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Case Study: A Parametric Model for the Cost per Flight Hour 

By Michail Bozoudis 

 

Acronyms 

AAP  Allied Administrative Publication 
AFMC  Air Force Materiel Command (US Air Force) 
AIC  Akaike Information Criterion 
ALCCP Allied Life Cycle Cost Publication 
CALS  Continuous Acquisition and Lifecycle Support 
CAPE  Cost Assessment and Program Evaluation (US) 
CER  Cost Estimating Relationship 
CI  Confidence Interval 
COTS  Commercial-Off-The-Shelf 
CTOL  Conventional Takeoff and Landing 
CPFH  Cost per Flight Hour 
CRUA  Cost Risk and Uncertainty Analysis 
DAU  Defense Acquisition University (US) 
DoD  Department of Defense (US) 
DoDCAS DoD Cost Analysis Symposium 
FAA  Federal Aviation Administration 
HAF  Hellenic Air Force 
ISPA  International Society of Parametric Analysts 
JSF  Joint Strike Fighter 
LCC  Life Cycle Cost 
LCM  Life Cycle Management 
MEDEVAC Medical Evacuation 
MTOW Maximum Takeoff Weight 
MUPE  Minimum Unbiased Percentage Error 
NASA  National Aeronautics and Space Administration (US) 
NATO  North Atlantic Treaty Organization 
OLS  Ordinary Least Squares 
O&S  Operating and Support 
OSD  Office of the Secretary of Defense (US) 
PI  Prediction Interval 
RDT&E Research, Development, Test, and Evaluation 
RMS  Reliability-Maintainability-Supportability 
ROM  Rough Order of Magnitude 
SAR  Search and Rescue 
SCEA  Society of Cost Estimating and Analysis 
SFC  Specific Fuel Consumption 
VAMOSC Visibility and Management of Operating and Support Costs (US Navy) 
ZMPE  Zero Bias Minimum Percent Error 
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Introduction 

The Hellenic Air Force (HAF)’s mission1 is to organize, staff, mobilize, and train its personnel, in order to 

develop an air power capable of dissuasion, intensive and prolonged air operations, obtaining and retaining air 

superiority, securing the air defense of the country, and providing air protection and support to ground and 

maritime operations. During peacetime, HAF also conducts public service operations supporting many aspects of 

public interest, such as fire-fighting, search and rescue (SAR), air transports and medical evacuations 

(MEDEVAC).  

 

Table 1: The Hellenic Air Force (HAF) fleet.2 

 

The diversity in HAF’s mission profiles is portrayed in the different aircraft types. In order to fulfil a particular 

mission, an aircraft should meet analogous technical and performance specifications. Do the aircraft physical and 

performance characteristics affect its Operating and Support (O&S)3 cost? If yes, how? During the procurement 

process there is an emphasis in affordability and cost management issues, therefore the answers to the 

aforementioned questions are critical for the comparison and evaluation of new (“unknown”) systems. 

                                                   
1 Hellenic Air Force official site, https://www.haf.gr/en/mission 
2 https://www.haf.gr/en/equipment 
3 OSD/CAPE Operating and Support Cost-Estimating Guide (2014), Chapter 6. 
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Despite the lack of actual data from the Utilization and Support life cycle stages4 where the largest portion of the 

Life Cycle Cost (LCC)5 is incurred, an analyst must carry out a timely and reliable O&S cost estimate. At this 

critical time point, the capability of conducting a parametric estimate is an asset. 

 

Figure 1: Typical allocation of aircraft life cycle cost.6 

 

The parametric estimating technique 

The parametric or “top-down” technique is a relatively fast and inexpensive estimating tool. Properly applied, it 

may provide reliable predictions and, most important, timely estimates. According to ISPA/SCEA Parametric 

Handbook:7 

“Parametric estimating is a technique that develops cost estimates based upon the examination and 

validation of the relationships which exist between a project’s technical, programmatic, and cost 

characteristics as well as the resources consumed during its development, manufacture, 

maintenance, and/or modification. Parametric models can be classified as simple or complex. 

Simple models are cost estimating relationships (CERs) consisting of one cost driver. Complex 

models, on the other hand, are models consisting of multiple CERs, or algorithms, to derive cost 

estimates.” 

