMM] Capability Maturity Model for Software, Version 1.1, Paulk, Mark C.
et.al., Software Engineering Institute, Carnegie Mellon University, February 1993
[Schaaf] "Agility XL", Schaaf, R.J., Systems and Software Technology
Conference 2007, Tampa, FL, 2007

Are Parametric Techniques Relevant for Agile Development Projects?,
Minkiewicz, Arlene. PRICE Systems, 2012.

- A, N Unit IV - Module 12 77
[@EAA ceBok
S (<

© 2002-2013 ICEAA. All rights reserved.

ICEAA 2016 Bristol - TRNO8

