
ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 1

Software Cost Estimating
Techniques for estimating in a

software development
environment

“Any sufficiently advanced technology is
indistinguishable from magic.”

- Arthur C. Clarke

© 2002-2013 ICEAA. All rights reserved.

v1.2

Acknowledgments
• ICEAA is indebted to TASC, Inc., for the

development and maintenance of the
Cost Estimating Body of Knowledge (CEBoK®)
– ICEAA is also indebted to Technomics, Inc., for the

independent review and maintenance of CEBoK®

• ICEAA is also indebted to the following individuals who have made
significant contributions to the development, review, and maintenance of
CostPROF and CEBoK ®

• Module 12 Software Cost Estimating
– Lead authors: Belinda J. Nethery, Allison L. Horrigan

– Assistant authors: Tara L. Eng, Heather F. Chelson

– Senior reviewers: Richard L. Coleman, Michael A. Gallo, Fred K. Blackburn

– Reviewer: Kenneth S. Rhodes

– Managing editor: Peter J. Braxton

2Unit IV - Module 12

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 3

Unit Index

Unit I – Cost Estimating

Unit II – Cost Analysis Techniques

Unit III – Analytical Methods

Unit IV – Specialized Costing
11. Manufacturing Cost Estimating

12. Software Cost Estimating

Unit V – Management Applications

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 4

Software Cost Estimating Overview
• Key Ideas

– Cost Drivers
• Size
• Complexity
• Capability

– SLOC vs. ESLOC vs.
Function Points

– Development Methodologies

• Practical Applications
– ESLOC Sizing
– Software Effort Calculation

• Capability Adjustments
• Complexity Adjustments

– Schedule Determination
– Schedule Compression Factors

• Analytical Constructs
– ESLOC Equation

– COCOMO II CER Equation

– COCOMO II Schedule CER

• Related Topics
– Costing Techniques

– Parametric Estimating

– Regression Analysis
8

3

2

n

i
i

E EMSizeAPM
1

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 5

Software Cost Estimating Outline

• Core Knowledge
– Software Overview
– Software Development Approaches
– Software Cost Drivers
– Estimating Development Methodologies
– Estimating Techniques Applied to Software
– Challenges in Estimating Software

• Summary
• Resources
• Related and Advanced Topics

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 6

Introduction
• Software is a key component of almost every

system including:
– Custom Developed Software
– Commercial-Off-The-Shelf (COTS) Software
– Databases
– Enterprise Resource Planning (ERP) Tools

• Software development is both an art and a
science, as is estimating software
development

• Using equations from COCOMO II developed
by Barry Boehm in many of the examples
– Leader in field of software cost estimation
– Research publicly available in texts

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 7

Software - What We Do (and Don’t) Know

• Software isn’t easy to understand because it’s
not a tangible item

• Developing software can be extremely costly
and time consuming

• “Chaos” has been downgraded
– Standish Group’s 1994 study was revisited in 2000

• Examined IT developed software projects
• Schedule overruns have significantly decreased from

222% over the original time estimates in 1994 down to
63% in 2000

• Cost overruns have gone from 189% over the original
cost estimates in 1994 down to 45% in the 2000 study

• Better tools have been created to monitor and control
progress

• Better management processes have emerged
Extreme Chaos, copyright © 2001 The Standish Group International, Inc.

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 8

Software Development Process
• The same basic system engineering steps are followed

when developing software as when developing a
hardware system

• System Engineering Steps for Software
Step 1: System Requirements and Design (both hardware and

software)
Step 2: Software Requirements Analysis
Step 3: Software Preliminary and Detailed Design
Step 4: Code and Unit Test
Step 5: Unit Integration and Test
Step 6: Software System Test
Step 7: System Test (both hardware and software)

• These steps provide a framework for structuring the
Software WBS

Coding is equivalent
to building a piece of

hardware

Systems today usually consist of
both hardware and software.

MIL STD 498, “Software Development and Documentation,” December, 1994

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 9

IEEE/EIA 12207.2-1997, IEEE/EIA Guide,
Industry Implementation of International
Standard ISO/IEC 12207; 1995, Standard
for Information Technology, Software Life
Cycle Processes – Implementation
Consideration, April 1998

WBS for Software Programs

• Framework to break large projects into
product oriented elements and processes

• Used as a foundation for cost estimating,
schedule planning, progress tracking, risk
monitoring and many other management
functions

• Dept of Defense mandates use of a WBS
(guidance in Military Handbook 881A)

• Industry has no mandated standard;
however, use of WBS recommended by
IEEE

1.1 System SE/PM (Includes Step 1)
1.2 System SIT&E (Includes Step 7)
1.3 Hardware
1.4 Software
1.4.1 Build 1
1.4.1.1 SE/PM (Includes Step 2 & 3)
1.4.1.2 SIT&E (Includes Step 5 & 6)
1.4.1.3 CSCI 1
1.4.1.4 CSCI 2
1.4.1.4.1 CSC 1
1.4.1.4.2 CSC 2
1.4.2 Build 2
1.4.3 Build 3
Etc.

Sample Partial WBS – This is an example, each WBS will have a unique mapping

It is important that the cost analyst understand the
content associated with a particular cost

(Includes Step 4)

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 10

Comparison to Hardware - Similarities

• Same basic development processes
– Use same basic techniques for estimating

(Analogy, Parametric, Build-Up)
• Both also have the same basic sustainment

costs
– Require Support, Maintenance, and Upgrades

• Factors that influence cost are similar
– Size

• Length, weight, volume, etc. vs. Source Lines Of Code
(SLOC), Function Points, etc.

– System Complexity
– Development Capability (Personnel, Facilities,

Tools, Etc.)

