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Cost Estimation

Chapter 7:
Single Variable Linear Regression

Gregory K. Mislick, LtCol, USMC (Ret)
Department of Operations Research  

Naval Postgraduate School

y

• Regression Analysis is used to describe a 
statistical relationship between variables

• Specifically, it is the process of estimating the 
“best fit” parameters of a specified function that 
relates a dependent variable to one or more 
independent variables (including uncertainty)

Definition of Regression

Data Regression
y = xy = a + b x

x x

y
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Basic Statistics vs. Regression
Example #1

6 - 3

• Consider the following 
data set of the cost of 
15 homes that are for 
sale in a particular 
town, in the column to 
the right:

Home # Price ($)

1 300,000

2 400,000

3 350,000

4 800,000

5 450,000

6 250,000

7 225,000

8 450,000

9 550,000

10 400,000

11 220,000

12 350,000

13 365,000

14 600,000

15 750,000

Basic Statistics vs. Regression
Example #1 (cont)

• From Chapter 5, we 
learned how to find the 
Descriptive Statistics 
from this data set. 
Results are shown:

• Questions: What if you 
wanted to buy a house 
that was specifically 
1,200 square feet in 
size? Or 2,000 sq ft?

• You cannot determine 
the cost for any house 
size from this data set! 6 - 4

Descriptive Statistics

Mean 430666.6667

Standard Error 45651.02269

Median 400000

Mode 400000

Standard Deviation 176805.6506

Sample Variance 31260238095

Kurtosis 0.194942263

Skewness 0.92371377

Range 580000

Minimum 220000

Maximum 800000

Sum 6460000

Count 15
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Basic Statistics vs. Regression
Example #1 (cont)

• Here is where 
Regression Analysis can 
help greatly.

• What was missing from 
the previous data set 
was the size of each 
home with its associated 
cost.

• Note the new data set to 
the right now showing 
the size of each home 
along with its cost.

6 - 5

Home# Price($) Square Feet

1 300,000 1400

2 400,000 1800

3 350,000 1600

4 800,000 2200

5 450,000 1800

6 250,000 1200

7 225,000 1200

8 450,000 1900

9 550,000 2000

10 400,000 1700

11 220,000 1000

12 350,000 1450

13 365,000 1400

14 600,000 1950

15 750,000 2100

Basic Statistics vs. Regression
Example #1 (cont)

• With Cost as the Dependent 
variable, and Square Feet as 
the Independent (or 
explanatory) variable, we 
calculate the following 
regression results:

Cost = -$311,221.87 + 
$450.539 * # Square Feet

• We can now answer the 
Questions from Slide #4:

• Predictions: 1200 sq ft = 
$229,424.93

• 2,000 sq ft home = 
$589,856.13 6 - 6

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.919362365 Cost vs Square Feet

R Square 0.845227157

Adjusted R Square 0.833321554

Standard Error 72183.15525

Observations 15

ANOVA

df SS MS F Significance F

Regression 1 3.69908E+11 3.69908E+11 70.99406372 1.26178E‐06

Residual 13 67735302725 5210407902

Total 14 4.37643E+11

Coefficients Standard Error t Stat P‐value Lower 95%

Intercept ‐311221.8767 90000.56578 ‐3.45799911 0.004242478 ‐505656.2781

Square Feet 450.5396012 53.47144891 8.425797513 1.26178E‐06 335.021559
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Basic Statistics vs. Regression
Example #1: Conclusions

• You are now able to come up with a “prediction” for any 
given house size due to the regression equation:

= -311,221.87 + 450.539 * X
or in words, 

Cost = -$311,221.87 + $450.539 * # Square Feet

• Clearly, this is much more helpful and more informative 
than just using descriptive statistics.

• Note: Regression is not ALWAYS better than the Descriptive 
Statistics. If the R-squared is very low, and Standard Error 
is high, the basic statistics may be preferable to the 
regression.

6 - 7

Y
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In A Linear Regression Model

• Cost is the dependent (or unknown) variable; 
generally denoted by the symbol Y.

• The system’s physical or performance 
characteristics form the model’s known, or 
independent, variables which are generally 
denoted by the symbol X.

• The linear regression model takes the following 
form:

Yi = b0 + b1Xi + ei

where b0 (the Y intercept) and b1 (the slope of the 
regression line) are the unknown regression 
parameters and ei is a random error term.
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• If the dependent variable is a cost, the regression equation 
is often referred to as a Cost Estimating Relationship, or 
CER
– The independent variable in a CER is often called a cost 

driver. A CER may have one or 
multiple cost drivers:

Regression Analysis in Cost Estimating

Cost
Cost Driver 
(multiple)

Power Cable Linear Feet

Power

Cost
Cost Driver 

(single)

Aircraft Design # of Drawings

Software Lines of Code

Power Cable Linear Feet

P
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st

Linear Ft

Examples of 
cost drivers:

Example with 
multiple (2) 
cost drivers:

CER

CER
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Three Primary Symbols in 
Regression

You will see these on the next slide and 
continually throughout the regression 
chapters:

• Yi  = any of the data points in your data set, and 
there are “i” of them

• = Y(hat) = the estimate or “prediction” of Y 
provided by the regression equation

• = Y(bar) = the mean or average of all “i” cost 
data points

6 - 10

Y

Y
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• We desire a model of the form:

• This model is estimated on the basis of historical data as:

• In words: “Actual Cost” = “Estimated Cost” + “Error of 
Estimation”

Linear Regression Model

iid and ,),0(~
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“The True Purpose of What Regression is 
Trying to Accomplish”
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The slope and intercept (b1 and b0) are chosen 
such that the sum of the squared residuals is 
minimized (Least Squares Best Fit).  You are 
trying to minimize the difference between the 
actual cost (Yi) and your predicted cost (  ). 
Solving for the Error of Estimation, we get:

Y
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Least Squares Best Fit (LSBF)

• To find the values of b0 and b1 that minimizes                 one 
may refer to the “Normal Equations.” 

