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Fit, Rather Than Assume, a CER Error Distribution 

Dr. Shu-Ping Hu 

ABSTRACT 

Analysts usually assume a distribution (e.g., normal, log-normal, or triangular) to model 
the errors of a cost estimating relationship (CER) for cost uncertainly analysis. However, this 
hypothetical assumption may not be suitable to model the underlying distribution of CER errors. A 
distribution fitting tool is often used to hypothesize an appropriate distribution for a given set of 
data. It can also be applied to fit a distribution to  

1. the CER residuals (i.e., Actual - Predicted = yi - ŷi) for additive error models and  
2. the CER “percent” errors in the form of ratios (i.e., Actual/Predicted = yi / ŷi) for 

multiplicative error models. 

This way, the CER error distribution is derived based upon the residuals (or percent errors) specific 
to the analysis, rather than a generic assumption applied to any analysis. 

If we use a distribution fitting tool to analyze the yi / ŷi ratios for a multiplicative error CER, 
we cannot apply the fitted distribution directly for cost uncertainty analysis. This is because it does 
not account for (1) a distance assessment between the estimating point and the centroid of the data 
set, (2) the sample size, or (3) the degrees of freedom of the respective CER. We must make 
adjustments when using the fitted distribution to perform uncertainty analysis in a simulation tool.  
This paper proposes an objective method to account for the above elements when modeling CER 
uncertainty with a fitted distribution; namely, it develops a prediction interval for cost uncertainty 
analysis using a distribution fitting tool.  

Furthermore, analysts often use a distribution fitting tool to analyze the residuals (or 
percentage errors) from various CERs all together. This paper discusses issues associated with this 
approach and explains why it is not appropriate to do so. 

OUTLINE 

As noted above, a distribution fitting tool can be used to hypothesize an appropriate 
distribution for a given set of data points, including the errors of CERs. When analyzing CER 
errors, the fitted distribution should be adjusted properly to build prediction intervals for cost 
uncertainty analysis. This specific topic, however, has not yet been discussed in the cost 
community. Hence, the primary objective of this paper is to develop easy-to-follow guidance for 
analysts to derive distribution fitting tool results for cost uncertainty analysis.  

The topics discussed will be as follows: 

• Common questions regarding fitting CER errors  

• What should we analyze for log-linear CERs? 

• Prediction interval (PI) analysis 

• Adjustment factors for cost uncertainty analysis 

• Easy-to-follow implementation steps 
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• Concerns about analyzing different CER errors all together 

• Analysis of the Unmanned Space Vehicle Cost Model, Ninth Edition (USCM9) 
subsystem-level CERs 

• Conclusions 

• Recommendations and future study items 

COMMON QUESTIONS REGARDING FITTING CER ERRORS 

Listed below are a few common questions that occur when fitting the residuals or percent 
errors using a distribution finding tool: 

• Should we analyze the residuals or standardized residuals for ordinary least squares (OLS) 
models?   

• Should we analyze the CER percent errors in the form of ratios (yi / ŷi) or the standardized 
residuals (i.e., normalized residuals) for linear Minimum-Unbiased-Percentage-Error 
(MUPE) equations? 

• Should we analyze the CER percent errors as ratios (yi / ŷi) or should we analyze the percent 

errors by the error definition (i.e., 1ˆˆ)ˆ( −=− iiiii yyyyy ) for nonlinear MUPE CERs, 

e.g., y = ax
b? 

Before answering these questions, we will first define additive and multiplicative error models. 

Additive Error Model. An additive error model is generally stated as follows: 

iii fY ε+= ),( βx  = fi + εi     for i = 1, …, n (1) 

where: 
 Yi = observed cost of the ith data point, i = 1 to n 

 f (xi,ββββ) = fi = the value of the hypothesized equation at the ith data point 
 xi = vector of the cost driver variables at the ith data point 

 ββββ = vector of coefficients to be estimated by the regression equation 

 εi = error term (assumed to be independent of the cost drivers)   
 n = sample size 

Multiplicative Error Model. Similarly, a multiplicative error model is specified by 

iii fY ε*),( βx=  = fi * εi     for i = 1, …, n (2) 

The definitions of Yi, f (xi,ββββ), and εi are the same as given in Equation 1. Unlike the additive error 
model (Equation 1), the standard deviation of the dependent variable in Equation 2 is proportional 
to the level of the hypothetical equation rather than some fixed amount across the entire data range. 
Both the MUPE and Minimum-Percentage Error Regression under Zero-Percentage Bias (ZMPE) 

methods are commonly used to model multiplicative error models when the error term ε is 

assumed to have a mean of zero and variance, σ2. The MUPE method is an Iteratively Reweighted 
Least Squares (IRLS) regression technique (see References 2, 3, and 5 for details). For a detailed 
explanation of the ZMPE method, see Reference 4.  
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Log-Error Model.  If the multiplicative error term (εi) in Equation 2 is further assumed to 
follow a log-normal distribution, then the error can be measured by the following: 

)),(ln()ln()ln( βx iiii fYe −== ε  (3) 

where “ln” stands for the natural logarithm function.  The objective is then to minimize the sum 

of squared eis (i.e., (Σ(ln(εi))
2).  If the transformed function is linear in log space, then OLS can 

be applied in log space to derive a solution for ββββ.  If not, we need to apply a non-linear regression 
technique to derive a solution.  

Although the theoretical errors (εi’s) are assumed to be independently and identically 
distributed for the entire data range, the residuals of the fitted CER are not independent and they do 
not have the same variance either. Hence, it is recommended that we examine the standardized 
residual plots, rather than the residual plots, for any remaining, unexplained variations in the CER.  

However, for most of the cases, the residual and standardized residual plots tend to portray 
the same pattern, and very little information is lost using the residual plot alone. This is also true 
when analyzing the residuals using the distribution finding tool for OLS models. Using either 
residuals or standardized residuals does not make any difference, as their respective histograms 
look very similar. So we conclude that it is adequate to analyze the residuals using a distribution 
fitting tool for most OLS models.  

As for the MUPE models, we should just fit the ratios, not the standardized residuals, 
because the latter is always centered on zero, which cannot be fitted using a log-normal distribution 
unless a location parameter is used.  In addition, the coefficient of variation (CV) measure does not 
make sense when the sample mean is close to zero. However, if a normal distribution is chosen to 
model the residuals or ratios, standardized residuals can be used to further confirm whether normal 
distribution is a good candidate for modeling CER errors.  

WHAT SHOULD WE ANALYZE FOR LOG-LINEAR CERS? 