2

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 11

Comparison to Hardware - Differences

• You may build a piece of hardware over and over
again; you build software only once
– For hardware, you design, build, and test a system that you

then build multiple times in Production
– For software, you design, build, and test a system then

simply generate a copy
• Hardware (and, therefore, hardware cost estimating)

has been in existence for much longer than software
(and, therefore, software cost estimating)
– HW development processes are more mature and stable
– Longer period over which to collect historical data and refine

CERs
– Software estimating techniques lag behind those of

hardware
• Harder to find good clean data
• Less statistically based

1

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 12

Software Development Approaches

• Software Development Methodologies
– Waterfall

– Agile

– Incremental

– Evolutionary

– Spiral

• Programming Paradigms
– “Linear” (non Object-Oriented) vs. Object-

Oriented (OO)
[SEI-CMM] Capability Maturity Model for Software, Version 1.1, Paulk, Mark C. et.al.,
Software Engineering Institute, Carnegie Mellon University, February 1993

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 13

Overview of Development
Methodologies

• Determines the sequencing of the steps of
the Software Development Process
– The Software Engineering Steps 1-7

• System level Requirements and Test are the
first and last steps, but the sub-system
building process can be:
– A single effort (Waterfall)

– Short iterations (Agile)

– In series (Evolutionary)

– In overlapping series (Incremental)

– Include additional Risk and Analysis phases
(Spiral)

12

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 14

Programming Paradigms

• “Linear” Programming
– Every system is custom built line by line

• Some ability to adapt code
• Large systems have problems with standardization and

modules not “fitting”
• Examples include COBOL, FORTRAN

• Object-Oriented (OO) Programming
– System made up of pre-built, standardized,

interchangeable objects
• Objects can be used in any system
• Large systems don’t have standardization or “fit”

problems
• Examples include Ada 95, C++

One man custom-building
one gun from scratch

One man building one part of the
gun to a specified standard – The

gun is then assembled from
interchangeable parts

Object-Oriented Programming: An Evolutionary
Approach, Brad J. Cox, Addison-Wesley, 1987

12

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 15

Example Scenario
• New mail order business

– Expects significant growth over 5 years

– Increase in customers, inventory, and personnel

• Want a system with necessary capability and
minimal disruption of staff
– System to be developed in 18 months

• Preliminary estimate of the system is that it
will require 100,000 SLOC
– The development will be divided into 3 CSCIs

• CSCI 1 has 45,000 SLOC

• CSCI 2 has 35,000 SLOC

• CSCI 3 has 20,000 SLOC

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 16

Cost Drivers

• Size

• Complexity

• Capability

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 17

• Cost Drivers are used to create a Cost Estimating
Relationship (CER) between the drivers and the cost
– Although it is generally agreed that these are the main cost

drivers of software, the CERs based on the drivers differ

– The COCOMO II CER is commonly used

• COCOMO II CER equation

Cost Drivers Overview

Where: PM = Person Months
A = Constant = 2.94
Size = SLOC in thousands (KSLOC
E = Sum of Scale Factors (Economies

or Diseconomies of Scale)
EM = Effort Multipliers

Software Cost Estimation with COCOMO II,
Boehm et al., Prentice Hall PTR, 2000

n

i
i

E EMSizeAPM
1

Size

Complexity and Capability

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 18

Cost Drivers – Size

• Size is the primary cost driver of
software development costs

• Methods of measuring size include
– Source Lines of Code (SLOC)

• Equivalent Source Lines of Code (ESLOC)

– Function Points

– Object Points
A good assessment of size is
critical to a good estimate!

2

12

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 19

• Include executable instructions and data declarations
– Do not include comments, blanks, and continuation lines

• Can be accurately and consistently counted after
completed development with automated counting tools
– Delivered source lines of code (DSLOC)

• Prior to development, must be estimated using
standard estimating techniques
– Analogy is the most common

Source Lines of Code (SLOC)

2

Guidelines for Successful Acquisition and Management of Software Intensive Systems:
Weapon Systems, Command and Control Systems, Management Information Systems,
Version 3.0, Dept of the Air Force, Software Technology Support Center, 2000

3
Warning: This is just one
definition of SLOC, not the
definition of SLOC.

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 20

SLOC Issues
• Advantages

– Widely utilized in real-time systems and many legacy IT
systems

– Easily counted; can use automated counters

– Less subjectivity in counting than with other measures

• Disadvantages
– Wide discrepancies occur even with standard definitions

• Logical vs. physical SLOC counts

– Driven by language choices
• Different software languages require a different number of lines

of code for same function

– Does not adequately address COTS-based systems

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 21

• Software is often a mix of new code and code
developed in previous efforts
– Reused code requires no modification
– Adapted code requires some amount of redesign,

recoding, and retesting
• Rework may be major or minor

• Software estimating models are usually
based on new lines of developed code
– Provide input to models on amount of

reused/adapted code; or…
– Calculate equivalent new source lines of code

(ESLOC)

Counting Reusable Code

Software Engineering Economics, Barry
W. Boehm, Prentice Hall, 1981

Warning: There are many terms and
conventions to denote code from another

source, so defining terms is crucial

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 22

Equivalent Source Lines of Code
• Equivalent Source Lines of Code (ESLOC)

– The effective size of reused and adapted code adjusted to its
equivalent in new code + The size of the new code

– The adjustment is based on the additional effort it takes to modify
the code for inclusion in the product

• ESLOC Equation from COCOMO

Assumes: - 40% of effort is for design
- 30% of effort is for coding
- 30% of effort is for test

Software Engineering Economics, Barry
W. Boehm, Prentice Hall, 1981

You may have to
change percentages
for your environment

4

Warning: Beware of claims that no
testing will be required.

Example on
the following

slide

ESLOC = SLOC * [(40% * % Design Modified) + (30% *% Code
Modified) + (30% * % Integration & Test)]

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 23

ESLOC Example

• Suppose from the Example Scenario that the code sizes
given are Reused and Adapted Code
– Find the ESLOC given:

• Total Reused and Adapted Code = 100,000 SLOC
• CSCI 1 – 45,000 SLOC; 20% retest
• CSCI 2 – 35,000 SLOC; 80% redesign, 100% recode and retest
• CSCI 3 – 20,000 SLOC; 50% recode and retest

• Calculations:

CSCI 1 - ESLOC = 45,000 * [(40%*0%)+(30%*0%)+(30%*20%)] = 2,700
CSCI 2 - ESLOC = 35,000 * [(40%*80%)+(30%*100%)+(30%*100%)] = 32,200
CSCI 3 – ESLOC = 20,000 * [(40%*0%)+(30%*50%)+(30%*50%)] =6,000

You may need to adjust the mix of total effort applied to design, code,
and test for the project you are estimating. Ask the engineers!

