# Probability and Statistics 



## Acknowledgments

- ICEAA is indebted to TASC, Inc., for the development and maintenance of the Cost Estimating Body of Knowledge (CEBoK ${ }^{\circledR}$ )
- ICEAA is also indebted to Technomics, Inc., for the independent review and maintenance of CEBoK ${ }^{\circledR}$

- ICEAA is also indebted to the following individuals who have made significant contributions to the development, review, and maintenance of CostPROF and CEBoK ${ }^{\circledR}$
- Module 10 Probability and Statistics
- Lead authors: Megan E. Dameron, Christopher J. Leonetti, Casey D. Trail
- Assistant authors: Jessica R. Summerville, Jennifer K. Murrill, Sarah E. Grinnell
- Senior reviewers: Richard L. Coleman, Kevin Cincotta, Fred K. Blackburn
- Reviewers: Robyn Kane, Matthew J. Pitlyk, Maureen L. Tedford
- Managing editor: Peter J. Braxton



## Unit Index

## Unit I - Cost Estimating

Unit II - Cost Analysis Techniques

## Unit III - Analytical Methods

6. Basic Data Analysis Principles
7. Learning Curve Analysis
8. Regression Analysis
9. Cost and Schedule Risk Analysis
10. Probability and Statistics

Unit IV - Specialized Costing
Unit V - Management Applications

## Prob/Stat Overview




## Probability

- Probability is the mathematical study of the future; the chance of an event or outcome, or the range of possible outcomes
- Divided into discrete and continuous probability
- Encompasses a number of models for outcomes, called distributions, such as normal (or Gaussian), triangular, and many others
11 - There is a subset of probability called stochastic

Note: This is a layman's definition
Unit III - Module 10


## Statistics

- Statistics is the mathematical study of the past; it involves describing outcomes, or inferring from outcomes what the underlying probability model might be
- Divided into:

Note: This is a layman's definition

- Descriptive statistics: involving the portrayal of data sets themselves and derived rates, averages, and the like
- Inferential statistics: involving tests to determine if a given probabilistic model might apply, what the value of a parameter might be, or testing whether two sets of outcomes are differentiable
- Divided into:
- Parametric statistics: involving assumptions about the underlying model
- Non-parametric statistics: involving few or no assumptions about the underlying model


## Role in Cost Estimating

- Descriptive statistics are used to describe and compare cost data
- Statistics provide the basis for the development of Cost Estimating Relationships (CERs) via regression
- Inferential statistics are used to adjudge the goodness of those CERs
> - Probability is used to quantify the uncertainty present in a cost estimate


## Definitions - Population / Sample

- A population consists of all members of a particular group, e.g., all (metaphysically possible) US Navy destroyers
- A sample is a subset of the population, e.g., DDG 51



## Definitions - Random Variables

- A random variable takes on values that represent outcomes in the sample space
- It cannot be fully controlled or exactly predicted
- Discrete vs. Continuous
- A set is discrete if it consists of a finite or countably infinite number of values
- e.g., number of circuits, number of test failures
- e.g., $\{1,2,3, \ldots\}$ - the random variable can only have a positive integer (natural number) value
-     - A set is continuous if it consists of an interval of real numbers (finite or infinite length)
- e.g., time, height, weight
- e.g., $[-3,3]$ - the random variable can take on any value in this interval


## Definitions - pmf

## - Probability Mass Function

(pmf)

- The probability that the discrete random variable will take a value equal to $a$ is the height of the bar at $a$.

$$
P(X=a)=f_{X}(a)
$$

- The pmf accounts for all possible outcomes of the distribution
- The sum of heights of all bars is 1 .