There are two commonly used methods for fitting a log-normal distribution to the CER 
percent errors in the form of (yi / ŷi) ratios: the Maximum-Likelihood Estimation (MLE) solution 
and the distribution fitting tool solution.  Note that the former is generated in log space while the 
latter is fitted in unit space. In this section, we will determine whether we should analyze the 
percent errors as ratios (yi / ŷi) in unit space or the residuals in log space for log-linear CERs. 

I.  Log-Space MLE method. Using the MLE method, the log-space mean and standard 

deviation of the log-normal distribution are given by 

( )
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σ̂  (5) 

Both µ̂  and σ̂  are evaluated in log space and µ̂ should be zero for log-linear CERs. Note that 

the degrees of freedom (DF) calculation is different between Crystal Ball (CB) and @Risk. CB 
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uses (n-1) in the denominator of Equation 5 to adjust for DF, while @Risk uses the sample size 
n.  In fact, we should use (n-p) if the predicted value is based upon a CER with (n-p) DF, where 
p is the number of estimated parameters in the CER. 

II.  Unit-Space Method. For purposes of illustration, we use Distribution Finder for this 
example. The unit-space “Least Square” solution (provided by Distribution Finder) for fitting the 
log-normal distribution is derived by 

Minimizing ( )∑
=

+−
n

i

ii nLoginvyy
1

2
),,/)wNumObsBeloObsFreq*5.0(()ˆ( σµ  (6) 

where: 
ObsFreq = the number of sample points equal to yi, inclusive 
NumObsBelow = the number of observations below the value of yi 

It is obvious that the log-space MLE solution (Equations 4 and 5) and the unit-space Least 
Square solution (Equation 6) are not the same.  

Using the sample data in Appendix A, a weight-based log-linear CER is derived when the 
regression is done in log space: 

Cost = 19.0468 * (Weight)0.8391 (Standard error in log space = 0.483, N = 47) (7) 

If we fit the percent errors in the form of ratios )ˆ( ii yy using Distribution Finder, the fitted log-

normal distribution has a mean of 1.092 and a standard deviation of 0.6130 (both are unit-space 
statistics).  

Given the unit-space mean (Mean) and standard deviation (Stdev), the log-space mean 

(µ) and standard deviation (σ) can be derived by the following equations: 

           σ (in log space) = ))/(1(ln 2
MeanStdev+   (8) 

           µ (in log space) = ln(Mean) – σ2/2 (9) 

Using Equations 8 and 9, the log-space mean and standard error (SE) are given by -0.0297 and 
0.5163, respectively.  Note that this log-space SE (0.5163) is already 7% larger than the SE 
(0.483) generated by the log-linear CER (Equation 7) without applying any adjustments for the 
location of the estimating point, sample size, etc. 

However, if we fit the log-space residuals using Distribution Finder, the standard error of 
estimate in log space is 0.4642. With the adjustments for sample size and degrees of freedom 
(see the details in the section below), the Distribution Finder results will be compatible with the 
regression statistics associated with Equation 7. Therefore, we conclude that we should fit the 
log-space residuals instead of percent errors (in the form of yi / ŷi) for log-error models. 

PREDICTION INTERVAL (PI) ANALYSIS 

We will first discuss the prediction interval formulas before analyzing the appropriate 
factors to apply to the residuals or percent errors when using a distribution finding tool. 

What is prediction interval? The proper measure of the quality of the estimate is the 
prediction interval.  A PI provides a range of values around the point estimate (PE) at different 
probability levels to show the degree of confidence in the estimate based upon the sample 
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evidence. The upper and lower bounds of the intervals form the branches of hyperbolas about the 
regression equation and illustrate the usefulness of the equation for predicting individual values 
from the independent variables.    

A prediction interval can be thought of as a range defined by the PE plus or minus some number 
of adjusted standard errors (standard errors adjusted for prediction), depending upon the level of 
confidence.  This adjusted standard error (Adj. SE) is a function of the standard error of the 
regression, the sample size, and the distance assessment of the estimating point from the center 
of the database used to generate the CER. We now discuss additive vs. multiplicative PIs for 
various regression models, beginning with a simple OLS equation.  

In the discussion below, the error term ε is assumed to follow a normal distribution, while α 
indicates the significance level of the test. (The significance level is often bounded between 0.4 

and 0.99: 0.4 ≤ α ≤ 0.99.) 

Simple OLS. In a simple linear CER with an additive error term, where Y = β0 + β1X + 

ε, a (1-α)100% PI for a future observation Y, when X = xo is given by 
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 (10)    

where: 
ŷo  = the estimated value from the CER when X = x0 (also referred to as f(x0)) 
x0 = the value of the independent variable used in calculating the estimate 
n  = the number of data points 

t(α/2,n-2) = the upper α/2 cut-off point of Student’s t distribution with (n-2) DF 
SE = CER’s standard error of estimate (also referred to as SEE) 
Adj. SE = the adjusted standard error for PI 

x  = nx
n

i i )(
1∑ =

; the mean of the independent variable in the data set 

xxSS  = ∑ =
−

n

i i xx
1

2)( ; the sum of squares of the independent variable about its mean  

Sx  = nSS xx / ; the uncorrected sample standard deviation of the independent 

variable 

ε = the error term with mean of 0 and variance σ2 (assumed to follow a normal 
distribution) 

For the simple factor equation Y = βX + ε, a (1-α)100% PI for a future observation Y, 
when X = xo, is given by 

).(*1**ˆ
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where b is the estimated factor, t(α/2,n-1) is the upper α/2 cut-off point of Student’s t distribution 
with (n-1) DF, and the rest are defined above. 

Multi-Variable OLS. If there are multiple predictors in the CER, namely, Y = β0 + β1X1 

+ β2X2 +  ... βkXk + ε, we will compute the PI using matrix operations. A (1-α)100% PI for a 
future observation Y at a given driver vector xo is given below: 

).(*ˆ)'()')((1**ˆ
),2/(0

1
),2/(0 SEAdjtySEty pnpn −

−
− ±=+± αα 00

xXXx  (12) 

where: 

0ŷ  = the estimated value of Y from the CER when x = xo 

xo = (1, x1o, ..., xko), a row vector of given driver values and 1 is for the intercept 
p = the total number of estimated parameters, including the intercept (p = k+1) 
n  = the number of data points 

t(α/2,n-p) = the upper α/2 cut-off point of Student’s t distribution with (n-p) DF 
SE = CER’s standard error of estimate  
Adj. SE = the adjusted standard error for PI 
X = the design matrix of the independent variables 

ε = the error term with mean of 0 and variance σ2 (assumed to follow a normal 
distribution) 

(The apostrophe superscript denotes the transpose of a vector or a matrix.) 