Total ESLOC = 2,700 + 32,200 + 6,000 = 40,900

ESLOC = SLOC * [(40% * % Design) + (30% *% Code) + (30% * % Test)]

19

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 24

Code Size Growth
• Delivered project is bigger than estimated

• Increase driven by:
– Poor understanding of requirements initially

– New requirements added during development

– Underestimate of required SLOC

– Code reuse optimism

• Key is to know the track record and account
for expected growth
– Some commercial tools have options for the

confidence level of the size estimates

– Use industry metrics to adjust

Warning: Beware
requirements creep!

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 25

Function Points
• Considers the number of functions being developed based on

the requirements specification

• The requirements of a system can be gathered from:
– People: The Program’s Primary Users. Program Developers, System

Analysts, Project Managers

– Documents: Architecture diagrams, Data models, Detailed design
specifications and requirements, Business function/process models, User
manuals, Screen prints, Function Point Counting Practices Manual

• FP Analysis can be performed with as many/few of these
documents as long as sufficient understanding can be gained

18

Function Point Analysis: Introduction and Basic Overview
as an Alternative to SLOC-based Estimation. Moore,
Tucker. 2010, TASC, Inc.

Determine the Type
of FP Count

Indentify the Scope
and the Boundaries
of the Application

Count the Data
Function Types

Count the
Transaction Function

Types

Calculate the
Unadjusted Function

Points (UFP)
Calculate the

Adjusted Function
Points (AFP)Determine the Value

Adjustment Factor
(VAF)

FP Counting Process

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 26

Functions
• Transaction Files - Made up of the processes exchanged between

the user, the internal files, and the external files
– External Inputs (EI): User inputs that provide data

– External Outputs (EO): Output to users such as reports, screens, error
message

– External Inquiries (EQ): Data sent to other applications

– Each Transaction Function is broken down into File Types Referenced
(FTRs) and then into Data Element Types (DETs)

• Data Functions – Made up of the Internal and External “resources”
that affect the system
– Internal Logical Files (ILF): Online input that results in software response

– External Interface Files (EIF): Machine readable interfaces used to
transmit information to another system (disks and tapes)

– Each Data Function is broken down into Record Element Types (RETs)
and then into Data Element Types (DETs)

Software Engineering, A Practitioner’s Approach, 3rd ed,
Roger S. Pressman, McGraw Hill, Inc., 1992

NEW!

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

FP Calculations
• Tables are used to calculate the number of UFPs

• A Value Adjustment Factor (VAF) is then computed
– Based on 14 general system characteristics (GSCs) that rate the general

functionality of the application being counted by degree of influence (0-5)

– Using the IFPUG Value Adjustment Equation: VAF = 0.65 + [(Ci) / 100], where i
= is from 1 to 14 representing each GSC

• The final Function Point Count is obtained by multiplying the VAF
times the UAF: FP = UAF * VAF

Unit IV - Module 12 27

Software Metrics, http://www.softwaremetrics.com, 2009.

EI Table Shared EO & EQ Table UFP Conversion

ILF/EIF Table UFP Conversion

NEW!

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 28

Function Points Issues
• Advantages

– Countable early in the development effort
– Language/technology independent

• Disadvantages
– Subjectivity involved in counting
– Don’t capture non-functional requirements (how SW must

perform) or technical and design constraints (how SW will be
built)

• International Function Point Users Group (IFPUG),
http://www.ifpug.org
– Provides information and training on how to count and use

function points
– Certified Function Point Specialist (CFPS) certification

Software Engineering, A Practitioner’s Approach, 3rd

ed, Roger S. Pressman, McGraw Hill, Inc., 1992

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 29

• Diseconomies of scale occur if:
– Tools are insufficient
– Cannot manage communication and

coordination problems

• Cost increases as size

increases
• The nature of the increase

depends on development
factors such as the
management of
communication and
coordination

• Economies of scale occur if:
– Project big enough to warrant

tools purchase
– Can manage communication

and coordination problems

Response of Cost to Size

Software Cost Estimation with COCOMO II,
Boehm et al., Prentice Hall PTR, 2000

5

0

2

4

6

8

10

12

14

16

0 200 400 600 800 1000

Ef
fo
rt
 (P
M
)

Th
o
u
sa
n
d
s

Size (KSLOC)

COCOMO II Scale Factors

Very Low

Low

Nominal

High

Very High

Extra High

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 30

Cost Drivers – Complexity
• Factors that relate to the software itself

– Language

– Function (intended use)

– Hardware Limitations

– Number of Modules

– Amount of Integration

– Percent of New Code

– Quality of Development (for maintenance)

Names and groupings may vary from model to model.

Software Cost Estimation with COCOMO II,
Boehm et al., Prentice Hall PTR, 2000

PRICE S Users Manual, Price Systems,
http://www.pricesystems.com

Warning: These are
generally assumed to be cost
drivers, but this is difficult to

show statistically

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 31

Complexity – Language
• Vary in complexity

from Machine to
Very High Order
(4GL)

• Models adjust for
differences in
language
complexity, length,
etc.