Tip: Discrete distributions are the exception, not the rule, in cost estimating

## Definitions - pdf

- Probability Density

Function (pdf)

- The total area under the curve is 1
- The probability that the random variable takes on some value in the range is 1 (100\%)
- The probability that the continuous random variable will take a value between $a$ and $b$ is the area under the curve between $a$ and $b$

$$
P(a \leq X \leq b)=\int_{a}^{b} p(x) d x
$$



## Definitions - cdf

- Cumulative Distribution


## Function (cdf)

- This curve shows the probability that the random variable is less than x (a particular value of $X$ )
- The cdf reaches/ approaches 1
- The probability that the random variable is less than the maximum value (may be infinite) is 1 ( $100 \%$ )
$P(a \leq X \leq b)=F(b)-F(a)$


Cumulative Distribution Function

$=\int_{-\infty}^{b} p(x) d x-\int_{-\infty}^{a} p(x) d x=\int_{a}^{b} p(x) d x$

## Distribution Properties

- Total probability $=1$ (100\%)

$$
\sum_{i=1}^{\infty} p\left(x_{i}\right)=1 \quad \int_{-\infty}^{\infty} p(x) d x=1
$$

- cdf is sum of pmf / integral of pdf

$$
F\left(x_{j}\right)=P\left(X \leq x_{j}\right)=\sum_{i=1}^{j} p\left(x_{i}\right) \quad F(x)=P(X \leq x)=\int_{-\infty}^{x} p(t) d t
$$

- pmf is delta / pdf is derivative of cdf

$$
p\left(x_{j}\right)=P\left(X=x_{j}\right)=\sum_{i=1}^{j} p\left(x_{i}\right)-\sum_{i=1}^{j-1} p\left(x_{i}\right)=F\left(x_{j}\right)-F\left(x_{j-1}\right)
$$

$$
p(x)=\lim _{t \rightarrow 0} \frac{F(x+t)-F(x)}{t}=F^{\prime}(x)
$$

# Measures of Central Tendency 

Where is the "center" of the distribution?

## Mean

6 - The expected value of a distribution (population mean), is calculated as the sum (integral) of a random variable's possible values multiplied by the probability that it takes on those values

$$
E(X)=\sum x_{i} p\left(x_{i}\right) \quad E(X)=\int x p(x) d x
$$

$$
E(X)=2\left(\frac{1}{36}\right)+3\left(\frac{2}{36}\right)+\ldots+7\left(\frac{6}{36}\right)+\ldots+11\left(\frac{2}{36}\right)+12\left(\frac{1}{36}\right)=7
$$

$$
E(X)=\int_{-\infty}^{\infty} \frac{x}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x=\mu \int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x+\int_{-\infty}^{\infty} \frac{(x-\mu)}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x
$$

$$
=\mu+\frac{\sigma}{\sqrt{2 \pi}} e^{-\left.\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right|_{-\infty} ^{\infty}}=\mu
$$

Note that the median may not be in the distribution

Median
The median of a distribution is the value that exactly divides the distribution (pdf) into equal halves (middle value or average of two middle values); "robust" to extreme values


$$
\int_{-\infty}^{\mu} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x=\int_{\mu}^{\infty} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x=\frac{1}{2} \quad m=\mu
$$

The median of a Normal distribution - as with any symmetric distribution with finite mean - is its mean

## Mean, Median, and Skew



## Mode

The mode of a distribution is the most frequent
6 value in the distribution (discrete) or the value with the greatest probability density (continuous)

pdf is increasing to the left of the mean and decreasing to the right of the mean


The mode of a Normal distribution - as with any unimodal symmetric distribution - is its mean

# Measures of Dispersion 

## How "spread out" is the distribution?

## Variance / Standard Deviation



## Coefficient of Variation

The Coefficient of Variation (CV) expresses the standard deviation as a percent of the mean

$$
C V=\frac{\sigma}{\mu}
$$

Tip: Low CV indicates less dispersion, i.e., a tighter distribution

5 Large CVs indicate that the mean is a poor representation of the distribution

- Specify distribution using complete set of parameters, if possible
- Include other parameters, such as variance
- CV is invariant to scaling.
- e.g., CV\{1,2,3\}=CV\{100,200,300\}
- Not to be confused with the CV regression statistic