                                                   
4 AAP-48 NATO System Life Cycle Stages and Processes (2013) 
5 ALCCP-1 NATO Guidance on Life Cycle Costs (2008) 
6 OSD/CAPE Operating and Support Cost-Estimating Guide (2014), Chapter 2, fig. 2-2 
7 ISPA/SCEA Parametric Handbook, 4th Edition (2008) 
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The parametric technique is applicable during the early stages of a system’s the life cycle, amidst analogy and 

engineering estimating techniques: 

 

Figure 2: Typical application of estimating techniques through a system’s life cycle stages.8 

 
The parametric technique uses regression analysis, a statistical process for estimating the relationships among 

variables. Regression analysis helps an analyst to understand how the typical value of the dependent variable 

(response or criterion variable) changes when any one of the independent variables (predictors or explanatory 

variables) is varied, while the other independent variables are held fixed. 

 

Figure 3: The development of a simple parametric model: Application of regression analysis to identify a CER 

between the fuel CPFH and the weight of fighter aircraft.9 

                                                   
8 DAU Integrated Defense Acquisition, Technology, and Logistics LCM Framework chart, v5.2 (2008). 
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Pros and cons of the parametric technique 

The implementation of the parametric technique is a blended process and the interpretation of the results has to be 

done with extreme caution. An analyst should always consider the following pros and cons about the parametric 

technique: 

Pros: 

 It does not require actual and detailed cost information about a new system. Compared to the 

engineering or “bottom-up” cost estimating technique it requires less data, duration, and resources. 

 It may reveal strong CERs between cost and Reliability-Maintainability-Supportability (RMS) 

metrics,10 helping to optimize maintenance and logistic procedures. 

 A parametric model can be easily adjusted when the main cost drivers change. The CERs may be 

easily updated and sensitivity analysis may be applied. 

 It is a sound statistical process and can be objectively validated. 

 The uncertainty of the estimate can be quantified, allowing cost risk analysis. 

 There are many available commercial-off-the-shelf (COTS) parametric tools. Additionally, general-

purpose statistical packages support the parametric technique. 

Cons: 

 It is a rigorous statistical technique (uses regression analysis). 

 CERs are often considered “black boxes,” especially if they derive from COTS tools with unknown 

data libraries, and/or if the CER mathematical expression can’t be logically explained. 

 Appropriate data adjustments might be required before the analysis, depending on the selected 

regression method (OLS, OLS-Log space, MUPE, ZMPE). Also, standard error adjustments for 

sample size and relevance might be required.11 

 CERs must be frequently updated to ensure validity. 

 The validity of the prediction interval (PI) heavily depends on the residuals diagnostics. 

 The decision makers may feel “itchy” to base their final decision on a parametric estimate (probably 

won’t be statisticians). 

                                                                                                                                                                                
9 M. Carey, DoDCAS 2010, Naval Center for Cost Analysis, “Navy VAMOSC.” 
10 TO 00-20-2, Maintenance Data Documentation, (Change 2 - 2007), Appendix L: “Air Force Standard Algorithms.” 
11 USAF Cost Risk and Uncertainty Analysis Handbook (2007), par. 2.2.2.1 and 2.2.2.3. 
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 Wide-ranging prediction intervals may render the estimate useless. Why not use the rule of thumb 

instead? 

 

Building a parametric model for the Hellenic Air Force  

This case study investigates the relationship between historical CPFH12 data and specific aircraft characteristics. 

The objective is to identify a strong CER that will be used to estimate the hypothetical CPFH for “unknown” 

aircraft. 

Constraints & requirements Results 

Use the sample of 22 aircraft operated by the 
Hellenic Air Force. OK. The sample is taken from Table 1. 

Use the appropriate cost information. OK. Current CPFH data used, excluding the indirect 
support cost category. 

Use cost drivers (independent variables) that 
are easily accessible and quantifiable. 

OK. The cost drivers are physical and performance 
characteristics. 

The model must be as less complex as 
possible and include no more than two cost 
drivers. 

OK. The selected model includes two independent 
variables. 

The model should be statistically significant at 
the 5% level. OK. p-value = 3∙10-8 (Table 4) 

The model should capture at least 75% of the 
CPFH variance. OK. R2

adj = 0.82 (Table 4) 

The model’s prediction intervals must be 
valid. 

OK. The residuals pass all tests (Table 5). There are 
many outliers though (Figure 6). 

The model’s mathematical expression should 
make sense. 

OK. The model suggests that the aircraft weight and the 
engine specific fuel consumption correlate positively 
with the CPFH. 

 

Table 2: A generic view of the constraints / requirements and the parametric model performance. 