Simple OLS in Log Space (LOLS). In a simple log-linear CER with an multiplicative 

error term, where Y = (β0X
β1)*ε, a (1-α)100% PI for a future observation Y, when X = xo is 

given by 

( )).(*ˆ

))ln()(ln(1
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 (13)    

where: 

0ŷ   = the estimated value in log space when X = x0,  

x0 = the value of the independent variable used in calculating the estimate 

t(α/2,n-2) = the upper α/2 cut-off point of Student’s t distribution with (n-2) DF 

)ln(x   = the average value of the independent variable evaluated in log space,  

SE = the standard error of estimate in log space 
Adj. SE = the adjusted standard error for PI in log space 
SSxx = the sum of squares of the independent variable about its mean (in log space)  

“ln”  = the natural logarithm function 

LOLS with Multiple Drivers. If there are multiple drivers in a log-linear CER, we will 

compute PI using matrix operations. See the (1-α)100% PI formula below for a log-linear CER 
at a given driver vector xo: 
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where: 

0ŷ  = the estimated value from the CER in log space when X = xo 

n  = the number of data points 
p = the total number of estimated parameters, including the intercept 

t(α/2,n-p) = the upper α/2 cut-off point of Student’s t distribution with (n-p) DF 
SE = CER’s standard error of estimate (evaluated in log space) 
Adj. SE = the adjusted standard error for PI 
ln(xo) = (1, ln(x1o), ..., ln(xko)), a row vector of given driver values in log space and 1 is 

for the intercept. (Note: p = k+1) 
X = the design matrix of the independent variables in log space 

ε = the error term with mean of 0 and variance σ2 (assumed to follow a normal 
distribution) 

(The apostrophe superscript denotes the transpose of a vector or a matrix.) 

Since the computation of PI for learning curves is done in log space, the resultant PI in unit 
space will be asymmetrical. 

Simple Linear MUPE. If a MUPE equation is hypothesized as Y = (β0 + β1X )*ε, then a 

(1-α)100% PI for a future observation Y, when X is at xo is given below: 
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where: 

0ŷ  = the estimated value from the CER when X = x0 (also denoted by f(xo)) 

x0 = the value of the independent variable used in calculating the estimate 
n  = the number of data points 

t(α/2,n-2) = the upper α/2 cut-off point of the t-distribution with (n-2) DF 
SE = CER’s standard error of estimate  
Adj. SE = the adjusted standard error for PI 

w0  = the weighting factor for y when x = xo; w0 =1/(f2(xo)) = 1/ 2

0ŷ for MUPE CER 

wi  = the weighting factor for the ith data point; wi = 1/(f2(xi)) for MUPE CER 
f(xi) = the predicted value of the ith data point 
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ε = the error term with mean of 0 and variance σ2 (assumed to follow a normal 
distribution) 

Note that Swx is the weighted sample standard deviation of the independent variable x. It 
is the sample standard deviation of the independent variable evaluated in the fit space. 

Simple Factor MUPE. If a MUPE factor CER is hypothesized as Y = βX*ε, then a (1-

α)100% PI for a future observation Y, when X is at xo is given below: 
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where: 
x0 = the value of the independent variable used in calculating the estimate 

f(xo) = the estimated value from the CER when X = x0 (also denoted by 0ŷ ) 

n  = the number of data points 

t(α/2,n-2) = the upper α/2 cut-off point of the t-distribution with (n-2) DF 
SE = CER’s standard error of estimate  
Adj. SE = the adjusted standard error for PI 

w0  = the weighting factor for y when x = xo; w0 =1/(f2(xo)) = 1/ 2

0ŷ for MUPE CER 

wi  = the weighting factor for the ith data point; wi = 1/(f2(xi)) for MUPE CER 

∑
=

=
n

i

iiwxx xwSS
1

2 )(  

ε = the error term with mean of 0 and variance σ2 (assumed to follow a normal 
distribution) 

Based upon Equation 16, we do not need the actual data set to build a PI for a MUPE factor CER 
because the adjustment is a constant factor. It can be shown that the SE in Equation 16 is equal to 
the CV of the Y to X ratio, i.e., SE = CV(Y/X). (See Appendix C for a detailed proof.) 

Univariate Analysis. The PI listed in Equation 16 is about the same as the PI for the 
univariate analysis. If Y1, Y2, …, Yn are independently and identically distributed (i.i.d.) random 

variables from a normal distribution with a mean of µ and variance σ2, i.e., N(µ,σ2), then the 
average of Y also follows a normal distribution. If we let the future observation be denoted by 

Y0, then Y0 ~ N(µ,σ2).  The mean and variance of the difference between Y0 and Y  are given 

below, since Y0 and Y  are independent: 

0)( 0 =− YYE  
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iY is the sample standard deviation of Y. 

Based upon Equation 17, a (1-α)100% PI for a future observation Y0 is given by 
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Comparing Equation 18 with Equation 16, the PI for univariate analysis is the same as the PI for 
the MUPE factor CER. 

Multi-Variable Linear MUPE. If there are multiple predictors in the above MUPE 

CER, namely, Y = (β0 + β1X1 + β2X2 + ... βkXk)∗ε, we will compute the PI using matrix 

operations. A (1-α)100% PI for a future observation Y at a given predictor vector xo is given by 
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where: 

0ŷ  = the estimated value of Y from the CER when x = xo 

xo = (1, x1o, ..., xko), a row vector of given driver values and 1 is for the intercept 
p = the total number of estimated parameters, including the intercept (p = k+1) 
n  = the number of data points 

t(α/2,n-p) = the upper α/2 cut-off point of Student’s t distribution with (n-p) DF 
SE = CER’s standard error of estimate  
Adj. SE = the adjusted standard error for PI 

w0  = the weighting factor for y when x = xo (w0 =1/(f2(xo)) = 1/ 2

0ŷ for MUPE CER) 

X = the design matrix of the independent variables 
W = the weighting matrix, where the ith diagonal element is wi 

ε = the error term with mean of 1 and variance σ2 (assumed to follow a normal 
distribution) 

(The apostrophe superscript denotes the transpose of a vector or a matrix.) 