## Dispersion and CV

- These two distributions have the same mean, but different standard deviations



## Probability Distributions

- Normal
- Student's t
- Lognormal
- F
- Triangular
- Bernoulli
- Relationships between Distributions


## Normal (Gaussian)

$\Leftrightarrow$ - The normal distribution, or "bell-shaped curve," is the most prevalent distribution

- Many naturally-occurring phenomena have a normal distribution, such as the height of people
- The normal distribution is used in many statistical tests and applications
- The normal distribution is symmetric about the mean


## Normal - Parameters

- The normal distribution has two parameters:
- The mean of the distribution, $\mu$
- The standard deviation, $\sigma$
- If $X$ is a random variable with a normal distribution, we write $X \sim N\left(\mu, \sigma^{2}\right)$
$\theta$ - A standard normal is a normal distribution with $\mu=0$ and $\sigma=1$ and is denoted $\mathrm{Z} \sim \mathrm{N}(0,1)$
- If $X \sim N\left(\mu, \sigma^{2}\right)$, then $\frac{(X-\mu)}{\sigma} \sim \mathrm{N}(0,1)$


## Normal - pdf



Normal - Rules of Thumb


## Central Limit Theorem (CLT)

- The sum of a large number of independent, identically distributed (iid) random variables
7 from a population with finite mean and standard deviation approaches a normal distribution
- Sample size required depends on the parent distribution, but as a rule of thumb, distributions approach normal by $\mathrm{n}=30$
- Correlation: As long as the sum is not dominated by a few large, highly correlated elements, the CLT will still hold



## CLT - Example

- The graph below shows 3 triangular distributions and the sum of the 3 triangles

"Normality of Work Breakdown Structures," M. Dameron, J. Summerville,
R. Coleman, N. St. Louis, Joint ISPA/SCEA Conference, June 2001.

Unit III - Module 10
35

## Normal Distribution Overview



Key Facts
If $\mathrm{X} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$, then $\frac{(X-\mu)}{\sigma} \sim \mathrm{N}(0,1)$ ("standard" normal)
Central Limit Theorem holds for $\mathrm{n} \geq 30$
68.3/95.5/99.7 Rule

Limiting case of $t$ distribution
Exponential of normal is lognormal
Dist: NORM.DIST(x, mean, stddev, cum)

- cum = TRUE for cdf and FALSE for pdf Inv cdf: NORM.INV(prob, mean, stddev)


## Parameters and Statistics

- $\operatorname{Mean}=\mu$
- Variance $=\sigma^{2}$
- Skewness = 0
- $2.5^{\text {th }}$ percentile $=\mu-1.96 \sigma$
- $97.5^{\text {th }}$ percentile $=\mu+1.96 \sigma$

Applications
Central Limit Theorem

- Approximation of distributions
- Limiting case of t-distribution

Regression Analysis

- Assumed error term
- Distribution of cost - Default distribution
- Distribution of risk
- Symmetric risks and uncertainties


## Student's t Distribution

- The t distribution is similar to the standard normal, but is flatter with more area in the tails
- Parameter is the degrees of freedom, $n$
- In t tests, n is directly related to sample size
- Note that in regression, the degrees of freedom will be ( $\mathrm{n}-1$ )-k, where n is the number of data points and k is the number of independent variables
- Symmetric about the mean
- As the degrees of freedom increase, the $t$ distribution approaches normal
- The t distribution is very important for confidence intervals and hypothesis testing (inferential statistics), which will be explained in later slides



## t Distribution - pdf



## Danger of Approximating t Distribution with a Normal Distribution



NEW!

