

Advocating 3D Printing in the DoD

Employing a Business Case Analysis

2016

Nicole Santos, Cost Analyst, Troika Solutions, LLC Richard Shea, Solutions Analyst, PRICE Systems, LLC Robert Appleton, Senior Additive Manufacturing Consultant, Troika Solutions, LLC

3D Printing Basics

• Definition...the process of joining materials to make objects from 3D model data, usually layer upon layer

– ASTM International, Committee F42

- Over 30 Years old
- Many uses; Many materials
- Rapidly advancing technology
- Family of loosely related technologies

Seven Overall Technology Categories

Technology	Description		
Binder Jetting	Liquid bonding agent selectively deposited to join powder		
Material Jetting	Droplets of build material selectively deposited		
Powder Bed Fusion	Thermal energy selectively fuse regions of powder bed		
Directed Energy Deposition	Focused thermal energy melts materials as deposited		
Sheet Lamination	Sheet of material bonded together		
Vat Photopolymerization	Liquid photopolymer selectively cured by light activation		
Material Extrusion	Material selectively dispensed through a nozzle or orifice		

Simplified by Hod Lipson in his book "Fabricated"

1. Printers that squirt, squeeze or spray and 2. Printers the fuse, bind or glue.

Why 3D Printing?

"What would you make if you had a machine that could make anything?" Hod Lipson, Fabricated

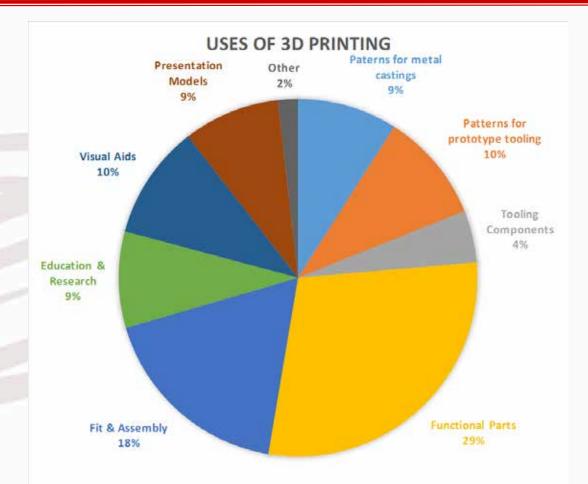
- Weight saving
- Speed
- Lifecycle Cost
- Simplify Complexity
- Otherwise impossible designs
- Digital
 - Design to production

Stronger Cheaper Faster

Is Anybody Using it Now?

INDUSTRIES USING 3D PRINTING Government / Other Military **Motor Vehicles** Academia **Aerospace** Medical / Dental **Architecture** Industrial & Consumer **Business Products** Machines * Data Source: Wohlers Associates

SHORT LIST


- Boeing
- Airbus
- Stryker
- Invisalign
- NASA
- Lockheed-Martin

- - Space X
 - Oak Ridge
 National Labs
 - Ford
 - Delta Airlines
 - General Electric

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016

- Rapid Prototyping
- Aerospace
- Medical / Dental
- Automotive
- Art
- Archeology/Paleontology

* Data Source: Wohlers Associates

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016

How Could the DoD Use 3D?