ADJUSTMENT FACTORS FOR COST UNCERTAINTY ANALYSIS 

Based upon the PI formulas given in the section above, we can deduce three adjustment 
factors that can be multiplied to a fitted distribution to derive appropriate PIs for cost uncertainty 
analysis. 
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I. Sample Factor.  When analyzing the residuals or percent errors (in the form of ratios 
yi/ŷi), the distribution fitting tool does not know whether the data set is an entire population or a 
random sample. It does not know the degrees of freedom associated with these errors either. 
Hence, analysts should manually make an adjustment to account for the sampling error or the 
appropriate degrees of freedom if certain parameters are estimated by the sample: 

df

n
=factorSample  (20) 

where n is the sample size and “df” stands for degrees of freedom.    

II. DF Factor. As shown by Equation 12, if the error term more or less follows a normal 
distribution, we should use the Student’s t distributions provided in risk analysis tools (such as 
Crystal Ball, @Risk, or ACEIT) to model the CER uncertainty. We can enter the Adj. SE into the 
scale field and specify the DF in the degrees of freedom field when modeling risk using a 
Student’s t distribution. Alternatively, we can enter the low/high bounds to specify the 

distribution.  Note that the upper cut-off point (tα/2,df) is derived from a Student’s t distribution 
that has the same degrees of freedom as the CER. However, if we use the Adj. SE to model the 
CER uncertainty by a different distribution, a DF adjustment factor should be applied to account 
for small samples. For example, we should multiply the Adj. SE measure by the DF factor to 
account for the broader tails of the t distribution for small samples if we use normal instead of t 
distribution for cost uncertainty analysis: 

2
factorDF

−
=

df

df
 (21)    

where “df” stands for the degrees of freedom of the t distribution. In fact, Equation 21 is the 
standard deviation of the Student’s t distribution with a scale parameter one and “df” degrees of 
freedom.  

For LOLS CERs, we should in fact apply the Log-t distributions directly to model 
uncertainties, since the CER errors are commonly assumed to follow the log-normal distribution. 
(Just as with a Student’s t distribution, we can enter the Adj. SE into the scale field and specify 
the DF in the degrees of freedom field when selecting a Log-t distribution. Alternatively, we can 
enter the low/high bounds to specify the distribution.) If the Log-t distributions are not available 
in the risk tools, we can specify the Student’s t distributions in log space, but we should ensure 
the PI is transformed back to unit space as given in Equations 13 and 14. 

The DF factor can be ignored when the sample size is fairly large (e.g., df > 50) or a 
Student’s t or a Log-t distribution is chosen to model the CER errors. 

III. Location Factor (LF). The last term in these PI equations is a “distance” adjustment 
(i.e., a location factor), which should be applied to account for the location of the estimating 
point. It assesses the “distance” of the estimating point from the centroid of the predictors.  As 
shown by Equations 10 and 13, the Adj. SE (as well as PI) gets larger when the estimating point 
moves farther away from the center of the database.  This is especially true when the CER is 
used beyond the range of the data used in developing the CER. Hence, using the CER’s standard 
error alone for risk assessment may significantly underestimate the risk associated with the PE 
unless the PE is very close to the center of the database and the sample size is fairly large. For a 
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single variable model, the range of PI is the smallest when the estimating point is exactly the 
mean of the independent variable and the last term is reduced to sqrt(1+1/n) when it happens. 
This is also the location factor for a MUPE factor CER with one independent variable. 

In ACE we define the adjusted SE based upon the distance assessment of the primary 
independent variable. As shown by Equation 10, the adjusted SE is given by 

n

StdevriverDistance/D

n
SE

n

Sxx

n
SESEAdj x

22

0 )(1
1

)/)((1
1. ++=

−
++=  (22)    

where: 
“Distance” is the distance assessment between the estimate and the center of the primary 
independent variable and 
“Driver Stdev” (i.e., Sx) is the uncorrected sample standard deviation of the primary 
independent variable. 

Note that this distance assessment is only characterized in terms of a number of standard 
deviations from the center.  For example, if the distance is assessed as approximately two sample 
standard deviations of the driver variable, then the ratio (of “Distance” to “Driver Stdev”) is two. 
For simplicity, ACE provides the default values below to address the assessment of this distance 
ratio based upon the similarities between the systems: 













=

DifferentVery

DifferentSomewhat

Similar

SimilarVery

StdevDriver

Distance

00.3

50.1

75.0

25.0

 (23)    

For example, if the system being estimated is deemed very similar to the database from which 
the CER was developed, this qualitative assessment may translate into a quantitative assessment 
of the ratio with a value of 0.25. Similarly, if the system being estimated is deemed very different 
from the database from which the CER was developed, this qualitative assessment might 
translate into a quantitative assessment of the ratio with a value of 3.0.  The adjusted standard 
error can then be calculated using these default values. See ACE online help for details. 

The LF Table below lists the location factors for a one–independent variable model: 

LF Table: Location Factor by Model Type (for one-driver variable) 

Model Location Factor = (Adj. SE)/SE 
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Note that x0 is the value of the independent variable used in calculating the estimate and 0ŷ is the 

estimated value from the CER when X = x0. 

The sample, DF, and location adjustments should be considered when constructing PIs. 
Otherwise, the range of the PI (based upon SE alone) will be smaller than it should be. 
Additionally, these adjustments should be applied to the residuals or percent errors prior to 
fitting them using a distribution finding tool. This way, the low/high range, mean, mode, and 
standard deviation of the fitted distribution are adjusted accordingly by the distribution finding 
tool, so analysts can use the fitted results directly for cost uncertainty analysis. It is much easier 
and more straightforward to make the adjustments before running the distribution finding tool, 
than it is to adjust several statistics for the PI after running the tool. 

EASY-TO-FOLLOW IMPLEMENTATION STEPS 

The primary purpose of this study is to develop easy-to-follow guidance for analysts to 
derive distribution fitting tool results for cost uncertainty analysis. 

Actual Implementation. Based upon the analysis given in the previous section, we can 
define the net adjustment factor as the product of the three adjustment factors mentioned above: 

Net Factor = (Sample Factor)*(DF Factor)*(Location Factor) (24) 

Also, a shift should be specified for the MUPE and ZMPE CERs to ensure the fitted distribution 
is still centered on one: 

Shift = Net Factor – 1 (25) 

For example, the percent errors from a MUPE or ZMPE CER should be multiplied by the Net 
Factor and then subtracted by “Shift” before they are analyzed using a distribution finding tool: 

(yi / ŷi) * (Net Factor) – Shift for MUPE and ZMPE models (26) 

As discussed above, the PI for univariate analysis is the same as the PI for the MUPE 
factor CER.  Hence, the above process (Equation 26) should be applied to univariate analysis as 

well where ŷi is replaced by y .  