## t Distribution Overview



## Lognormal Distribution

- The lognormal distribution :
- Formed by raising e to the power of ("exponentiating") a normal random variable. $Y \sim N\left(\mu, \sigma^{2}\right) \Rightarrow e^{Y}$ is lognormal.
- Not the log of a normal. Rather, a variable is lognormal if its (natural) log is normal. Also, the (natural) log of a lognormal is normal.
- The mean of the related normaldistribution, $\mu$
- The standard deviation of the related normal distribution, $\sigma$


| Tip: If the |
| :---: |
| distribution of $X$ |
| is lognormal, |
| then the natural |
| $\log$ (In) of $X$ is |
| normally |
| distributed. |

© 2002-2013 ICEAA. All rights reserved.

## Lognormal Distribution Overview



Key Facts
If $X$ has a lognormal distribution, then $\ln (X)$ has a normal distribution
For small standard deviations, the normal approximates the lognormal distribution

- For CVs $<25 \%$, this holds

10
Excel

- Cdf = LOGNORM.DIST(x, mean, stddev)
- Inv cdf = LOGNORM.INV(prob, mean, stddev)


## Triangular Distribution

- The triangular distribution has three parameters:

18 minimum, mode, and maximum

- Can be symmetric or skewed
- Often used in risk analysis
- Especially useful for eliciting and quantifying expert opinions
- Almost never found anywhere else
"Do Not Sum 'Most Likely' Costs," Stephen A. Book, IDA/OSD CAIG Cost Symposium, May 1992.



## Triangular Distribution Overview



## Bernoulli Distribution Overview



## Relationships Between Distributions



## Hypothesis Testing

- One Tail vs. Two Tail • Critical Values
- Statistical Significance
- Test Statistics


## Hypothesis Test

- Hypothesis tests are often used to test for differences between population groups
- Two hypotheses are proposed:
"innocent until proven guilty"
$\Leftrightarrow-\mathrm{H}_{0}$ is the null hypothesis

- $\mathrm{H}_{0}$ is presumed to be true unless the data is proven to contradict the null hypothesis
$\Leftrightarrow-\mathrm{H}_{1}$ is the alternative hypothesis
- $\mathrm{H}_{1}$ may only be accepted with statistical

```
"beyond a reasonable doubt"
``` evidence contradicting the null hypothesis

\section*{Examples of Hypotheses}
- Test to see if two populations have different means

\section*{t test}
\(\mathrm{H}_{0}: \mu_{1}=\mu_{2}\) (the means are the same)
\(\mathrm{H}_{1}: \mu_{1} \neq \mu_{2}\) (the means are different)
- Test to see if two populations have different standard deviations
\(\mathrm{H}_{0}: \sigma_{1}=\sigma_{2}\) (the std devs are the same)
\(\mathrm{H}_{1}: \sigma_{1} \neq \sigma_{2}\) (the std devs are different)

Chi Square or K-S test
- Test to see if two populations are identically distributed
\(H_{0}: f(x)=g(x)\) (the distributions are the same)
\(H_{1}: f(x) \neq g(x)\) (the distributions are different)

\section*{One Tail vs. Two Tail}
- A hypothesis can be one-tailed or twotailed
- A one-tailed test makes an assumption about the direction of difference

10
- E.g., \(\mathrm{H}_{0}: \mu_{1}=\mu_{2}\)
\(H_{1}: \mu_{1}>\mu_{2}\)
- A two-tailed test makes no assumption about the direction of difference
- E.g., \(\mathrm{H}_{0}: \mu_{1}=\mu_{2}\)

We will look at this case in
\(\mathrm{H}_{1}: \mu_{1} \neq \mu_{2}\) our main example.