• With two equations and two unknowns, we can solve for b0
and b1.

  2)ˆ( yyi






2

10

10

XbXbXY

XbnbY

XbY
n

X
b

n

Y
b

XnX

YXnXY

n

X
X

n

YX
XY

XX

YYXX
b

110

222
2

21 )()(

)()(

























 




6 - 14

Example #1 Revisited

• Let’s re-analyze the cost of the 15 homes for sale in the 
Example #1 data set.  

• After computation, we found that the average sale price of 
all the homes in your data set was $430,666.67. Thus, 

= $430,666.67
• Then you developed an estimating relationship between 

home price and its size in square feet using LSBF 
regression:

= -$311,221.87 + $450.539 * X
• Now you want to estimate the home price of a 2,000 square 

foot home:
= -311,221.87 + 450.539 * X
= -311,221.87 + (450.539 * 2,000)
= $589,856.13

Y

Y

Y
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Example #1 Conclusions

• What do these numbers mean?
• $430,666.67 is the estimate of the average sale 

price of all homes in that data set.
• $589,856.13 is the estimate for a home in the 

data set that has a size of 2,000 sq ft.

• We use regression to try to get a better 
“prediction” than just using the mean.

• Key Point: If the statistics for the regression are 
not very good, you can always go back and use 
the mean. A good regression means you prefer the 
regression equation as an estimator, instead of 
using the mean.

6 - 16

Another Example

• Recall the radio data in Ch 5 used on the mean and 
standard deviation. Now let’s look at the relationship 
between the average unit production costs and their 
associated weight:

System FY97$K Weight (lbs)
1 22.2 90
2 17.3 161
3 11.8 40
4 9.6 108
5 8.8 82
6 7.6 135
7 6.8 59
8 3.2 68
9 1.7 25

10 1.6 24

Historic Transmogrifier
Average Unit Production Cost
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The Regression Model

• The first time, we’ll crank it out by hand...

• In words, this says that the cost of the radio equals: 
$2.48k + (.0831k * the weight of the radio)

XKKY
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Standard Error

• Standard Error =        = the standard deviation about the 
regression line. The smaller the better.
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Standard Error

• For the radio data, the standard error is $5.8K.
• This means that on “average” when predicting the cost of 

future systems we will be off by +/- $5.8K in one standard 
error.
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Standard Error vs Standard Deviation: 
Similar Concept, but……..

When working with Basic 
Statistics, you use  

Standard Deviation

When performing a 
regression, you now use 

Standard Error
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Coefficient of Variation

• Coefficient of Variation (CV):

• This says that on “average”, we’ll be off by 64% when 
predicting the cost of future systems.  The smaller the 
better. In Ch5, CV was 73% with the same data, so using the 
regression is slightly better than just using univariate 
statistics.

%64
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8.5$
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Analysis of Variance

• Analysis of Variance (ANOVA)
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SSR

SSE

SST

df SS MS = SS/df F = MSR/MSE
Significance F 
P(b1=b2=0)

SSR 1 130.00 130 (MSR) 3.85 0.0852
SSE 8 269.83 33.7 (MSE)
SST 9 399.82
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Coefficient of Determination

• Coefficient of Determination (R2) represents the percentage of 
total variation explained by the regression model.  The larger the 
better (as close to 1.0 as you can)

• Since R2 always increases when independent variables are added, 
Adj. R2 helps to adjust for the number of independent variables. 
This is necessary when comparing regression models with an 
unequal number of independent variables (i.e., one independent 
variable vs. two)
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The F-Statistic

• The F statistic tells us whether the full model,    , is 
preferred to the mean,    .

• Say we want to test the strength of the relationship 
between our model and Y at the = 0.1 significance level...

Y
Y

85.3

8
8.269
1

130
:statisticTest 

)ˆ(prefer   valid)is model (The false is :

)(prefer  invalid) is model (The 0:
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SSE

df
SSR

MSE

MSR
F

YHH

YH 

= 0.10

(1-) = 0.90

0

FC = 3.46

3.85

From F Table, Pg. 7-50
with 1 numerator and 8 
denominator d.o.f.

• Since 3.85 falls within 
the rejection region, we 
reject H0 and say the 
full model is better 
than the mean as a 
predictor of cost.
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The t-statistic

• This statistic tests the marginal contribution of the 
independent variable on the reduction of the unexplained 
variation.  

• In other words, it tests the strength of the relationship 
between Y and X (or between Cost and Weight) by testing 
the strength of the coefficient b1. 

• The t-statistic is used to test the hypothesis that X and Y 
(or Cost and Weight) are NOT related at a given level of 
significance.

• If the test indicates that that X and Y are related, then we 
say we prefer the model with b1 to the model without b1, 
which is the desired result. xbbyx 10ˆ 

6 - 26

The t statistic
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• Say we wish to test b1 at the  = 0.20 significance level.  
Refer to a T-Table with 8 degrees of freedom...