 

 

 

                                                   
12 The CPFH includes the following 6 main cost categories, according to the O&S cost element structure: Unit-level 
manpower, unit operations, maintenance, sustaining support, continuing system improvements, and indirect support. Since 
the purpose of the parametric model is the comparison of alternatives, the indirect support cost category is excluded from the 
analysis. 

Presented at the 2016 International Training Symposium: www.iceaaonline.com/bristol2016



  7 

 

 

 

 

 

 

 

 

Table 3: The variables used for the analysis. The log-transformations support the implementation of linear CERs. 

The examination of the independent variables may reveal multicollinearity issues. Two or more independent 

variables may be highly correlated, for example Log(empty weight) and Log(MTOW), meaning that one can be 

linearly estimated from the others with a substantial degree of accuracy. A parametric model should not include 

strongly correlated independent variables, because its predictive ability degrades. The variables correlation matrix 

offers an overview of the existing correlations: 

 

Figure 4: The variables correlation matrix. The symbol “X” indicates the insignificant correlations at the 5% sig. 

level. Multicollinearity is evident among several independent variables. 

Variable Simple CER’s 
regression line 

Variable 
adjustment 

dependent: CPFH  log-transformation 

independent: Length hyperbolic log-transformation 

independent: Empty weight hyperbolic log-transformation 

independent: MTOW hyperbolic log-transformation 

independent: SFC (max) hyperbolic log-transformation 

independent: Speed (max) hyperbolic log-transformation 

independent: Ceiling exponential × 10-4 
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Figure 5: Examples of multicollinearity. 

 

Selection of the optimal CER 

The highest correlation coefficient between Log(CPFH) and the independent variables is r = 0.83. Therefore, 

Log(MTOW) would be the best choice for building a simple linear CER. Unluckily, this model doesn’t comply at 

least with one of the requirements in Table 2, which is: R2
adj ≥ 0.75 (indeed, r2 = 0.832 = 0.69 < 0.75).  

The next step is to investigate all CERs of the form: Y = β0 + β1X1+β2X2+β3X1X2. The implementation of stepwise 

regression along with the Akaike Information Criterion (AIC), as the measure of the CERs relative quality, 

derives the following model: 

Log(CPFH) = β0 + β1Log(empty weight) + β2Log(SFC), 

where β0, β1, β2 are known coefficients. 

Notably, the two selected independent variables do not correlate significantly (Figure 4), so there is no 

multicollinearity in the selected model. Also, the interaction of the two independent variables is not significant 

hence the term X1X2 is omitted from the right hand of the equation. Although the model explains a remarkable 

82.15% of the Log(CPFH) variance, it does not demonstrate analogous predictive ability on the training set.13 

Indeed, 7 of the 22 actual costs fall outside the 95% prediction interval (notice the existence of outliers in Figure 

6). 

                                                   
13 The dataset that generated the model. 
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Call: 
lm(formula = LogCPFH ~ LogEMPTY + LogSFC) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.42125 -0.08515 -0.02154  0.09199  0.50650 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)    ……………………   …………    6.570 2.74e-06 *** 
LogEMPTY       ……………………   …………    7.984 1.73e-07 *** 
LogSFC         ……………………   …………    4.827 0.000117 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.2553 on 19 degrees of freedom 
Multiple R-squared:  0.8385,      Adjusted R-squared:  0.8215  
F-statistic: 49.31 on 2 and 19 DF,   p-value: 3.009e-08 
 
Correlation of Coefficients: 
         (Intercept) LogEMPTY 
LogEMPTY -0.99                
LogSFC    0.17       -0.13   

Table 4: The optimal model’s properties.  

 

Residuals diagnostics 

The construction of valid prediction or confidence intervals relies on the assumptions that the residuals are 

normal, have constant variance and no autocorrelations. Remarkably, the residuals of the selected model pass all 

tests: 

Test Null hypothesis p-value Reject the null hypothesis 
at the 5% sig. level? 

Shapiro-Wilk normality test normality 0.161 NO 

Breusch-Pagan test for 
heteroscedasticity constant variance 0.332 NO 

Durbin-Watson test for 
autocorrelation no autocorrelations  0.342 NO 

Table 5: The residuals diagnostics. 
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Figure 6: Typical residuals graphs. Although the residuals pass the tests, the existence of many outliers should 

keep the analyst alerted on the validity of the model’s prediction intervals. 