\section*{\(\Leftrightarrow\) Statistical Significance}
- First, we must choose a level of significance, denoted \(\alpha\)
- \(\alpha\) is the probability of incorrectly rejecting the null hypothesis
- This is called a Type I error
- Typical significant levels are \(\alpha=0.05\) and \(\alpha=0.10\)
- The customary level of significance is \(\alpha=0.05\)
- Rejecting \(\mathrm{H}_{0}\) at an \(\alpha=0.05\) level of significance means that there is less than a \(5 \%\) probability that
\(\mathrm{H}_{0}\) is true
Tip: \(\alpha=0.05\) is the most common level of significance. \(\alpha=0.10\) is occasionally used. Any other values are very rare

\section*{Test Statistic}
- A test statistic is a function of the sample data
- Calculated under the assumption that the 11 null hypothesis is true
- The decision to accept or reject the null hypothesis is based on the value of the test statistic
- Different types of hypothesis tests will have different test statistics (many of these will be discussed on later slides)

\section*{Critical Value}

A critical value \(c\) is such that the probability of getting a test statistic greater than c (in absolute value) is equal to \(\alpha\) for a one tailed test and \(\alpha / 2\) for a two-tailed test
- If the test statistic is greater than c , we reject \(\mathrm{H}_{0}\)


\(P(t<-c)=\alpha / 2\)
\(P(t>c)=\alpha / 2\)

\section*{Example Problem}
- Suppose we have historical cost growth factors from a set of DoD programs and a set of NAVAIR programs
- We wish to see if cost growth for NAVAIR programs differs from DoD-wide growth
- The hypotheses are:
\(\mathrm{H}_{0}: \mu_{\mathrm{N}}=\mu_{\mathrm{D}}\) (the means are the same)
\(H_{1}: \mu_{\mathrm{N}} \neq \mu_{\mathrm{D}}\) (the means are different)
- This is a two-tailed test as we are making no assumptions as to whether or not NAVAIR has higher or lower growth than DoD

> "NAVAIR Cost Growth Study," R.L. Coleman, M.E. Dameron, C.L. Pullen, J.R. Summerville, D.M. Snead, 34th DoDCAS and ISPA/SCEA 2001.

\section*{Example Problem Data}
- Suppose we have the following cost growth factors (CGF) for DoD and NAVAIR programs
- Average DoD CGF = 1.19
- Average NAVAIR CGF = 1.33
\begin{tabular}{|c|c|}
\hline DoD & NAVAIR \\
\hline 1.26 & 1.26 \\
1.44 & 1.92 \\
0.96 & 1.64 \\
0.93 & 1.83 \\
1.26 & 1.85 \\
0.88 & 1.03 \\
1.10 & 1.08 \\
1.23 & 1.44 \\
0.76 & 1.60 \\
1.75 & 1.24 \\
1.80 & 1.04 \\
1.56 & 1.21 \\
1.24 & 1.11 \\
1.51 & 1.31 \\
0.93 & 1.47 \\
0.49 & 1.25 \\
1.29 & 1.11 \\
0.76 & 1.15 \\
1.21 & 1.11 \\
1.50 & 0.90 \\
\hline
\end{tabular}

CEBoK

\section*{Example Test Statistic}
- For each different type of hypothesis test, there is a corresponding test statistic
- In our example problem, we will be using the twosample t-test for means
- Let \(X_{n} \sim N\left(\mu_{x}, \sigma^{2}\right)\) and \(Y_{m} \sim N\left(\mu_{y}, \sigma^{2}\right)\) where \(X\) and \(Y\) are independent
- Let \(\mathrm{S}_{\mathrm{x}}{ }^{2}\) and \(\mathrm{S}_{\mathrm{y}}{ }^{2}\) be the two sample variances
- Let \(S_{p}{ }^{2}\) be the pooled variance, where
\[
S_{p}^{2}=\frac{(n-1) S_{X}^{2}+(m-1) S_{Y}^{2}}{n+m-2}
\]
- Then, \(T=\frac{\bar{X}-\bar{Y}-\left(\mu_{X}-\mu_{Y}\right)}{S_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}}\)
has a \(t\) distribution with \((n+m-2)\) degrees of freedom