• Drives the amount
of design vs. code
vs. test
– Object-Oriented

languages require
more design and
less code and test

Quantitative Management of Software, Graduate School of Logistics and
Acquisition Management, Air Force Institute of Technology, Air University, 1995

Human
Programmer

Interpreter or
Compiler

Computer

Assembler

Very High-
Level Language

Spoken
Language

Higher-
Order Language

Assembler
Language

Machine
Language
1s and 0s

HOL Advantages
-Easier to read and write
-More Human-efficient
-More user-friendly
-Attuned to modern design
methods

Programming Languages

Assembler Advantages
-More machine
efficient
-Less application
dependent

6

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 32

Complexity – Function
• Function: purpose of software and required reliability
• Typical Applications include:

– Statistical/Mathematical
– String Manipulation
– Graphical User Interface (GUI)
– Data Storage and Retrieval
– Graphical Functions
– On-line Communications
– Control Functions
– Multi-media
– Real Time
– Interactive
– Operating System
– Logical Functions PRICE S Users Manual, Price Systems,

http://www.pricesystems.com

7

Warning: This is the PRICE S
model definition of the Application
(APPL) cost driver - other models
will have other unique
terminology/definitions

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 33

Complexity – Other Factors
• Hardware Limitations: hardware on which

software will run may drive the need for more
efficient code, requirements uncertainty,
schedule delays

• Number of Modules: drives integration,
standardization, communication and
coordination

• Quality of Developed Software (for
Maintenance): better software requires less
and easier-to-perform maintenance

8

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 34

Response of Cost to Complexity
• Cost increases as

complexity increases

• Effort is greatest at
the highest levels of
complexity

• Relationship is
generally thought to
be exponential

Software Cost Estimation with COCOMO II,
Boehm et al., Prentice Hall PTR, 2000

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

Very Low Low Nominal High Very High Extra High

Platform EMs by Rating

TIME

STOR

PVOL

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Very Low Low Nominal High Very High Extra High

Product EMs by Rating

RELY

DATA

CPLX

RUSE

DOCU

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 35

Cost Drivers – Capability

Software Cost Estimation with COCOMO II,
Boehm et al., Prentice Hall PTR, 2000

PRICE S Users Manual, Price Systems,
http://www.pricesystems.com

Names and groupings may vary from model to model.

Warning: These are generally
assumed to be cost drivers, but this

is difficult to show statistically

Warning: For these cost drivers, large
projects tend to regress to the mean,

relative to the underlying project database

Warning: These cost drivers are
subjective in nature and so may

introduce bias

• Factors that relate to the developers
and the development environment
– Application Experience

– Skill

– Schedule Constraints

– Tools Experience

– Development Location

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 36

Capability
• Overall Skill of Developer: Better skill requires less

effort – Increased productivity offsets higher cost
• Experience with the Application: No learning required
• Experience with Development Tools: No learning

required
• Schedule Constraints may cause developers to:

– Increase the number of programmers leading to
communication problems

– Minimize requirements analysis and design which leads to
more expensive fixes in code and test

– Limit documentation leading to higher maintenance/reuse
costs

• Development Location: Separation makes
communication and coordination more difficult

9

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

Very Low Low Nominal High Very High Extra High

Product EMs by Rating

TOOL

SITE

SCED

Unit IV - Module 12 37

Response of Cost to Capability
• Costs decrease as capability increases

• Impact is greater between lower and nominal
capability Software Cost Estimation with COCOMO II,

Boehm et al., Prentice Hall PTR, 2000

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

Very Low Low Nominal High Very High Extra High

Personnel EMs by Rating

ACAP

PCAP

PCON

APEX

PLEX

LTEX

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 38

Cost Drivers Example – Size

• For the mail order business Example
Scenario, suppose the Developer
proposes 3 solutions

• Find the cost for each given:
– “Barebones” Solution: 50,000 SLOC
– Original Solution: 100,000 SLOC
– “Bells & Whistles” Solution: 150,000 SLOC
– Nominal Complexity
– Nominal Capability
– Labor Rate $16,000/month fully burdened
– COCOMO II CER for software dev effort

50,000 SLOC 2.94 * 50 1.0997 * 1 * $16,000 = $3,473,959
100,000 SLOC 2.94 * 100 1.0997 * 1 * $16,000 = $7,445,045
150,000 SLOC 2.94 * 150 1.0997 * 1 * $16,000 = $11,628,264

Where: PM = Person Months
A = Constant = 2.94
Size = KSLOC
E = Sum of Scale Factors
EM = Effort Multipliers

• Calculations:

Software Cost Estimation with COCOMO II,
Boehm et al., Prentice Hall PTR, 2000

n

i
i

E EMSizeAPM
1

10

13

COCOMO II CER

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 39

Cost Drivers Example – Complexity

• For the Example Scenario suppose the
100,000 SLOC solution is chosen, but the
complexity of the solution varies

• Find the cost for each given:
– Low Complexity: EM = 0.6
– Nominal Complexity: EM = 1.0
– High Complexity: EM = 3.5
– Nominal Capability
– Labor Rate $16,000/month fully burdened
– COCOMO II CER for software dev effort

Low: EAF = 0.6 2.94 * 100 1.0997 * 0.6 * $16,000 = $4,467,027
Nom: EAF = 1.0 2.94 * 100 1.0997 * 1.0 * $16,000 = $7,445,045
High: EAF = 3.5 2.94 * 100 1.0997 * 3.5 * $16,000 = $26,057,657

Where: PM = Person Months
A = Constant = 2.94
Size = KSLOC
E = Sum of Scale Factors
EM = Effort Multipliers

• Calculations:

Software Cost Estimation with COCOMO II,
Boehm et al., Prentice Hall PTR, 2000

n

i
i

E EMSizeAPM
1

COCOMO II CER

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 40

Cost Drivers Example – Capability

• For the Example Scenario suppose the
100,000 SLOC solution is chosen, but the
potential programmer capability varies

• Find the cost for each given:
– Best Programmers: EM = 0.33

• Labor Rate $20,000/month fully burdened
– Average Programmers : EM = 1.0

• Labor Rate $16,000/month fully burdened
– Junior Programmers: EM = 5.22

• Labor Rate $14,000/month fully burdened
– Nominal Capability
– COCOMO II CER for software dev effort

Best: EM = 0.33 2.94 * 100 1.0997 * 0.33 * $20,000 = $3,071,081
Avg: EM = 1.0 2.94 * 100 1.0997 * 1.0 * $16,000 = $7,445,045
Jr: EM = 5.22 2.94 * 100 1.0997 * 5.22 * $14,000 = $34,005,242

Where: PM = Person Months
A = Constant = 2.94
Size = KSLOC
E = Sum of Scale Factors
EM = Effort Multipliers