-1.397 1.397 1.97

/2 = 0.10/2 = 0.10

(1 - ) = 0.80 • Since our test 
statistic, 1.97, falls 
within the rejection 
region, we reject H0
and conclude that we 
prefer the model with
b1 to the model 
without b1.

0
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F-Stats and T-Stats Summary

• There will always be only one F-stat in a regression, 
regardless of how many independent variables there are.

• There will always be one t-stat for each independent 
variable.

• Thus, in a single variable regression, there will be exactly 
one F-stat and one t-stat, and the F and t-stats will be 
virtually identical in value.

• In a two (three) variable regression, there will again be only 
one F-stat, and there will be exactly two (three) t-stats, one 
for each independent variable.

6 - 27
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There’s an Easier Way...

• Linear Regression Results (Microsoft Excel):

Regression Statistics

Multiple R 0.5702

R Square 0.3251

Adjusted R Square 0.2408

Standard Error 5.8076

Observations 10

ANOVA

df SS MS F Significance F

Regression 1 130.00 130.00 3.85 0.0852

Residual 8 269.83 33.73

Total 9 399.82

Coeffic ients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 2.477 3.823 0.648 0.535 -6.340 11.293

W eight (lbs) 0.083 0.042 1.963 0.085 -0.015 0.181

• Now the information we need is seen at a glance.
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Important Results

• From the Regression output, we can glean the following 
important results:

– R2 or Adj. R2:  The bigger the better.
– Standard Error:  The smaller the better.
– CV:  Divide Standard Error by    .  The smaller the 

better.
– Significance of F:  If less than a significance level, then 

we prefer the model     to the mean     .  Else, vice versa.
– P-value of coefficient b1:  If less than a significance 

level, then we prefer the model with b1, else we prefer it 
without b1.

• These statistics will be used to compare other linear 
models when more than one cost driver may exist.

• Discuss Regression Hierarchy

Y

YY

Regression Hierarchy

• Consider there are four cars in a lot that you can use, and 
you need to narrow down your choices and pick the “best” 
car for your needs.

• Phase I of the Hierarchy: This is similar to trying each car, 
to see which one actually starts and drives and brakes. The 
ones that do so are considered “good” or “functional” cars. 
Let’s say one of the four does not start, so it is now 
excluded from further consideration (yes, even if it’s a 
Mazzerati) (or Cost vs Weight)

• Phase II of the Hierarchy: Now that you have identified 
which cars start and drive, we test the “performance 
characteristics” (ANOVA), to see which one handles the 
best, drives the fastest, etc. From those metrics, we pick 
our “best” car that we intend to use.

6 - 30
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A Note About Regression

• Ensure that when making a prediction using a regression 
equation, that the input of the independent variable (say 
Weight) is within the range of the data. If the smallest value 
for Weight was 100 lbs, and the largest value was 500 lbs, 
ensure that what you are trying to predict falls within the 
range of 100-500 lbs.

• Two Examples:
– You are predicting the cost of a house based on square 

feet, with historical square foot data values of between 
1000 to 3000 sq ft. What if predicting the cost of a 3200 
sq ft house?

– You are predicting the cost of an aircraft with maximum 
speeds of between 500 knots and Mach 2. What if 
predicting the cost of an aircraft with a max speed of 
Mach 2.3?

6 - 31
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Treatment of Outliers

• In general, an outlier is a residual that falls greater than 2
from    or    .

• The standard residual is 

• Recall that since 95% of the population falls 
within 2 of the mean, then in any given data set, 
we would expect 5% of the observations to be 
outliers.

• In general, do not throw them out unless they do 
not belong in your population.

Y Y

Y
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YY
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Outliers with respect to X

• All data should come from the same population.  You 
should analyze your observations to ensure this is so.

• Observations that are so different that they do not qualify 
as a legitimate member of your independent variable 
population are called outliers with respect to the 
independent variable, X.

• To identify outliers with respect to X, simply calculate    
and SX.  Those observations that fall greater than two 
standard deviations from    are likely candidates.

• You expect 5% of your observations to be outliers, therefore 
the fact that some of your observations are outliers is not 
necessarily a problem.  You are simply identifying 
observations that warrant a closer investigation.

X

X

6 - 34

Example Analysis of Outliers 
with Respect to X

600 823 -223 49785 -0.59
925 823 102 10379 0.27
450 823 -373 139222 -0.99
420 823 -403 162510 -1.07

1000 823 177 31285 0.47
800 823 -23 535 -0.06
790 823 -33 1097 -0.09

1600 823 777 603535 2.06

SX 377.65

Range X XXi 
2)( XXi  X

i

S

XX )( 
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Outliers with Respect to Y

• There are two types of outliers with respect to the 
dependent variable:
– Those with respect to Y itself.
– Those with respect to the regression model,   .

• Outliers with respect to Y itself are treated in the same way 
as those with respect to X.

• Outliers with respect to     are of particular concern, 
because those represent observations our model does not 
predict well.

• Outliers with respect to     are identified by comparing the 
residuals to the standard error of the estimate (SE).  This is 
referred to as the “standardized residual.”

• Outliers are those with residuals greater than ±2 std errors.