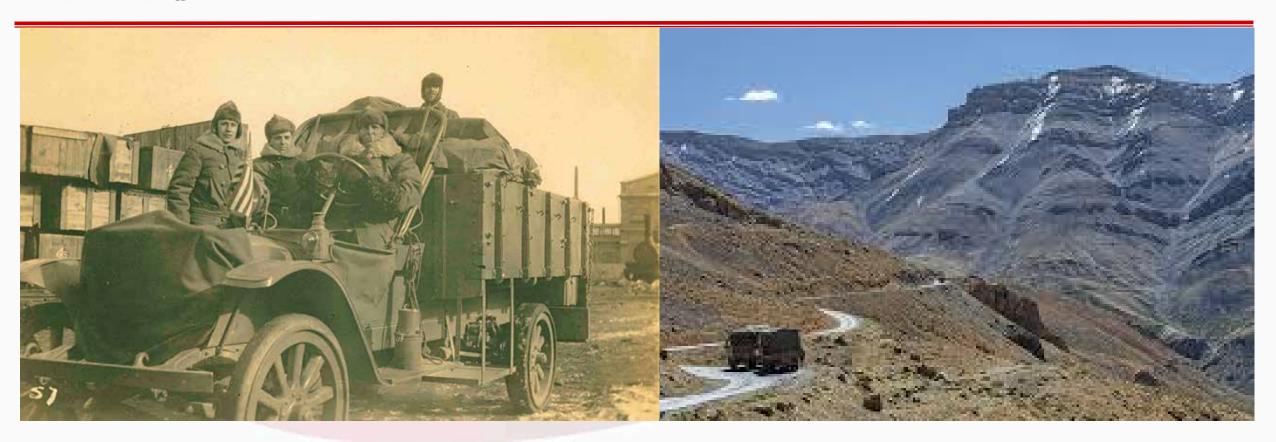
Partners - Process - Technology

Military supply, transportation and repair face unique challenges

Virtual Inventory

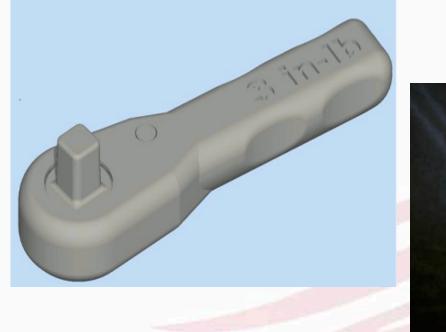
What if we had a digital library with print files for the material we need

Philippines 1897



Challenge of Transportation

Partners - Process - Technology


US Marines in Siberia 1918 Little has changed

Afghanistan Today

Ease of Transportation

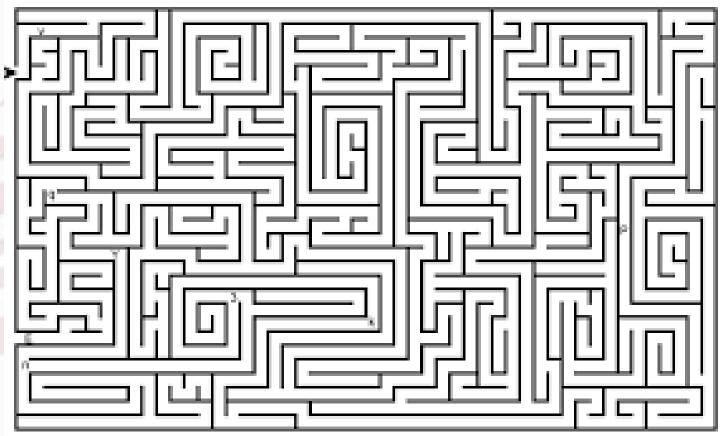
What if we could just email the needed stuff to where it's needed?

Obsolescence Replacement

We have a lot of old stuff

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016

But Wait; There's More



- Field repairs often done with duct tape and wire
- GSA reports that DoD has \$7 Billion in excess inventory
- Expedited transportation to remote locations is costly
- The cost of short production runs or reverse engineering to address obsolescence is high and slow

- Data management and interoperability
- Data formats
- Data security
- Intellectual Property
- Quality control
- Standardization

Why use a Business Case Analysis (BCA)?

- BCA is a structured methodology
- Quantify the benefits
- Study the costs and challenges
- Map the best path of implementation
- Prove the value

BCA Methodology

- Analyze Product Lifecycle Costs
- Cost Estimating Process
- BCA Types
- Business Process Analysis
- Ground Rules and Assumptions

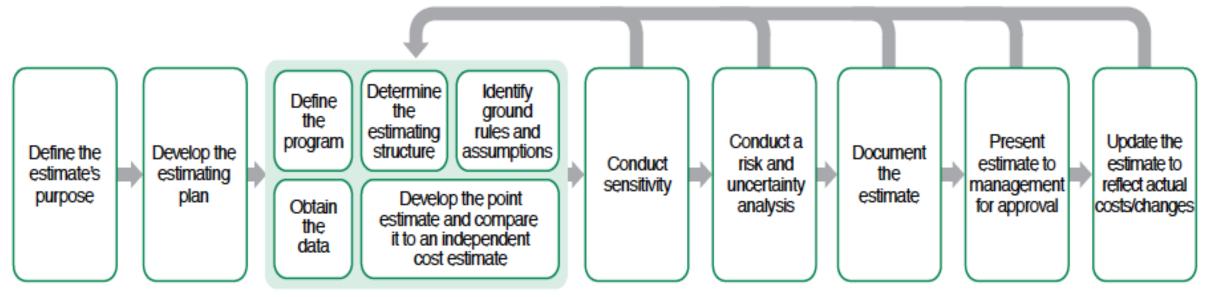
GAO Cost Analysis Methodology

Initiation and research

Your audience, what you are estimating, and why you are estimating it are of the utmost importance