(yi / y ) * (Net Factor) – Shift for univariate analysis (27) 

This way, the sample mean stays the same for univariate analysis. 

However, do not include the DF factor in the computation of the Net Factor if a Student’s t or a 
Log-t distribution is chosen to model the CER errors. Also, do not apply Shift to residuals or 
residuals in log space for additive-error and log-linear models, respectively: 



Tecolote Research, Inc. PRT-152, Fit, Rather Than Assume, a CER Error Distribution 

Page 13 

 (yi – ŷi) * (Net Factor) for additive-error models (28) 

(ln(yi) – ln(ŷi)) * (Net Factor) for log-error models, fitted in log space (29) 

In summary, below is the actual implementation of adjustments for PI by model types: 

Adjustment Table: Implementation by Model Type 

Models Adjustments 

Additive (yi – ŷi) * (Net Factor) 

Log-Error (ln(yi) – ln(ŷi)) * (Net Factor) 

MUPE/ZMPE (yi / ŷi) * (Net Factor) – Shift 

Univariate (yi / y ) * (Net Factor) – Shift 

Make sure all risk inputs are specified properly, especially when using one cell to capture both 
the PE and error distribution.  Suggest using an additional cell for the error term besides the PE. 

We now use a data set (in Appendix B) to illustrate how to apply the Net Factor to a 
MUPE linear CER: 

Cost = 220.0895 + 3.8112 * Weight (SE = 28.13%, N = 49) (30) 

It follows from Equation 30 that the estimated cost of a “black” box weighing 300 pounds would 
be $1,363.45. 

Given x0 = 300, ŷ0 = 1,363.45, SSwxx = 1.07202, wx = 469.4747, and Σwi = 8.27953*10^-6, the 

location factor (see the LF Table) is then given by 

038933.1
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(If the actual data set is not available, we can use a heuristic approach to approximate the 
location factor as suggested by Equation 23.)  

With 49 data points and two estimated parameters in the CER, the Sample and DF factors are 
calculated as follows: 

Sample Factor = sqrt(49/47) = 1.0211 

DF Factor = sqrt(47/45) = 1.022 

If we multiply all three factors together (as suggested by Equation 24), the Net Factor is given 
below: 

Net Factor = (1.0211)*(1.022)*(1.038933) = 1.084125 

According to Equation 25, a Shift should also be specified because Equation 30 is a MUPE CER: 

Shift = Net Factor – 1 = 1.084125 – 1 = 0.084125 
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Based upon Equation 26, if we analyze the percent errors in ratios (yi / ŷi) with the adjustments of 
Net Factor and Shift, i.e., (yi / ŷi) *(1.084125) - 0.084125, the results derived by Distribution 
Finder for the “adjusted” percent errors are given by the following: 

Table 1: Distribution Finder Results – 49 Adjusted % Errors 

Sample LogNormal Normal Triangular Beta Uniform

Mean 1.0000 1.0035 1.0000 1.0000 1.0002 1.0000

StdDev 0.3125 0.3009 0.3093 0.3049 0.3078 0.2957

CV 0.3125 0.2998 0.3093 0.3049 0.3078 0.2957

Min 0.2255 0.3005 -0.6144 0.4878

Mode 0.8819 1.0000 0.9130 0.9734

Max 1.8066 1.7866 3.8257 1.5122

Alpha 17.1439

Beta 30.0000

Data Count 49 % < 0 = 0.06% None 0.01% None

Standard Error of Estimate 0.0679 0.0504 0.0584 0.0518 0.0926

Rank 4 1 3 2 5

SEE / Fit Mean 6.76% 5.04% 5.84% 5.18% 9.26%

Chi^2 Fit test 9 Bins, Sig 0.05 Good (43%) Good (32%) Good (31%) Good (18%) Poor (0%)
 

Graph 1: Frequency Histogram – 49 Normalized % Errors 
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As shown by Table 1, the normal distribution is ranked #1 with an estimated standard deviation 
of 0.3093. This standard error is almost the same as the one that is used in CO$TAT to provide 
the PI report. The rest of the fitted distributions all estimate a smaller standard deviation than 
0.3093. 



Tecolote Research, Inc. PRT-152, Fit, Rather Than Assume, a CER Error Distribution 

Page 15 

CONCERNS ABOUT ANALYZING DIFFERENT CER ERRORS ALL 

TOGETHER 

A common practice is to pool all the residuals (or percentage errors) from various CERs 
to analyze them together using a distribution finding tool. However, there are concerns about 
using this approach to analyze all the residuals (or percent errors) from different CERs. In fact, it 
is not appropriate to do so; the reasons are given below: 

• The CER errors from different CERs might not be identically distributed. Using USCM 
CERs as an example, the distribution of errors from the Structure CER may not be the same 
as the distribution of errors from the Electrical Power Subsystem (EPS) CER. The analysis 
results will be misleading and inaccurate if we combine two or more samples coming from 
different populations and analyze them all together. 

• The CER errors associated with different subsystems might not be independently distributed 
either. For example, the errors from the Structure CER may be correlated with the errors 
from the EPS CER at a certain correlation coefficient. The errors from the EPS CER may be 
correlated with the errors from the Telemetry, Tracking and Command (TT&C) subsystem 
CER at another correlation coefficient. At a minimum, we should determine whether or not 
these CER errors are correlated before pooling them together. 

• We cannot use this approach to specify PIs for cost uncertainty analysis. For example, how 
do we define the location factor using the distribution fitting tool results when analyzing the 
“normalized” errors for all subsystems? 

However, several analysts strongly believe that the CER errors from different subsystems 
may all follow log-normal distributions and they should be analyzed together using a distribution 
finding tool. We will explain why this is not an appropriate approach even when all CER errors 
follow log-normal distributions.  We will begin with a shifted log-normal distribution. 

Shifted Log-Normal Distribution. If X is distributed as a log-normal distribution with a 

mean of µ and variance σ2 in log space, i.e., X ~ LN(µ,σ2), then the following linear 
transformation on X, i.e., aX + b, is said to follow a shifted log-normal distribution: 

Y = aX + b ~ LN(µ+ln(a), σ2, b), where b is a location parameter. (31) 

Using the MUPE and Minimum-Percentage Error under Zero-Percentage Bias (ZMPE) 

models, the multiplicative error term (εi) is assumed to have a mean of one and variance σu
2 (in 

unit space) for all observations. If εi is further assumed to follow a log-normal distribution, i.e., εi 

~LN(µ, σ2), where µ and σ are the mean and standard deviation in log space, then the mean and 

standard deviation of εi are expressed as follows:  

1)( )2/( 2

== +σµε eE i  for i = 1, …, n (32) 

ui eeestdev σε σσσµ =−=−= + 11)(
222 )2/(  for i = 1, …, n (33) 

Note that the unit-space standard deviation of the error term (i.e., σu) can be estimated by the 
standard percent error (SPE) of a MUPE CER: 
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where ŷi is used to denote the predicted value in unit space for the ith data point and p is the total 
number of estimated coefficients as defined above. The MUPE CER provides consistent estimates 
of the parameters and has zero proportional error for all points in the data set.   