Y

Y

Y

Errors Standard of # 
)ˆ(
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YYi
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Remedial Measures

• Remember: the fact that you have outliers in your data set 
is not necessarily indicative of a problem.  The trick is to 
determine WHY an observation is an outlier.

• Possible reasons why an observation is an outlier.
– Random Error: No problem
– Not a member of the same population:  If so, you want to 

delete this observation from your data set.
– You’ve omitted one or more other cost drivers.
– Your model is improperly specified.
– The data point was improperly measured (it’s just plain 

wrong).
– Unusual event (war, natural disaster).
– Requires normalization.
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Remedial Measures

• Your first reaction should not be to throw out the 
data point!

• Assuming the observation belongs in the sample, 
some options are:

– Dampen or lessen the impact of the 
observation through a transformation of the 
dependent and or independent variables.

– Develop two or more regression equations (one 
with and one without the outlier)

• Outliers should be treated as useful information.

Residual Analysis

• So what if you do a regression, and you find that 
the f-stats are high, the t-stats are high, R-
squared’s are low, and Std Errors and CV’s are 
high? Not a good regression!

• Perhaps you are trying to fit a straight line to 
data that is not linear.

• How to tell? Plot the original data and see if it is 
linear or not.

• You can also check the residual plots.

6 - 38
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Model Diagnostics

• If the fitted model is appropriate for the data, there will be 
no pattern apparent in the plot of the residuals versus Xi, 

, etc. 
– Residuals spread uniformly across the range of X-axis 

values

iŶ

0

ei

Xi
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Model Diagnostics

• If the fitted model is not appropriate, a relationship between 
the X-axis values and the ei values will be apparent.

0

ei

Xi

0

ei

t0

ei

iŶ

0

ei

Xi

Nonnormal Distribution

}

} Curvilinear
Relation

Heteroscedasticity

Influential
Relation



ICEAA 2016 Bristol – TRN 05

6 - 41

• Data transformations should be tried when residual analysis 
indicates a non-linear trend:

X=  1/X   X=  1/Y   X=  log X   Y=  ln Y   Y=  log Y

– CER are often non-linear when the independent variable 
is a performance parameter:

Y = aX b

log Y = log a + b log X   Y= a + bX
» log-linear transformation allows use of linear 

regression
» predicted values for Y are in “log dollars” which must 

be converted back to dollars

Non-Linear Models

6 - 42

Other Concerns

• When the regression results are illogical (i.e., cost 
varies inversely with a physical or performance 
parameter), omission of one or more important 
variables may have occurred or the variables 
being used may be interrelated 

– Does not necessarily invalidate a linear model

– Additional analysis of the model is necessary 
to determine if additional independent 
variables should be incorporated or if 
consolidation/elimination of existing variables 
is required
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Assumptions of OLS

(1) Fixed X
– Can obtain many random samples, each with the same 
X values but different Yi values due to different ei values

(2) Errors have mean of 0
– E[ei] = 0

(3) Errors have constant variance (homoscedasticity)
– Var[ei] = 2 for all I

(4) Errors are uncorrelated
– Cov[ei,ej] = 0 for all i  j

(5) Errors are normally distributed
– ei ~ N(0, 2)
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Simple Non-Linear Regression

3

Many Cost Estimating Relationships are not Linear

• When we plot cost data against a cost driver, it is often appears to be a curve
• For example:

• Projecting curves is not as “Straight Forward” as is it for Straight Line Relationships

• This is where Logarithms often come to the rescue, where we express a number as 
the power to which a base value must be raised to get that number

• Why such glum faces? Does it bring back bad memories of school?

• A Learning Curve relationship curves down sharply from 
top-left to bottom-right

• Escalation (normally) causes cost to curve up from the 
bottom left to the top-right

Logs: Just a Question of Perspective

4

1                                            2                         3                 4              5         6        7 8      9    10
If you are not happy 
about using Logs, just 
think of them being a 
question of perspective

Consider a row of street 
lamps on a straight road:
• They are equally 

spaced and yet they 
appear to get closer 
together and smaller 
as they disappear 
into the distance

The same is true with 
integers:
• They are equally 

spaced but in a Log 
perspective they get 
closer together 

Log Scale



ICEAA 2016 Bristol – TRN 05

Logs: Just a Question of a Different Perspective

5

In essence, relative to the Arithmetic Mean of the data (simple average):
• Logs stretch the relative difference between equally spaced smaller values
• and compress the relative difference between equally spaced larger values

Consider, the integers from 1 to 10, their average is 5.5

1                                            2                         3                 4              5         6        7 8      9    10

1 2 3 4 5 6 7 8 9 10

Mean

Scale CompressedS c a l e   S t r e t c h e d

In certain circumstances we can use this property 
to unbend curves, giving us a straight line

Compress Scale

Stretch Scale

Mean

Linear Transformations: Summary

6

Linear
Function

y = m x + c

Logarithmic
Function

y = m log(x) + c

Power
Function

log(y) = m log(x) + c

Exponential
Function

log(y) = m x + c

Linear x Logarithmic x
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x-Axis Scale

Why is this important?