• Calculations:

Software Cost Estimation with COCOMO II,
Boehm et al., Prentice Hall PTR, 2000

n

i
i

E EMSizeAPM
1

COCOMO II CER

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 41

Development Schedule
• Often have to estimate schedule as well as cost

• Issues
– Schedule driven by contract or need date not by

reality

– Developers don’t have a good understanding of
scheduling

• Schedule vs. Effort
– Schedule months = Number of calendar months to

develop

– Effort months = Number of calendar months * the
number of people working per month (Person
Months)

20

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 42

Where: TDEV = Calendar time in months
E = Sum of Scale factors
C = Constant = 3.67 B = Constant = 0.91
D = Constant = 0.28 F = D + 0.2 X (E-B)
PMNS = Person Months (un-scaled)
SCED% = The amount of schedule
compression or stretch-out as a percent of the
nominal value

Schedule Example

TDEV = [3.67*(465) (.28+.2*(1.143-.91))] * 1 = 27.28 months

TDEV = [C*(PMNS)(D+0.2*[E-B])]*SCED%

• Let’s suppose the Owner wants
to know how long the schedule
(TDEV) would be with no
compression (SCED % = 1.0)
for the 100,000 SLOC solution

COCOMO II Schedule CER

TDEV = [C*(PMNS)F]*SCED%

• Calculations:
Software Cost Estimation
with COCOMO II, Boehm et
al., Prentice Hall PTR, 2000

Person Mos vs Schedule Mos
(SCED% = 1)

0

5

10

15

20

25

30

35

0 200 400 600 800

Person Months

S
ch

e
d

u
le

 M
o

n
th

s

• Given: – 465 Person months
– 1 Person month = 152 hrs
– SCED% = 1.0 (100%)
– E = 1.1433
– COCOMO II CER for schedule

11

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 43

Where: TDEV = Calendar time in months
F = D + 0.2 X (E-B)
C = 3.67
PMNS = Person Months (un-scaled)
D = 0.28
E = Sum of Scale factors
B = 0.91
SCED% = The amount of schedule
compression or stretch-out as a
percent of the nominal value

Schedule Compression Example

TDEV = [3.67*(465) (.28+.2*(1.143-.91))] * SCED% = 18 months
SCED% = 18 / [3.67*(465) (.28+.2*(1.143-.91))] = 66%

(1-SCED%) = (1-66%) = 33%

TDEV=[C*(PMNS)(D+0.2*[E-B])]*SCED%

• Let’s suppose the Owner wants
to know the Compression
(1-SCED%) the Developer is
counting on to meet the 18
month deadline for the 100,000
SLOC solution

• Given:
– 18 month Schedule
– 465 Person months
– E = 1.1433
– COCOMO II CER for schedule

COCOMO II Schedule CER

TDEV = [C*(PMNS)F]*SCED%

• Calculations:

Software Cost Estimation
with COCOMO II, Boehm et
al., Prentice Hall PTR, 2000

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 44

Post-Deployment Software Support

• Like hardware, software has an operational phase
– Costs must be accounted for in life cycle cost (LCC)

• Operations and support (O&S) for software termed
Post-Deployment Software Support (PDSS)
– Includes software maintenance

– Also includes help desk/trouble ticket functions

• Models only account for software maintenance
– Other areas need to be addressed outside of model

Remember, how well software was originally developed has a major impact on
software support costs. You pay in development or you pay in support.

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 45

Software Maintenance
• Software doesn’t degrade or wear out like hardware

– Use may uncover bugs not addressed in testing
– When introduced to a new environment, software may “break”

• Software Maintenance includes:
– Corrective: Fixes defects in the code
– Adaptive: Modifies the software to accommodate changes in the

external environment
– Perfective: Extends the software beyond its original functional

requirements
• For Software, there is overlap between Maintenance

and Development
– Portions of code may need maintenance during development
– When additional capability is added, Software maintenance can

be thought of as a mini-development effort
• Cost drivers are the same + the quality of the code

being maintained Software Engineering, A Practitioner’s Approach, 3rd

ed, Roger S. Pressman, McGraw Hill, Inc., 1992

17

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 46

Estimating Development
Methodologies
• Waterfall

• Agile

• Other Methods

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 47

Quantitative Management of Software, Graduate School of Logistics and
Acquisition Management, Air Force Institute of Technology, Air University, 1995

Waterfall
• Traditional Development method follows a basic

System Engineering process
System

Requirements
& Design

CSCI
Requirements

Analysis

Preliminary
Design

Detailed
Design

Code and
CSU Test

CSC
Integration
and Test

CSCI
Test

System
Test

Waterfall Method
(Also called “Grand Design”)

Benefits:
• Good when there are

stable requirements –
provides structure to
development

Pitfalls:
• Doesn’t allow

prototyping
• No product to look at

until completely done
• Not attuned to

evolving needs

PRICE S Users Manual, Price Systems,
http://www.pricesystems.com

© 2002-2013 ICEAA. All rights reserved.

v1.2

• Iterative development which prioritizes evolution of requirements and
solutions through collaboration of cross-functional teams

– Each iteration is a full software development cycle
– At the end of an iteration, the product can be reviewed and evaluated by the

customer for feedback
• Agile development stresses team work and face-to-face communication

Unit IV - Module 12 48

Are Parametric Techniques Relevant for Agile Development Projects?, Minkiewicz, Arlene. PRICE Systems, 2012.

Agile

Benefits:
• Adaptable to change
• Prioritizes customer satisfaction and communication
• Focus on business need and business value
• Sustainable development pace
Pitfalls:
• Not structured enough for architecture design or re-design work
• May need to be combined with waterfall methodology to fit organizational needs

AKA Scrum

"Agility XL", Schaaf, R.J., Systems and Software
Technology Conference 2007, Tampa, FL, 2007

NEW!