Assessment

Cost assessment steps are iterative and can be accomplished in varying order or concurrently


Analysis

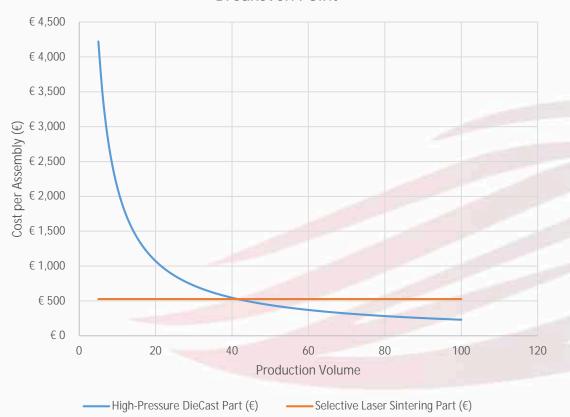
The confidence in the point or range of the estimate is crucial to the decision maker

Presentation

Documentation and presentation make or break a cost estimating decision outcome

Analysis, presentation, and updating the estimate steps can lead to repeating previous assessment steps

- Analysis of Alternatives (AOA)
- Cost Effectiveness Analysis (CEA)
- Economic Analysis (EA) and Cost Benefit Analysis (CBA)


Business Process Analysis

- Organizational goals and objectives drive functional requirements
- Solutions may include business process improvement, organizational change, strategic planning, and policy development.
- Business Process Re-engineering (BPR)
- Assessing process weaknesses, identifying gaps, and implementing opportunities to streamline and improve the processes

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016

Partners - Process - Technology

Breakeven Point

The breakeven point for this example occurs between the 41 and 42sn unit.	High- Pressure DieCast Part (€)	Cost for Mold	Selective Laser Sintering Part (€)
Material cost per part	€ 2.59		€ 25.81
Pre-processing cost per part	€ 0.00		€ 8.00
Processing cost per part*	€ 0.26	€ 21,000.00	€ 472.50
Post Processing Cost per part	€ 17.90		€ 20.00
Assembly	€ 0.54		€ 0.00
Total	€ 21.29		€ 526.31
First Unit cost for Traditional Manufacturing:		€ 21,021.29	
*Includes the mold for die-casting			

Breakeven Point for High-Pressure Die-Casting and Selective Laser Sintering, Atzeni and Salmi (2011)

Ground Rules and Assumptions

- Cost estimates that are early in the product life cycle are based upon limited information and require constraints upon estimate.
- Ground Rules
 - Represent a common set of agreed upon estimating standards that provide guidance eg laws, regulations, constraints, ASME Standard etc.
- Assumptions
 - Place bounds on the scope of the estimate
 - Represent a set of judgments about past, present, or future conditions considered as true in the absence of positive proof.

Traditional Manufacturing, In house 3D printing or Bureau 3D printing?

8 Cost Drivers

- 1. Engineering parts, design complexity, printing orientation
- 2. Tools molds/casting vs 3D printer
- 3. Material weight, plastic vs metal, alloys
- 4. Manufacturing post processing, skilled workers

Traditional Manufacturing, In house 3D printing or Bureau 3D printing?

8 Cost Drivers

- 5. Quality control
- 6. Safety regulations
- 7. Facility factory, garrison, outer space
- 8. Inventory physical vs digital

Other Elements to Consider When Comparing 3D Printing to T/M

- The typical lead-time to acquire a part that is no longer in the supply chain is 12 to 18 months
- 3D Printing is a valuable tool for reverse engineering

- Typically 3D Printing per unit cost is higher than Traditional Manufacturing
- Traditional Manufacturing up front costs can be higher than 3D Printing
- The breakeven point will drive the 3D Printing or Traditional Manufacturing decision

However.....

• Readiness may be more important than cost

TROIKA

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016

QUESTIONS?