If by plotting any of the 
combinations of:

x or Log(x)

against

y or Log(y)

we get a straight line, 
then we can perform a 
linear regression on the 

transformed data
Curves and their 
transformations can 
have positive or 
negative gradients 

There are three groups of functions that allow us to transform a 
relationship into a linear form
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Linear Transformations

Logarithmic

y = a + b ln x

Exponential

y = a e b x

ln y = ln a + b x

Power

y = a x b

ln y = ln a + b ln x

Adapted from

7

X

ln Y

X

Y

ln X

Y

X

ln Y

X

Y

X

Y

X

Y

X

Y
X

Y

ln X

ln Y

ln X

ln Y

ln X

ln Y

ModelUnit Space Log Space

b < 0

b > 0

b < 0

b > 0

b > 1

b < 0 b < 0

b > 1

0 < b < 1
0 < b < 1

It doesn’t matter if we take 
Natural Logs (LN) or Common 

Logs (base 10) or any other base

Function Types – A Word of Caution

8

We can use Logarithmic Transformation to convert many curved relationships 
into linear ones 
However, there are occasions when they should not be used …

Time is sometimes used as a secondary measure or indicator of technology, 
or project maturity:

We can take the Log of Elapsed Time,
but we should NEVER take the Log of a Date!
It presupposes that we know when time began … ask Stephen Hawkings

We can use a Binary Switch in Multi-variate Regression to signify whether a 
cost driver or cost element driver is active (1) or inactive (0)

NEVER take the Log of a Binary Switch!
Log(0) implodes – it can’t be done
Taking the Log of any Numerical Categorical Variable (zero or not) is 
highly questionable from a logic perspective

Creates a #NUM! error
in Microsoft Excel
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Adapted from

9

Determining the Appropriate Regression Model

• A scatter plot should always be performed first to determine what kind of 
model should be tested, if any at all:
– Specifying the wrong function for a model can lead to an incorrect interpretation 

of the results
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Linear

Non-linearConstant

Data

Choosing the Appropriate Function Type

• Plot the data in Microsoft Excel with standard linear axes

• Right-click on the data. Select “Add Trendline…”

• Select the “Linear” option (default)

• Select “Display R-Squared Value on Chart”
– Note the R-Squared Value

– Note the scatter pattern

• Change the Trendline Option, noting the changes in the      
R-Squared Value and scatter pattern of each:
1. Exponential … only if all the y-values are positive

2. Logarithmic … only if all the x-values are positive

3. Power … only if all the x-values and y-values are positive

(We can’t take the Log of a non-positive number)

• As a general rule we are looking for the highest R-Squared Value 
and an “even” scatter around the Trendline (Homoscedastic) 10
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Non-linear Regression Function Summary

• Before we can perform our Regression we must transform the data based 
on the Function Type

• Logarithmic => take the log of the x data

• Exponential => take the log of the y data

• Power => take the log of both x and y

Note: Other functions can be used to transform data (e.g.,  x, sin x, etc.) but logarithms are 
the most common

• Of these, Power Functions are the most common (e.g. Learning Curves, 
Cost/Weight CERs)

• Time-based relationships might be Exponential Functions (e.g. escalation)

• Logarithmic Functions are less common in practice (but never say “never”)

• We perform the Regression on the Transformed Data, and transform the 
output back to “real world” space afterwards

Adapted from:

It doesn’t matter which 
base of Logs we use 
LOG10 or LN, so long as 
we are consistent when
transforming back

LOG10 => Transform by raising 10 to the power of the Output
LN Transform by raising “e” to the power of the Output

11
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Example of Non-Linear Regression

12

Cost £ Weight Kg
5123 10
6527 21
6388 34
9253 42
7722 59

9182 63
8348 71

10702 85
11092 97

Plot the data as a scatter 
diagram and try each 
function type Trendline in 
turn

Look for the best (highest) 
R2

In this case the Power 
Function appears to be 
marginally better than the 
Linear or Exponential 
Functions

Linear Scale Log Scale

Linear Scale Log Scale
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Example of Non-Linear Regression
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Cost £ Weight Kg
5123 10
6527 21
6388 34
9253 42
7722 59

9182 63
8348 71

10702 85
11092 97

One criterion for “Best Fit” 
was that the line passed 
through the Arithmetic 
Mean  of the data

The “Best Fit” now passes 
through the Arithmetic 
Mean of the Transformed 
Data – equivalent to the 
Geometric Mean  of the 
untransformed raw data Linear Scale Log Scale

Linear Scale Log Scale
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Example of Non-Linear Regression
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Cost £ Weight Kg
5123 10
6527 21
6388 34
9253 42
7722 59

9182 63
8348 71

10702 85
11092 97

Regression

Log Cost £ Log Wgt

3.7095 1.0000

3.8147 1.3222

3.8054 1.5315

3.9663 1.6232
3.8877 1.7709

3.9629 1.7993
3.9216 1.8513

4.0295 1.9294
4.0450 1.9868

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.907072211

R Square 0.822779996

Adjusted R Square 0.797462853

Standard Error 906.6035088
Observations 9

ANOVA

df SS MS F Significance F
Regression 1 26711840.55 26711840.55 32.49892701 0.000734755
Residual 7 5753509.455 821929.9221
Total 8 32465350

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 4896.171288 662.8970207 7.386020958 0.000151211 3328.668916 6463.673659
Weight Kg 62.80385562 11.0167069 5.700783017 0.000734755 36.7534833 88.85422794

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.911100819

R Square 0.830104702

Adjusted R Square 0.805833945

Standard Error 0.049035414
Observations 9

ANOVA

df SS MS F Significance F
Regression 1 0.082237376 0.082237376 34.20184657 0.000631733
Residual 7 0.016831303 0.002404472
Total 8 0.099068679

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 3.381360755 0.090973005 37.16883662 2.65273E-09 3.166243781 3.596477728
Log Wgt 0.317954346 0.054367578 5.848234483 0.000631733 0.189395452 0.44651324

Log 
Transform

Regression

Model is significant by all measures. 
R-Square, F and t Statistics have all 
increased, and the Standard Error 
and CV have decreased.