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 49

Evolutionary
• Begins with a prototype containing core capability. Customer

provides feedback; prototype is adjusted and additional capability
added. Process is repeated until the system is complete

System
Requirements

and Design
Evolutionary Method

Evolutionary:
• Need general objectives,

not requirements to start
• Prototypes are paper,

software model, working
product, existing product

Benefits:
• Gets a product to customer

quickly and encourages
customer involvement

Pitfalls:
• More time consuming than

other methods for final
product

• Must have a plan for
execution even without
complete requirements

Quantitative Management of Software, Graduate School of Logistics and
Acquisition Management, Air Force Institute of Technology, Air University, 1995

CSCI
Requirements

Analysis

Preliminary
Design

Detailed
Design

Code and
CSU Test

CSC
Integration
and Test

CSCI Test

System
Test

CSCI
Requirements

Analysis

Preliminary
Design

Detailed
Design

Code and
CSU Test

CSC
Integration
and Test

CSCI Test

System
Test

CSCI
Requirements

Analysis

Preliminary
Design

Detailed
Design

Code and
CSU Test

CSC
Integration
and Test

CSCI Test

System
Test

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 50

Modeling Evolutionary
• Model as multiple Waterfalls

– Model each pass as a separate Waterfall including
the previous pass as reused and/or adapted and
deleted code

• Include all phases (system requirements through system
test) in each pass but make adjustments for reused and
adapted code

– Passes are sequential therefore may need to
adjust productivity for later passes

• Have to determine what will be done in each
pass even though requirements are not
complete

We’ll look again at our example for Evolutionary

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 51

Incremental
• Software is built in increments, complete requirements for the entire

system are defined up front and allocated to increments
Increments:
• Normally sequential;

can be concurrent
• Includes design, code

and test for
requirements in that
increment

Benefits:
• Increased

communication
• More frequent and

faster deliveries
Pitfalls:
• Requirements must

be defined
• Need a sound

architecture
• Only deliver a small

part of a system at a
time

Incremental Method

.

System
Requirements

and Design
System

Requirements
Analysis

System
Level

Increments

Increment 1
Preliminary

Design

Increment 2
Preliminary

Design

CSCI
Integration
and Test

Increment 3
Preliminary

Design

System
Test

Code and
Test

Detailed
Design

CSCI
Integration
and Test

Code and
Test

Detailed
Design

CSCI
Integration
and Test

Code and
Test

Detailed
Design

System
Level

Quantitative Management of Software, Graduate School of Logistics and
Acquisition Management, Air Force Institute of Technology, Air University, 1995

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 52

Modeling Incremental
• Model as multiple Waterfalls

– Model each increment as a separate Waterfall – use effort
estimated from CSCI design through test

• For system costs, model entire system as a single
Waterfall and use only system level costs such as
requirements analysis and system test

• Increment may be at lower level with CSCI treated as
system level

• If increments are sequential:
– May need to adjust productivity for later increments
– May need to estimate system test after each increment is

delivered- including only those parts of the code being tested

We’ll look again at our example for Incremental

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 53

Run 1: First Evolution or Pass
 Customer Order
Management System

- Core Capabilities
- Prototype Interface

 COTS Package 1
 COTS Package 2

Run 2: Second Evolution or Pass
 Reuse code

 Customer Order Mgt System
 COTS Packages

 Adapted code
 Prototype Interface from Pass 1

 New code
 Built in double checks

Evolutionary Example
• Recommendation of third consultant

Adjust factors to
reflect that is only a

prototype

Run 3: Third Evolution or Pass
Re-test code

 Customer Order Mgt System
 COTS Packages

Adapted code
 Prototype Interface from Pass 2

New code
 Auto-generated notification

Reused code treated
like COTS – included

for integration and
re-test

Adapted code – use
ESLOC or make

adjustments for reduced
design, code and test

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 54

Spirals:
• Breaks effort into 4

quadrants
• Uses other methods and

adds risk review
– Waterfall
– Incremental
– Evolutionary

Benefits:
• Emphasizes alternative

analysis
• Risk driven approach
Pitfalls:
• Hard to use contractually
• Takes longer to develop

• Breaks effort into pre-defined spirals to allow for Risk Assessment

Spiral

Software Engineering, A Practitioner’s
Approach, 3rd ed, Roger S. Pressman,
McGraw Hill, Inc., 1992

Risk
Analysis
Conceptual
Prototyping

Project
Definition

Concept of
Operation
System
Software
Spec.

System/
Product

Objectives,
Alternatives,

and
Constraints

Risk
Analysis

Demonstration
Prototyping

Engineering and
Project

Planning

Risk
Analysis

Risk
Analysis

Risk
Analysis

Software
Require-

ments Spec,
Updated

System
Software

Specification

Design
and

Development
Transition

Planning

Design
Objectives,

Alternatives,
and

Constraints

Design
Assessment

Prototyping

Software
Architecture

and
Preliminary

SDDs

CSCI
Integration

and
Test

Site
Activation

Training
Planning

Implementation
Objectives,

Alternatives,
and

Constraints

Operational
Prototyping

Simulations, Models,
and Benchmarks

Detailed
Design

Code

Unit
Test

Integration
and Test

Qualification
Testing

IOC
DELIVERY

Enhanced
Operational

Capability
Integration,

Activation
and
Training

Planning

Support
and

Maintenance

Constraints
and

Alternatives,
Objectives,

Prototyping
Operational

Updated

Updated
Detailed
Design

Code

Unit
Test

Integration
and Test

Formal
TestingUser

Acceptance
Test and
Training

FOC
DELIVERY

FCA/PCA

Product
Review

Design
Review

Rqmts
Review

System
Review

PLANNEXT PHASE

DETERMINEOBJECTIVES,
ALTERNATIVES, AND
CONTRAINTS

EVALUATE ALTERNATIVES,
IDENTIFY AND RESOLVERISKS

DEVELOP NEXT LEVELPRODUCT

1 2

34

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 55

Modeling Spiral
• Model as multiple passes – similar to

Evolutionary
– Model each spiral as a separate pass – but include

previous spiral as reused and/ or adapted code
• Include only those phases actually addressed in that

spiral and make adjustments for reused and adapted
code

– For example, in the spiral diagram, the second spiral only
has software requirements specification and system
software specification – Later spirals have just code and
test