It follows from Equations 32 and 33 that the log-space mean (µ) and standard deviation (σ) can be 
derived below:  

2/))1(ln(2/ 22

uσσµ +−=−=  (35) 

)1ln( 2

uσσ +=  (36) 

Consequently, the mean and standard deviation of (εi – 1) are given as follows, respectively: 

01)()1( =−=− ii EE εε  for i = 1, …, n (37) 

uii estdevstdev σεε σ =−==− 1)()1(
2

 for i = 1, …, n (38) 

Given εi ~LN(µ, σ2), the “theoretical” percentage error (i.e., εi – 1) now has a shifted log-normal 

distribution: 

1−=
−

i

i

ii

f

fY
ε  ~ LN(µ, σ2, -1), for i = 1, …, n. 

where “-1” is a location parameter. And the normalized percentage error is distributed as 

u

i
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u f

Y

σ

ε

σ

1
)1(

1 −
=−  ~ LN(µ- ln(σu), σ

2, -1/σu) for i = 1, …, n (39) 

where “-1/σu” is a location parameter. 

Plugging Equations 35 and 36 into Equation 39, the normalized percentage error is distributed as 

uu
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u f
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ε

σ

1
)1(

1
−=−  ~ LN(–(ln(1+σu

2))/2 – ln(σu), ln(1+σu
2), –1/σu) for i = 1, …, n (40) 

(Note: σu can be estimated by the SPE of a MUPE CER.) 

We can easily verify that the mean of the normalized percentage error (Equation 40) is zero and 
its standard deviation is one. 

We now make the following assumptions: 

Let εi1 for i = 1,…, n1 denote the CER errors for subsystem 1 

Let εi2 for i = 1,…, n2 denote the CER errors for subsystem 2 

… 

Let εik for i = 1,…, nk denote the CER errors for subsystem k 

The normalized errors for each subsystem should have the following distribution: 
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The above expressions can be summarized as follows: 

uj

ij

σ

ε 1−
 ~ LN(µj – ln(σuj), σj

2, –1/σuj) for i = 1, …, nj and j = 1,…, k. (41) 

Note that (σuj) are the unit-space standard deviation for subsystem j (j = 1,…, k), which can be 
estimated by the CER’s SPE. 

Based upon the above reasoning, we conclude the following: although these normalized 
percentage errors for different subsystems all have a mean of zero and variance of one in unit 
space, they do not have the same mean and variance in log space. Their location parameters are 
also different for different subsystems. This is why they should not be analyzed together using a 
distribution finding tool even if they all come from log-normal distributions. 

Listed below are the Distribution Finder results using all 440 normalized percent errors 
for the USCM9 subsystem-level CERs, assuming all these errors are independent and following 
the same distribution. Here, one is added to the normalized data to avoid centering on zero. 

Table 2: Distribution Finder Results – 440 Normalized % Errors + 1 

  Sample LN Normal Triangular Beta Uniform 

Mean 1.0000 1.0801 1.0000 1.0000 1.0003 1.0000 

StdDev 0.9746 0.8385 0.9565 0.9527 0.9674 0.9127 

CV 0.9746 0.7763 0.9565 0.9527 0.9671 0.9127 

Min -1.2272     -1.0200 -1.3128 -0.5808 

Mode   0.5323 1.0000 0.4655 0.6295   

Max 4.7993     3.5544 15.3924 2.5808 

Alpha         4.7874   

Beta         29.7871   

Data Count 440 % < 0 = 14.79% 15.31% 14.45% 18.37% 

Std Error of Estimate 0.3231 0.1888 0.2016 0.1206 0.3396 

Rank   4 2 3 1 5 

SEE / Fit Mean   29.92% 18.88% 20.16% 12.06% 33.96% 

Chi^2 Fit test 22 

Bins,  Sig 0.05  Poor (0%) Poor (0%) Poor (0%) Poor (0%) Poor (0%) 
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Graph 2: Frequency Histogram – 440 Normalized % Errors + 1 
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As shown by the Distribution Finder results, the beta distribution fits the frequency histogram 
better than the other four distributions, although none of them pass the Chi-square test.  

However, “one” may not be a good location parameter for these normalized percent 
errors. If Solver is used to fit a shifted log-normal distribution to these normalized data points, 
the location parameter is estimated to be “-3.8231.” Listed below are the Distribution Finder 
results when subtracting this location parameter from these 440 normalized percent errors. As 
shown by Table 3, the log-normal distribution is now ranked number one, as it fits the frequency 
histogram better than the other four distributions. Still, none of them pass the Chi-square test.   

Note that this is just an exercise to demonstrate that a shifted log-normal distribution is 
more flexible and useful than the ordinary log-normal distribution for modeling. Different shifted 
log-normal distributions will be derived when fitting the CER errors by individual subsystems. 
Note also that this particular log-normal distribution has a standard deviation of 0.25 in log 
space, which is smaller than the smallest SPE of all the eight subsystem CERs under 
investigation. The fitted results are very doubtful—this example indicates the pitfalls of 
analyzing all CER errors together. 