Model is significant by all measures: 
R-Square, F and t Statistics are all 
high, and the CV is low.

CV = 11%

CV = 1.3%

But is it a better model?
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Stat
Linear 
Model

Power - Fit 
Space

Power - Unit 
Space 

How to Calculate

SSE 5753509.5 0.017 6339427.3

R2 0.823 0.830 0.805

Adj R2 0.797 0.806 0.777

SEE 906.6 0.049 951.6

CV 11.0% 1.3% 11.5%

Adapted from:

15

Unit-Space Goodness of Fit Comparison

These differences are not overwhelming, but the routine serves as a reference 
for comparison of more complicated, multivariate models across types.
In this case the Linear Model is the better option

Warning: It is unusual for a power or exponential 
model to have better statistics in unit space than 
in fit space; generally the unit space conversion 

causes these stats to worsen
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Just as we wouldn’t compare linear measurements in different scales (imperial 
v metric) so too we cannot compare between Linear and Log Scales

Least Squares Multivariate Linear Regression

16
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Least Squares Multivariate Linear Regression

17

How does it differ from Simple Linear Regression? 

• Simple Linear Regression allows the “best fit” straight line to be determined through 
a set of data points. It assumes that the value of the dependent variable (e.g. y) 
varies directly to a change in the independent variable (e.g. x)

• Multi-Variate Linear Regression allows the dependent variable (y) to vary in portion 
to changes in more than one independent variable (e.g. x1, x2, x3 etc)

• Just as one dependent and one independent variable defines a straight line, the 
addition of a second independent variable defines a 2-D plane

• The addition of third independent variable defines a 3-D surface

• The addition of other independent variables … is impossible to illustrate with a 
physical analogy but can be done 

General Equation
• Multi-Variate Linear Regression allows us to find solutions of the form:

y = m1 x1 + m2 xc + … + mn xn + c

Least Squares Multi-Variate Linear Regression

18

When should we consider Multi-Variate linear regression techniques?

 When we suspect that the value of dependent variable (e.g. cost or effort) is 
dependent on the value of more than one other cost driver variable

+ Actual data is characterised by variations:

– some of which are a consequence of a change in the value of other cost driver 
variables

– others are due to errors of a more random or unpredictable nature

+ When you need to interpolate or extrapolate to a later or earlier value in the 
sequence or for a different combination of cost driver variable values

When are regression techniques not appropriate?

 When you have less data than variables (too many cost drivers, too little data)

 When you suspect that the data is from different populations but you do not have 
any differentiating term or factor (“apples and oranges”)
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y x1 ŷ  SUMMARY OUTPUT
Cost £ Weight Kg Model £ Error £
5123 10 5,524.21    -401.21 Regression Statistics
6527 21 6,215.05    311.95 Multiple R 0.907072211
6388 34 7,031.50    -643.50 R Square 0.822779996
9253 42 7,533.93    1719.07 Adjusted R Square 0.797462853
7722 59 8,601.60    -879.60 Standard Error 906.6035088
9182 63 8,852.81    329.19 Observations 9
8348 71 9,355.25    -1007.25
10702 85 10,234.50  467.50 ANOVA
11092 97 10,988.15  103.85 df SS MS F Significance F

Regression 1 26711840.55 26711840.55 32.49892701 0.000734755
Average 8259.667 53.556 8259.667 0.00 Residual 7 5753509.455 821929.9221

Total 8 32465350
CV 11.0%

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 4896.171288 662.8970207 7.386020958 0.000151211 3328.668916 6463.673659
Weight Kg 62.80385562 11.0167069 5.700783017 0.000734755 36.7534833 88.85422794

Simple Linear Regression with One Cost Driver

19





Suppose we have a product with two potential cost drivers 
– weight and number of attachment interfaces

A regression against the Weight Cost Driver gives a result 
that is statistically significant on all 3 measures:
R-Square,
F and t Statistics


The Coefficient of Variation, 

CV = 17%,         Std Err.
Average

?
…but the scatter is not brilliant

For a Simple Linear Regression these are always the same

y x1 ŷ  SUMMARY OUTPUT
Cost £ Attachments Model £ Error £
5123 1 6,290.67    -1167.67 Regression Statistics
6527 2 8,259.67    -1732.67 Multiple R 0.846469466
6388 1 6,290.67    97.33 R Square 0.716510557
9253 3 10,228.67  -975.67 Adjusted R Square 0.676012065
7722 1 6,290.67    1431.33 Standard Error 1146.64629
9182 2 8,259.67    922.33 Observations 9
8348 2 8,259.67    88.33
10702 3 10,228.67  473.33 ANOVA
11092 3 10,228.67  863.33 df SS MS F Significance F

Regression 1 23261766 23261766 17.69227749 0.004004501
Average 8259.667 2.0 8,259.67    0.00 Residual 7 9203584 1314797.714

Total 8 32465350
CV 13.9%

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 4321.666667 1011.246975 4.273601577 0.003684291 1930.447545 6712.885788
Attachments 1969 468.1163876 4.206218906 0.004004501 862.0806372 3075.919363