• Spirals are sequential therefore may need to adjust
productivity for later passes

– If model or CER doesn’t accommodate spiral, may
need to add effort for risk assessment, planning,
and analysis of objectives

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 56

Development Methodologies
• A software development methodology is an overall

approach to system development
– Need to understand methodology being used for proper

modeling, calibration, and CER development

• Commonly used methodologies are
– Waterfall: conventional, “theoretical” methodology

– Agile: based on iterative and incremental development

– Other common methods
• Incremental: breaks development into clearly-defined, stand alone system

increments

• Evolutionary: built to satisfy requirements as they evolve

• Spiral: risk based analysis of alternatives approach

• More detailed information provided in the advanced topics

Guidelines for Successful Acquisition and Management of Software Intensive Systems: Weapon Systems, Command and Control
Systems, Management Information Systems, Version 3.0, Dept of the Air Force, Software Technology Support Center, 2000

15

16

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 60

Estimating Techniques
Applied to Software

• Analogy

• Parametric
2

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 61

Analogy
• Analogy: Performing a comparative analysis of similar systems

with adjustments to account for differences between new and
analogous systems

• Example:
– Let’s suppose for our mail order example that the owner chooses

the First consultants Waterfall methodology solution
– The First consultant from Waterfall methodology must estimate his

cost to set up the COTS software
– Using “ACME” Office and a new COTS package for human

resources, accounting, and inventory management functions
– Consultant just completed a similar effort using 4 COTS products

for a company twice the size of the Mail Order company
– Previous effort was:

• Set up software – 280 hours
• Load Data – 80 hours
• Implement at customer’s site – 100 hours
• Train users – 20 hours

2

12

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 62

Analogy Example

Hours

Set-up COTS product: 280 – (280 * 0.2) = 224 224

Data Load: 80 80

Implementation: 100 – (100 * 0.15) = 85 85

Training: 20 – (20 * 0.15) = 17 17

Total 406

Given a labor rate of $100K/year:

(406 Hrs / 1920 Hrs/Year) * $100,000 = $21,145

• Differences in new effort:
– 2 COTS packages reduces effort by 20%
– Data load same- company is smaller but

data is not as automated
– Engineers say the implementation is

expected to require 15% less effort
because the company is smaller

• Calculations:

Warning: The basis for this
analogy is not strong. This is
a YELLOW BOE at best. The
comparison between the two
programs has been simplified
for purposes of the example

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 63

• Most common estimating technique for software development
– Commercial models are parametric based

• Parametric based method is a mathematical relationship
between a physical (size) or performance (reliability) parameter
and the cost of a system

• Example:
– Mail order company continued – First Consultant’s waterfall solution
– Must estimate cost of custom code

• 5,000 + 7,500 + 3,000 + 1,000 + 2,500 = 19,000 SLOC

– Vendor uses COCOMO II to estimate jobs – has calibrated to his
company

• E = 1.0405 (calibrated on similar efforts)
• EM = 0.38 (skilled development team)
• No adjustments were necessary for the code itself

– Labor rate is $16,000/month

Parametric

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 64

Parametric Example - SLOC

• Mail order company continued –
First Consultant’s waterfall
solution

• Given:
– Must estimate cost of custom

code (19,000 SLOC)
– Labor rate is $16,000/month

• Calculations:

Person Months = 2.94 * 19 1.0405 * 0.38 = 23.92

Cost = 23.92 * $16,000 = $382,643

Where: PM = Person Months
A = Constant = 2.94
Size = KSLOC
E = Sum of Scale Factors
EM = Effort Multipliers

Software Cost Estimation with COCOMO II,
Boehm et al., Prentice Hall PTR, 2000

n

i
i

E EMSizeAPM
1

COCOMO II CER

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 65

Where:
TDEV = Calendar time in months
E = Sum of Scale factors
C = 3.67 B = 0.91
D = 0.28 F = D + 0.2 X (E-B)
PMNS = Person Months (un-scaled)
SCED% = The amount of schedule
compression or stretch-out as a percent
of the nominal value

Parametric Example - Schedule

• Mail order company continued – First
Consultant’s waterfall solution

• Given:
– Must estimate schedule for

development of custom code (19,000
SLOC)

– Person Months = 23.92
– E = 1, so F = 0.298
– Nominal schedule, SCED% = 1.0

• Calculation:

Software Cost Estimation with COCOMO II,
Boehm et al., Prentice Hall PTR, 2000

COCOMO II Schedule CER

Schedule Months = 3.67 * 23.92 0.298 * 1.0 = 9.45

TDEV =
[C*(PMNS)(D+0.2*[E-B])]*SCED%

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 66

Software CER Development
• Software CER development is the same as

hardware or other CER development processes
– Allows statistical inferences to be made

– Underlying assumption is that future reflects the past

– Expanded discussion in Modules 2, 3 and 8

• Important reminders when developing your CERs
– Variable selection process very important

– Stay within the relevant range

– Normalize the data

– Test relationships

– Perform regression

2

8

3

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 67

Challenges in
Estimating Software

• System Definition

• Sizing and Tech

• Quality

• COTS

• Calibration

• Databases

• Growth and Demand

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 68

Challenges – System Definition
• Obtaining System Definition

– Must work with experts
– Define notional system based on known

requirements and include risk assessment for
unknowns

– Definition often at a high level
– May include use of COTS software

• Talk to commercial vendors for inputs
• Multiple packages may be used

– For custom code, look at similar systems for
functions that are required

– Assess need for both internal and external interfaces
– Refine definition over time as system takes shape

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 69

Challenges – Sizing and Tech
• Sizing Is An Estimate Too

– Use standard estimating methods

• Rapid Technology Change
– Changes during the development process

may have to be addressed
• COTS Upgrades

– May have to reintegrate
– Simple retest to complete redo or no change at all –

depends on COTS

• Development Tool Changes
– Newer tools may simplify effort (but still require learning)
– May force change to the development process