Table 3: Distribution Finder Results – 440 Normalized % Errors + 3.8231 

  Sample LN Normal Triangular Beta Uniform 

Mean 3.8231 3.8235 3.8231 3.8231 3.8234 3.8231 

StdDev 0.9746 0.9709 0.9565 0.9527 0.9674 0.9127 

CV 0.2549 0.2539 0.2502 0.2492 0.2530 0.2387 

Min 1.5959   1.8031 1.5126 2.2423 

Mode  3.4814 3.8231 3.2886 3.4520  
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Max 7.6224   6.3775 18.2559 5.4039 

Alpha     4.7803  

Beta     29.8555  

Data Count 440 % < 0 = 0.00% None None None 

Std Error of Estimate 0.1011 0.1888 0.2016 0.1206 0.3396 

Rank   1 3 4 2 5 

SEE / Fit Mean   2.64% 4.94% 5.27% 3.15% 8.88% 

Chi^2 Fit test 

22 Bins,  Sig 0.05  Poor (3%) Poor (0%) Poor (0%) Poor (0%) Poor (0%) 

 

Graph 3: Frequency Histogram – 440 Normalized % Errors + 3.8231 
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ANALYSIS OF USCM9 SUBSYSTEM-LEVEL CERS 

We used Distribution Finder to model the error distributions for the USCM9 CERs at the 
subsystem level. Listed below are the Distribution Finder results for analyzing the CER errors in 
the form of ratios (yi / ŷi) for the Attitude Control Subsystem (ACS), EPS, Propulsion, Structure, 
and TT&C subsystem-level CERs. No specific locations are considered in the analysis, as it is a 
generalized assessment.  Due to the large sample size, adjustment factors are not applied to these 
examples either. 
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Table 4: Distribution Finder Results – ACS CER % Errors (yi / ŷi) 

Sample LogNormal Normal Triangular Beta Uniform

Mean 1.0000 1.0039 1.0000 1.0001 1.0008 1.0000

StdDev 0.3776 0.3732 0.3722 0.3698 0.3761 0.3562

CV 0.3776 0.3718 0.3722 0.3697 0.3758 0.3562

Min 0.1490 0.2359 0.0684 0.3830

Mode 0.8268 1.0000 0.7637 0.8636

Max 2.0583 2.0006 6.4772 1.6170

Alpha 5.1081

Beta 29.9987

Data Count 56 % < 0 = 0.36% None None None

Standard Error of Estimate 0.0521 0.0696 0.0645 0.0463 0.1171

Rank 2 4 3 1 5

SEE / Fit Mean 5.19% 6.96% 6.45% 4.63% 11.71%

Chi^2 Fit test 10 Bins, Sig 0.05 Good (74%) Good (17%) Good (41%) Good (41%) Poor (4%)
 

 
Graph 4: Frequency Histogram – ACS CER % Errors (yi / ŷi) 
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Table 5: Distribution Finder Results – EPS CER % Errors (yi / ŷi) 

Sample LogNormal Normal Triangular Beta Uniform

Mean 1.0000 1.0037 1.0000 1.0001 1.0013 1.0000

StdDev 0.4438 0.4458 0.4308 0.4297 0.4427 0.4097

CV 0.4438 0.4441 0.4308 0.4296 0.4421 0.4097

Min 0.2315 0.1556 0.2236 0.2904

Mode 0.7662 1.0000 0.6654 0.7501

Max 2.5675 2.1792 9.5042 1.7096

Alpha 2.7440

Beta 30.0000

Data Count 62 % < 0 = 1.01% None None None

Standard Error of Estimate 0.0489 0.1111 0.1016 0.0578 0.1638

Rank 1 4 3 2 5

SEE / Fit Mean 4.87% 11.11% 10.16% 5.77% 16.38%

Chi^2 Fit test 10 Bins, Sig 0.05 Good (33%) Good (17%) Good (18%) Good (16%) Poor (2%)
 

 

Graph 5: Frequency Histogram – EPS CER % Errors (yi / ŷi) 
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Table 6: Distribution Finder Results – Propulsion CER % Errors (yi / ŷi)  

Sample LogNormal Normal Triangular Beta Uniform

Mean 1.0000 1.0038 1.0000 1.0000 1.0004 1.0000

StdDev 0.3620 0.3550 0.3570 0.3523 0.3578 0.3384

CV 0.3620 0.3536 0.3570 0.3523 0.3576 0.3384

Min 0.2047 0.2185 -0.3405 0.4139

Mode 0.8412 1.0000 0.8556 0.9343

Max 2.0452 1.9261 4.7226 1.5861

Alpha 10.0616

Beta 27.9286

Data Count 54 % < 0 = 0.25% None 0.01% None

Standard Error of Estimate 0.0624 0.0657 0.0735 0.0584 0.1212

Rank 2 3 4 1 5

SEE / Fit Mean 6.22% 6.57% 7.35% 5.84% 12.12%

Chi^2 Fit test 10 Bins, Sig 0.05 Good (84%) Good (28%) Good (20%) Good (11%) Good (9%)
  

 

Graph 6: Frequency Histogram – Propulsion CER % Errors (yi / ŷi) 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0.20 0.39 0.57 0.76 0.94 1.12 1.31 1.49 1.68 1.86 2.05 2.23

F
re

q
u

e
n

c
y

LogNormal (2) Normal (3) Triangular (4) Beta (1) Uniform (5)

  



Tecolote Research, Inc. PRT-152, Fit, Rather Than Assume, a CER Error Distribution 

Page 23 

Table 7: Distribution Finder Results – Structure CER % Errors (yi / ŷi)  

Sample LogNormal Normal Triangular Beta Uniform

Mean 1.0000 1.0041 1.0000 1.0000 1.0003 1.0000

StdDev 0.3614 0.3515 0.3561 0.3508 0.3562 0.3378

CV 0.3614 0.3500 0.3561 0.3508 0.3561 0.3378

Min 0.2384 0.1989 -0.6592 0.4148

Mode 0.8443 1.0000 0.8937 0.9577

Max 2.1318 1.9076 4.4553 1.5852

Alpha 14.3374

Beta 29.8497

Data Count 53 % < 0 = 0.25% None 0.05% None

Standard Error of Estimate 0.0724 0.0675 0.0778 0.0652 0.1209

Rank 3 2 4 1 5

SEE / Fit Mean 7.21% 6.75% 7.78% 6.51% 12.09%

Chi^2 Fit test 9 Bins, Sig 0.05 Good (60%) Good (17%) Good (28%) Poor (5%) Poor (2%)
 

 

Graph 7: Frequency Histogram – Structure CER % Errors (yi / ŷi) 
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Table 8: Distribution Finder Results – TT&C CER % Errors (yi / ŷi)  

Sample LogNormal Normal Triangular Beta Uniform

Mean 1.0000 0.9964 1.0000 1.0001 1.0023 1.0000

StdDev 0.4446 0.4597 0.4083 0.4116 0.4455 0.3796

CV 0.4446 0.4614 0.4083 0.4115 0.4444 0.3796

Min 0.3086 0.3027 0.5595 0.3425

Mode 0.7460 1.0000 0.5416

Max 2.7192 2.1561 15.3091 1.6575

Alpha 0.9286

Beta 30.0000

Data Count 59 % < 0 = 0.72% None None None

Standard Error of Estimate 0.0856 0.1798 0.1641 0.0833 0.2282

Rank 2 4 3 1 5

SEE / Fit Mean 8.59% 17.98% 16.41% 8.31% 22.82%

Chi^2 Fit test 10 Bins, Sig 0.05 Good (23%) Poor (4%) Poor (1%) Good (10%) Poor (0%)
  

 

Graph 8: Frequency Histogram – TT&C CER % Errors (yi / ŷi) 
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In the above examples, we only used the “raw” percent errors (i.e., yi / ŷi) in Distribution 
Finder without applying any correction factors. As shown by these tables, the best fitted 
distribution varies from one subsystem to another and the beta distribution seems to be a popular 
candidate to model the CER uncertainties. Since the sample and DF corrections are not used in 
these examples, the estimated standard deviation generated by Distribution Finder is smaller than 
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the SPE generated by its respective USCM9 CER. We should also use Distribution Finder to 
analyze the USCM9 suite and component-level CERs to determine whether the beta distribution 
is still very common for modeling CER errors—this will be an interesting follow-on study item. 