 

Making predictions for an “unknown” system 

The Lockheed Martin F-35 Lightning II is a family of fifth generation, single-seat, single engine, stealth multirole 

fighters undergoing final development and testing by the US. The F-35 program, also known as the Joint Strike 

Fighter (JSF), is the most expensive weapon system in history with a projected service life up to 2070. The JSF is 

designed and built by an aerospace industry team lead by Lockheed Martin. Besides the US, many NATO 

members & close US allies participate in the funding of the JSF development. Several additional countries have 

ordered, or are considering ordering, the F-35. 
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Figure 7: The Lockheed Martin F-35A CTOL variant14 and its power plant Pratt & Whitney F135-PW-100 

afterburning turbofan engine.15 

Supposing that the Hellenic Air Force considers the procurement of a new fighter aircraft, a rough O&S cost 

estimate of the alternatives, including the JSF, will be required. According to the parametric model, the F-35A 

empty weight (= 29,098 lb) and the F135-PW-100 specific fuel consumption (≈ 1.95 lb/lbf∙h) must feed the right 

hand side of the model, in order to get an estimate for the cost per flight hour: 

Log(CPFH) = β0 + β1 Log(29,098)+ β2 Log(1.95). 

The CPFH distribution properties are estimated through two different approaches: 

a. Theoretical approach. The mean (μ = 8.9434) and standard deviation (σ = 0.1066) of the dependent 

variable are estimated explicitly, according to the regression analysis theory. Log(CPFH) is assumed to be 

normally distributed; therefore, CPFH follows a lognormal distribution with parameters μ and σ. Any CPFH 

percentile or prediction interval is then estimated according to the identified lognormal distribution. 

b. Monte-Carlo simulation. According to the coefficient correlation matrix (Table 4), an algorithm 

generates pseudorandom values for 3 student-t distributed variables (with 19 degrees of freedom) that correspond 

to the model’s coefficients β0, β1, and β2. These 3 random values feed the right hand side of the above equation to 

compute a value for the CPFH. After this process has been repeated a million times, the mean (μ = 8.9435) and 

standard deviation (σ = 0.1254) of the Log(CPFH) are estimated using Monte-Carlo simulation. Finally, the 

                                                   
14 Image source: https://en.wikipedia.org/wiki/Lockheed_Martin_F-35_Lightning_II#/media/File:F-35A_three-view.PNG 
15 Image source: http://www.pw.utc.com/Content/F135_Engine/img/b-2-4_f135-ctol-cutaway-high.jpg 
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CPFH is fitted by a lognormal distribution with parameters μ and σ. Any CPFH percentile or prediction interval 

may be estimated according to either the fitted lognormal distribution properties, or the simulation output. 

 

 

Figure 8: A lognormal distribution with μ = 8.9434 and σ = 0.1066 (blue dashed line) denotes the theoretical 

CPFH estimate. A lognormal distribution with μ = 8.9435 and σ = 0.1254 (red line) fits the simulation-generated 

CPFH (histogram).  

 

Property Theoretical 
output 

Simulation 
output 

Log(CPFH) mean 8.9434 8.9435 

Log(CPFH) standard deviation 0.1066 0.1254 

CPFH mean 7,701 € 7,719 € 

CPFH median 7,658 € 7,658 € 

CPFH mode 7,571 € 7,539 € 

CPFH standard deviation 823 € 973 € 

CPFH 80th percentile 8,376 € 8,481 € 

CPFH 95% prediction interval 6,214 to 9,436 € 5,975 to 9,822 € 

Prob(CPFH > 10,000 €) 0.61% 1.83% 

Cost risk (80th percentile - mode) 805 € 942 € 

Table 6: The parametric model’s predictions on the F-35A cost per flight hour (excluding indirect support cost), 

assuming it had been operated by HAF. The theoretical regression model underestimates the uncertainty of the 

estimate.16 

                                                   
16 USAF Cost Risk and Uncertainty Analysis Handbook (2007), par. 2.2.2.3. 
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Epilogue 

The parametric estimating technique may provide timely cost estimates for “unknown” systems, through the 

utilization of cost estimating relationships deriving from historical datasets. The reliability of parametric estimates 

depends on many factors which an analyst must be aware of. This case study offers an overview on the 

development of a parametric model that estimates the cost per flight hour for “unknown” aircraft. The cost derives 

as a function of the aircraft empty weight and the engine’s specific fuel consumption. As an example, the F-35A 

cost per flight hour is estimated under the hypothetical scenario that it is operated by the Hellenic Air Force. 
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