2

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 70

Challenges – Quality
• Difficulty in Assessing Quality

– “Don’t know how good it is until you’re done”
– Good planning impacted by tight schedules and other

constraints
– Software quality measures may help

• Defects Identified
• Defects Fixed
• Failed Fixes
• Severity of Defects
• Location of Defect
• Degree of Cohesion and Coupling
• Requirements satisfied
• Depth of testing
• Adequacy of Documentation
• MTTD Errors
• McCabe’s cyclomatic complexity

Space Systems Cost Analysis Group Software Methodology
Handbook, Version 1.0, June 1995, https://sscag.saic.com/

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 71

• Using Commercial Off-the-Shelf (COTS) Software
– No code visibility

– Difficult to customize – no source code

– Effort dependent on the software architecture

– Might be too rigid to handle changing requirements

– Assumes many users will find errors - need additional testing

– Upgrades to COTS may force reintegration with custom code

– Support costs for custom code may be affected and will vendor
need support for COTS

– Still must perform requirements definition, design, and test of
the overall system

– Dealing with licensing, royalties, incompatibilities between
packages, lack of source code and understanding package

– Estimation of COTS integration not mature

Challenges – COTS

Warning:
COTS ≠ Cheap!

14

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 72

Challenges – Calibration
• Calibration of models

– Most models built on industry averages therefore
calibration may increase accuracy

– Adjusts relationships/values to achieve
representative known outcomes

– Understand how your model calibrates

– Must collect cost, technical and programmatic data

– Check content of actual data vs. content of model

– Generally models have a calibration mode but
may need to tweak the model

3

Calibration of models must be done with care but is
generally an improvement over default values

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 73

Challenges – Databases
• Database Development

– Most models don’t address major database
development

– Must estimate outside of model using other
estimating techniques

– Consider
• Number of feeder systems

• Number of data elements

• Number of uses

• Number of users

• COTS database software for development and feeder
systems

2

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 74

Warning: Beware
requirements creep!

Challenges – Growth and Demand

• Requirements and Code Growth
– Delivered project is bigger than estimated

– Increase driven by:
• Poor understanding of requirements initially

• New requirements added during development

• Underestimate of required SLOC

• Code reuse optimism

– Key is to know the track record and account for
expected growth

• Supply and Demand of Labor
– Affects personnel availability and cost of qualified

personnel

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 75

Software Cost Estimating Summary
• Understanding software cost estimation is critical

because software is part of almost every estimate
• Software cost estimating is in many ways similar to

hardware estimating
• There are a variety of software development

approaches that can affect development cost and
must be modeled accordingly to estimate

• Analogy and Parametric are commonly used to
estimate software development costs

• There are a number of commercial parametric
models available to estimate software costs

• Software provides a number of specific challenges for
the estimator

ICEAA 2016 Bristol – TRN08

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 76

Resources
• [Pressman] Software Engineering, A Practitioner’s Approach, Third Edition, Roger

S. Pressman, McGraw Hill, Inc., 1992
• [Boehm 81] Software Engineering Economics, Barry W. Boehm, Prentice Hall, 1981
• [Boehm 2000] Software Cost Estimation with COCOMO II, Boehm et al., Prentice

Hall PTR, 2000
• [ISPA 1999] Spring 2nd Edition Joint Industry/Government PARAMETRIC

ESTIMATING HANDBOOK , http://www.ispa-cost.org/PEIWeb/toc.htm
• [GSAM 2000] Guidelines for Successful Acquisition and Management of Software

Intensive Systems: Weapon Systems, Command and Control Systems,
Management Information Systems, Version 3.0, Dept of the Air Force, Software
Technology Support Center, 2000

• [AFIT] Quantitative Management of Software, Graduate School of Logistics and
Acquisition Management, Air Force Institute of Technology, Air University, 1995

• [IFPUG] International Function Point Users Group, http://www.ifpug.org
• [Taylor] Object-Oriented Technology: A Manager’s Guide, David A. Taylor,

Addison-Wesley, 1990
• [Cox] Object-Oriented Programming: An Evolutionary Approach, Brad J. Cox,

Addison-Wesley, 1987
• SEER-SEM, Galorath Inc., http://www.galorath.com
• [STSC] Crosstalk – The Journal of Defense Software Engineering,

http://www.stsc.hill.af.mil/CrossTalk/2003/07/index.html

© 2002-2013 ICEAA. All rights reserved.

v1.2

Unit IV - Module 12 77

Resources
• [Reifer] “Quantifying the Debate: Ada vs. C++,” Donald J. Reifer, Crosstalk:

The Journal of Defense Software Engineering, Vol. 9, Number 7, July 1996
• [Jensen] “Software Estimating Model Calibration,” Randall W. Jensen, Crosstalk:

The Journal of Defense Software Engineering, Vol. 14, Number 7, July 2001
• [Jones 1] Applied Software Measurement: Assuring Productivity and Quality, 2nd

ed, Capers Jones, McGraw Hill, 1996
• [Jones 2] Estimating Software Costs, T. Capers Jones, McGraw Hill, 1998
• COCOMO II, http://sunset.usc.edu
• [PRICE S] PRICE S Users Manual, Price Systems, http://www.pricesystems.com
• [MIL STD 498]Military Standard 498, “Software Development and

Documentation,” December 1994
• [IEEE] IEEE/EIA 12207.2-1997, IEEE/EIA Guide, Industry Implementation of

International Standard ISO/IEC 12207; 1995, Standard for Information
Technology, Software Life Cycle Processes – Implementation Consideration,
April 1998

• [MIL-HDBK-881A] Department of Defense Handbook Work Breakdown
Structures for Defense Materiel Items, July, 2005

• [SEI-CMM] Capability Maturity Model for Software, Version 1.1, Paulk, Mark C.
et.al., Software Engineering Institute, Carnegie Mellon University, February 1993

• [Schaaf] "Agility XL", Schaaf, R.J., Systems and Software Technology
Conference 2007, Tampa, FL, 2007

• Are Parametric Techniques Relevant for Agile Development Projects?,
Minkiewicz, Arlene. PRICE Systems, 2012.