\section*{Example Test Statistic Calculation}
- Using our example problem data, we get the following:
- \(X=1.19, Y=1.33\)
- \(\mathrm{S}_{\mathrm{x}}{ }^{2}=0.12, \mathrm{~S}_{\mathrm{y}}{ }^{2}=0.09\)
- \(S_{p}{ }^{2}=(20-1)(0.12)+(20-1)(0.09)\) \(20+20-2\)
\[
=0.11
\]
- If \(\mathrm{H}_{0}\) is true, then \(\left(\mu_{\mathrm{x}}-\mu_{\mathrm{y}}\right)=0\)
- So, under \(\mathrm{H}_{0}\),
\[
\mathrm{T}=\frac{(1.19-1.33)-0}{\sqrt{0.11\left(\frac{1}{20}+\frac{1}{20}\right)}}=-1.32
\]
\begin{tabular}{|c|c|}
\hline DoD & NAVAIR \\
\hline 1.26 & 1.26 \\
1.44 & 1.92 \\
0.96 & 1.64 \\
0.93 & 1.83 \\
1.26 & 1.85 \\
0.88 & 1.03 \\
1.10 & 1.08 \\
1.23 & 1.44 \\
0.76 & 1.60 \\
1.75 & 1.24 \\
1.80 & 1.04 \\
1.56 & 1.21 \\
1.24 & 1.11 \\
1.51 & 1.31 \\
0.93 & 1.47 \\
0.49 & 1.25 \\
1.29 & 1.11 \\
0.76 & 1.15 \\
1.21 & 1.11 \\
1.50 & 0.90 \\
\hline
\end{tabular}

\section*{Example Critical Values}


\section*{Example p-Values}


\section*{Confidence Intervals}
\(\Leftrightarrow\) A confidence interval (CI) suggests to us that we are \((1-\alpha) \cdot 100 \%\) confident that the true parameter value is contained within the calculated range*
- The range is calculated using the estimated parameter value
- Confidence intervals can be calculated for a variety of different parameters and distributions

* Note this statement provides a general sense of what a confidence interval does for us in concise language for ease of understanding. as in the data set, and a \((1-\alpha)^{*} 100 \%\) confidence interval is constructed for each sample, then \((1-\alpha) \cdot 100 \%\) of the intervals will contain the true value of the parameter.

\section*{Example Cl Formula}
- Let us suppose that the Cost Growth Factors in our example problem are normally distributed
- We will find a 95\% confidence interval for the average DoD cost growth
- The formula is
\[
\left(\bar{y}-t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}, \mu, \bar{y}+t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}\right)
\]

\section*{Example CI Calculation}
- Going back to the data from our example problem, we find:
\(\bar{y}=\) mean DoD Cost Growth Factor \(=1.19\)
\(s=\) standard deviation of DoD data \(=0.34\)
\(\mathrm{n}=\) sample size \(=20\)
- We want a \(95 \% \mathrm{Cl}\), so we have \(\alpha=0.05\)
- Now, we need \(\mathrm{t}_{\alpha / 2, \mathrm{n}-1}\)
- We can find this on a table or by using the TINV function in Excel
\(-\mathrm{t}_{0.025,19}=2.093\) Tip: Use \(a\) with T.INV.2T or 1- \(\alpha / 2\) with T.INV.

\section*{Example CI Result}
- So, our confidence interval is
\(9 \quad\left(1.19-2.093 \frac{0.34}{\sqrt{20}}, \mu, 1.19+2.093 \frac{0.34}{\sqrt{20}}\right)\)
\[
(1.03, \mu, 1.35)
\]

Roughly speaking, we are \(95 \%\) certain that the true value of the DoD Cost Growth Factor mean is between 1.03 and 1.35

\section*{Prob/Stat Summary}
- A solid understanding of probability and statistics is vital to both cost and risk analysis
- Descriptive statistics are used to characterize, describe, and compare the data
- Central Tendency - mean, median, mode
- Dispersion - variance, standard deviation, coefficient of variation
- Inferential statistics are used to draw inferences from the data
- Testing multiple population groups for differences in means, variances, distributions, etc.
- Confidence intervals around estimates```