Simple Linear Regression with One Cost Driver

20





Suppose we have a product with two potential cost drivers 
– weight and number of attachment interfaces

A regression against the Attachments Cost Driver gives a 
result that is statistically significant on all 3 measures:
R-Square,
F and t Statistics


The Coefficient of Variation, 

CV = 13.9%,         Std Err.
Average

?
…but the scatter is not brilliant
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Watch Out for Collinearity Between Cost Drivers

21

Where we have two or more Cost Drivers, we need to ensure that any two are 
independent of each other

We do this by creating a scatter plot for each pair and measuring their Coefficient of 
Determination, R2

Looking for a low value, certainly less than 0.5 or 50%

In our example we have a R2 value of 0.36 which is equivalent to 60% Correlation

So the two are not totally independent of 
each other; there is an element of 
correlation but not sufficient necessarily 
to stop us from trying to create a 
Regression Model that uses both

If they were too closely correlated then 
Regression would reject one of them as 
being insignificant through the t-statistic 
P-values

Multivariate Linear Regression with Microsoft Excel

22

The result is statistically significant on all 3 measures:
Adjusted R-Square,
F and t Statistics

… why Adjusted R-Square this time, and not just the 
simple R-Square?






The Coefficient of Variation, 
CV = 5.2%,         Std Err.

Average

Columns 
must be 

Contiguous!
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Adjusted R-Square

23

Why do we need to use Adjusted R-Square, and what is it?

• Suppose we believe that weight is the primary cost driver

• But we are unhappy with the residual variation in that simple relationship as we 
believe that there is at least one secondary driver at work. 

• If we add another variable to the mix, Least Squares Regression will attempt to fit 
any additional variable to the residual error

… but in the process it will even sacrifice some of the best fit relationship already 
lined up for the primary driver in order to minimise the total error or residual

• The Regression routine will always find the Least Squares Best Fit – even where 
the relationship is tenuous

• Regression just a dumb calculation – no artificial intelligence involved

… the estimator/analyst has to provide that.

• Every time we add a variable we reduce the degrees of freedom for the Fit Criteria 
by one

• Adjusted R-Square is a statistic that compensates for this reduction

R2 and Adjusted R2

R2 or R-Square expresses the percentage of total variation in the data that can be 
explained by the model

	
	

	
	

Adjusted R2, or R2
a, makes an adjustment to the Unexplained Variation to account of 

the degrees of freedom within the model (n - 1 - k)

• Can be used to compare coefficients of determination between models with 
different numbers of variables, k

• Can be used as justification for including near-significant variables in models if 
those variable improve the model’s performance

Adapted from

24

Penalty (> 1)

SST = SSR + SSE
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Multivariate Linear Regression with Microsoft Excel

25

Regression Model
ŷ = m1 x1 + m2 x2 + c

m1 c  m2

Regression Error
 = y - ŷ

<<< Looking for an even scatter across model (homoscedasticity)

Accepting / Rejecting the Multivarate Model

26

Use the F and t-Statistics to Guide us

• The F-Statistic tells us whether the model overall is valid

• Looking for a High F => Low Sig-F

• The t-Statistic tells us whether each parameter is significant in terms of its 
contribution overall to the model

• Looking for a High t => Low P-Value

• If one or more parameters are not significant, reject the least significant 
first (highest P-Value) and re-run the regression model

• Repeat until all remaining parameters are significant

• This procedure is referred to as Stepwise Regression

• Rejecting the Intercept parameter is a debatable issue

• CEBoK’s advice is not to reject the intercept

Adapted from
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Multivariate Models Using Linear Transformation
Selecting the Best Model

27

Combining Different Functional Transformations

28

The function type of the dependent (y) variable dictates which Function Types 
we can combine

Linear
Function

y = m x + c

Logarithmic
Function

y = m log(x) + c

Power
Function

log(y) = m log(x) + c

Exponential
Function

log(y) = m x + c

Linear x Logarithmic x
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x-Axis Scale

We can combine Exponential 
and Power Functions

We can combine Linear and 
Logarithmic Functions

We cannot combine Linear and Exponential

or Logarithmic and Power Functions
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x-Axis Scale - Attachments

Cost Driver 2
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Cost Driver 1

Combining Different Functional Transformations

29

Example:







Example: Multivariate Linear Model

30

y x1 x2
Cost £ Weight Kg Attachments
5123 10 1
6527 21 2
6388 34 1
9253 42 3
7722 59 1
9182 63 2
8348 71 2
10702 85 3
11092 97 3

Average 8259.667 53.556 2.0

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.982518575
R Square 0.96534275
Adjusted R Square 0.953790333

Standard Error 433.0434464
Observations 9

ANOVA

df SS MS F Significance F
Regression 2 31340190.24 15670095.12 83.56197418 4.16277E-05
Residual 6 1125159.759 187526.6265
Total 8 32465350

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 3750.686831 391.6911862 9.575622231 7.41284E-05 2792.253025 4709.120636
Weight Kg 43.18334894 6.579372295 6.563445113 0.000599257 27.08420489 59.28249298
Attachments 1098.135796 221.0418144 4.968000283 0.002531905 557.2659612 1639.005632

Cost = c + m1 x Weight + m2 x Attachments






The result is statistically 
significant on all 3 measures:

Adjusted R-Square,
F and t Statistics

The Coefficient of 
Variation, CV = 5.2%
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Example: Multivariate Transformed Non-linear Model

31

y x1 x2
Log Cost £ Log Wgt Attachments

3.7095 1.0000 1
3.8147 1.3222 2
3.8054 1.5315 1
3.9663 1.6232 3
3.8877 1.7709 1
3.9629 1.7993 2
3.9216 1.8513 2
4.0295 1.9294 3
4.0450 1.9868 3

Average 3.905 1.646 2.000

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.988416994
R Square 0.976968154
Adjusted R Square 0.969290872

Standard Error 0.019501003
Observations 9

ANOVA
df SS MS F Significance F

Regression 2 0.096786945 0.048393472 127.2544294 1.22176E-05
Residual 6 0.002281735 0.000380289
Total 8 0.099068679

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 3.411275705 0.036501084 93.45683358 1.01124E-10 3.321960771 3.500590639
Log Wgt 0.227564971 0.026096771 8.720043179 0.000125755 0.163708473 0.29142147
Attachments 0.059435938 0.009609062 6.18540461 0.000821697 0.03592341 0.082948467

Log(Cost) = c + m1 x Log(Weight) + m2 x Attachments






The result is statistically 
significant on all 3 measures:

Adjusted R-Square,
F and t Statistics

The Coefficient of 
Variation, CV = 0.5%

=> Cost = 10(c+m2 x Attachments) x Weightm1

Stat
Linear 
Model

Power – Exp
Fit Space

Power – Exp
Unit Space 

How to Calculate

SSE 1125159.8 0.002 797338.5

R2 0.965 0.977 0.975

Adj R2 0.954 0.969 0.967

SEE 433.0 0.020 364.5

CV 5.2% 0.5% 4.4%

Which is the Better Model?

Adapted from:

32

The Non-linear Model is the better model in this case ... 
Based on the Sum of Squares Error (SSE) in Unit Space

…but also all other measures in Unit Space
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Adapted from

33

Steps for Selecting the “Best Model”

• Reject all non-significant models first
– Where the F statistic is not significant

• Strip out all non-useful variables and made the model “minimal”
– Variables that do not incrementally contribute to goodness of fit, overall 

model significance, (adjusted) variation explained, etc
– Use t-Statistic and Adjusted R-Squre

• Select “within functional type” e.g. Linear or Power, based on:
– Use R2 for Simple Linear Regression (Ordinary Least Squares)
– When comparing multivariate regression models, select based on 

Adjusted R2, which compensates for the number of independent 
variables

• Select “across functional type”, Linear v Power, based on:
– Sum of Squares Error (SSE) across Single Variable Models
– Standard Error Estimate (SEE) for Multivariate models

Unit III - Module 8

34

Selecting “Within Type”

• Start with only significant, “minimal” models 

• In choosing among “models of a similar form”, R2 is the criterion

e.g. linear models with other linear models

e.g., power models with other power models

Tip: If a model has a lower R2, but has variables that 
are more useful for decision makers, retain these, and 

consider using them for CAIV trades and the like

R2 = 0.95 R2 = 0.79 R2 = 0.90

Weight
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Select the 
model with the 

highest R2

Select the 
model with the 

highest R2
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Unit III - Module 8
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Selecting “Across Type”

• Start with only significant, “minimal” models 

• In choosing among “models of a different form”:

– the SSE in unit space is the criterion 

– SEE if degrees of freedom change; 

– CV if dependent variables changes)

• “Models of a different form” means that you will compare:

– e.g., linear models with non-linear models

– e.g., power models with logarithmic models

• We must compute the SSE by:

– Computing Ŷ in unit space for each data point

– Subtracting each Ŷ from its corresponding actual Y value

– Sum the squared values, this is the SSE

Warning: We cannot use R2 to compare 
models of different forms because the R2 from 
the regression is computed on the transformed 
data, and thus is distorted by the transformation

Unit III - Module 8
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Option 2. Linear ModelOption 1. Power Model

Suppose we want to choose between the following models for a method of 
estimating cost:

Selecting “Across Type” Example

We choose the power model because it 
has the lower unit-space SSE (SEE if the 

two had different number of variables)

y = 0.35x + 0.13

R2 = 0.86
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What about Polynomials?
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We can use the Polynomial Trendline in Microsoft Excel to create a Best Fit 
Curve through the data (up to a power of 6)

Just because we can, it doesn’t mean we should!

Polynomials should be used with great caution

Only use them where there is a sound rationale and 
reasonable justification for the model to be a 
Polynomial

For example, the Cumulative of a Straight Line  
is always a Quadratic through the origin

If you do get tempted to use them, do not extrapolate 
them outside the data range

They might turn on you unexpectedly!

R² = 0.9024

£4,000

£5,000

£6,000

£7,000

£8,000

£9,000

£10,000

£11,000

£12,000

£13,000

 -  20  40  60  80  100

C
os

t

Weight

Power Function

Polynomial Regression … When it has been deemed valid
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Each power term is used as a substitute Semi-independent variable:

e.g.x term becomes x1 in regression
x2 term becomes x2
x3 term becomes x3

The Intercept stays as the Intercept

• Then run the regression as a Multivariate Linear Model

	x6 	x5 	x4 	x3 	x2 	x1

• The Coefficient Parameters can then be extracted and tested for 
significance
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Multivariate Linear Regression and Non-Linear 
Regression

Any more questions?

39


