

Prob/Stat Overview					
 Key Ideas Probability and Statistics as "Flipsides" Central Tendency and Dispersion The Bell Curve Normal (Gaussian) Distribution and the CLT Inference 	 Practical Applications Descriptive Statistics Mean, Median, Mode, CV CER Development t, F, R², CI, PI Modeling Uncertainty and Risk Normal, Triangular, Lognormal 				
 Analytical Constructs Counting and Fractions Combinations and Permutations Pascal's Triangle Distributions and Calculus pdfs and cdfs Limits (Maximum Likelihood) Estimators Hypothesis Testing Test statistic, critical values, significance Image: CEBOK Unit III - Not Statistic (Construction) 	Related Topics Stochastic Processes Markov Chains Queueing Theory Simulation Discrete Event Continuous Data Analysis Regression Analysis Design of Experiments Module 10 4				

Example Test Statistic	×1.2		.2
Calculation	4	L.	
 Using our example problem data, we 	DoD	NAVAIR	
aet the following:	1.26	1.26	
$\frac{9}{\sqrt{-110}} = 1.22$	1.44	1.92	
• A = 1.19, 1 = 1.55	0.90	1.04	
• $S_x^2 = 0.12, S_y^2 = 0.09$	1.26	1.05	
• $S^{2} = (20-1)(0.12) + (20-1)(0.09)$	0.88	1.03	
$O_p = (20 - 1)(0.12) + (20 - 1)(0.00)$	1.10	1.08	
20 + 20 - 2	1.23	1.44	
- 0 11	0.76	1.60	
- 0.11	1.75	1.24	
• If H_0 is true, then $(\mu_x - \mu_y) = 0$	1.80	1.04	
	1.56	1.21	
• So, under H_0 ,		1.11	
-(1.19-1.33)-0	1.51	1.31	
$T = \frac{(113 - 112)}{1} = -1.32$	0.93	1.47	
0.11(1 + 1)	0.49	1.20	
$\sqrt{0.11(\frac{1}{20}+\frac{1}{20})}$		1.11	
	1.21	1.15	
	1.21	0.90	
	1.50	59	I
© 2002-2013 ICEAA. All rights reserved.			

E	xampl	e t Test	¥1.2			
Using Excel						
 In Excel, use the Data Analysis Add-In to run a t test 						
	DoD	NAVAIR	Tip: The Excel default			
Mean	1.193094	1.327704	significance level is α			
Variance	0.117941	0.089239	= 0.05			
Observations	20	20				
Pooled Variance	0.10359					
Hypothesized Mean Difference	e 0	test sta	atistic for			
df	38	oure	xample			
t Stat	-1.322571					
P(T<=t) one-tail	0.096942	Outsia	al contract for a superstability of			
t Critical one-tail	1.685953		al value for a one-tailed			
P(T<=t) two-tail	0.193883	test.	In this case, we would			
t Critical two-tail	~ (2.024394		still fail to reject H_0			
Critical value for our two- tailed test. Fail to reject the null hypothesis.		Warning: do not up	Results of macros odate if your data change!			
ICEAA CEBOK	Unit III - N	lodule 10	61			
	© 2002-2013 ICEAA.	All rights reserved.				

Example p-Values Using Excel								
• The <u>p-value</u> is the smallest level of significance for which $\oint H_0$ could have been rejected								
	DoD	NAVAIR	For a two-tailed test,					
Mean	1.193094	1.327704	we could reject the					
Variance	0.117941	0.089239	null hypothesis of					
Observations	20	20	equal means at α =					
Pooled Variance	0.10359		0 194 But then there					
Hypothesized Mean Difference	0		would still be a 19.4%					
df	38							
t Stat	-1.322571		probability that we					
P(T<=t) one-tail	0.096942		incorrectly rejected					
t Critical one-tail	1.685953		H_0 .					
P(T<=t) two-tail	0.193883	5	, · · · · · · · · · · · · · · · · · · ·					
t Critical two-tail	2.024394							
Warning: Choose the level of significance ahead of time and stick with it!								
ICEAA CEBOK								
I GIUUI	© 2002-2013 ICE/	AA. All rights reserved.						