CONCLUSIONS 

Sample size can be a concern when using a distribution fitting tool. When the sample 
size is small, say 25 or less, the fitted distribution most likely does not resemble the frequency 
histogram of the sample data. Since we are usually dealing with small samples in our business, 
sample size is a concern when using any distribution fitting tool. 

To find an appropriate distribution to model CER errors, we should fit (1) residuals 

for additive error models, (2) percent errors in the form of ratios (i.e., yi / ŷi) for MUPE and 

ZMPE CERs, (3) residuals in log space for log-error models, and (4) ratios of actual to the 

mean (i.e., yi / y ) for univariate analysis.  If we have no information on how the CER was 

generated, we can use the following rules to deduce the underlying hypothesis: 

• If the sum of the residuals equals zero (Σ (yi – ŷi) = 0), then the CER is probably an OLS. 

• If the average of the percent errors equals one (Σ (yi / ŷi) /n = 1), then it may be a MUPE or 
ZMPE CER. 

• If the sum of the residuals in log space equals zero (Σ (ln(yi) – ln(ŷi)) = 0), then the CER may 
be a log-linear model. 

However, when an analyst applied the PING factor (or a Smearing Estimate) to the log-linear 
CER, the average percent errors may be one, but the CER was not generated by the MUPE or 
ZMPE method. 

Consider three adjustment factors when fitting the residuals or percent errors using 

a distribution fitting tool for cost uncertainty analysis: sample, DF, and location factors. Be 
sure to apply these adjustment factors to CER errors before fitting them using a distribution 
finding tool. This way, the low/high range, mean, mode, and standard deviation of the fitted 
distribution are adjusted accordingly by the distribution finding tool, so analysts can use the 
fitted results directly for cost uncertainty analysis. It is much easier and more straightforward to 
make the adjustments before running the distribution finding tool, than it is to adjust several 
statistics for the PI after running the tool. (Note: Depending upon the CER type, apply the net 
factor, which is the product of these three factors, to residuals, percent errors, or “residuals in log 
space” accordingly, prior to fitting them using a distribution fitting tool.) 

Do not apply the DF factor when the sample size is fairly large (e.g., DF > 50) or 

when a Student’s t or a Log-t distribution is used to model the CER errors. We should 
multiply the Adj. SE measure by the DF factor to account for the broader tails of Student’s t 
distribution for small samples if we use normal instead of t distribution for cost uncertainty 
analysis. We should do the same if we use log-normal instead of Log-t distribution for cost 
uncertainty analysis. Therefore, it is not necessary to apply the DF factor if either Student’s t or 
Log-t distribution is used to model CER errors. 

Define a shift factor for MUPE CERs, so the CER errors are centered on one. Do 

not apply a shift factor for additive or log-error models. 

Do not pool all the residuals (or percentage errors) from various CERs to analyze 

them together using a distribution finding tool. The errors from different CERs might not be 
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identically distributed and they may also be correlated. Furthermore, we cannot define a 
meaningful location factor for a shifted log-normal distribution when analyzing pooled errors from 
different CERs. 

RECOMMENDATIONS AND FUTURE STUDY ITEMS 

Enrich Distribution Gallery. For small sample analysis, it is very important to apply the 
DF factor to a CER’s standard error to account for the broader tails of Student’s t and Log-t 
distributions when using normal or log-normal distribution to model the CER errors. The shifted 
log-normal distribution, as well as the Weibull and gamma distributions, can also be found in real 
life examples. Therefore, a distribution fitting tool should consider including the following 
distribution in its Distribution Gallery: 

Student’s t, Log-t, Weibull, Rayleigh (a special case of Weibull), Shifted Log-Normal, 
Gamma, Poisson, Extreme Value distribution, and User-Defined Cumulative Distribution 
function (CDF) 

At a minimum, the first six distributions should be considered for inclusion. 

Adjust DF for Additional Constraints. It is noted that the lower bound of the “fitted” 
distribution is sometimes negative, as generated by the curve-fitting process. Also, the upper 
bound of the fitted distribution can be smaller than the largest data point in the data set, which is 
neither logical nor desirable. Of course, we can specify certain constraints for the fitted 
distribution. For example, we can constrain the lower bound of the fitted distribution to be 
positive or non-negative, but this restriction should be reflected in the DF calculation. 

However, an inequality constraint may not be the same as an equality constraint. For 
example, if the lower bound of the distribution is fixed to be zero, then one less parameter will be 
estimated by the distribution fitting tool, which translates to a gain of one DF. Another example: 
we can constrain the mean of the fitted distribution to be the sample mean and then the 
distribution fitting tool has one less parameter to search, which may be viewed as a gain of one 
DF. On the other hand, we are using the sample mean to estimate the population mean, which 
amounts to a loss of one DF. So the DF may stay the same for this case. Furthermore, we should 
take redundancy into account when counting the DF. The DF adjustment regarding constraints 
when fitting distributions is a potential topic for future study. 

Consider applying User-Defined CDF to model sample data with two or multiple 

modes. A distribution finding tool is designed to locate a distribution from its distribution gallery 
to best represent the sample data. However, if a sample data set clearly exhibits more than one 
mode in its frequency histogram, a distribution finding tool is not likely to find an appropriate 
distribution to model this data set. An example of this would be if one mode occurs at the lower 
end and the other mode occurs in the middle of the data set. In this situation, using a User-
Defined CDF to model the sample data is suggested.  

Additional research for Beta and Log-Normal distributions: can the “world” be 

described by Beta and Log-Normal? Based upon our empirical studies using the USCM9 
subsystem-level and suite-level CERs, the beta and log-normal distributions often fit the 
frequency histogram reasonably well (i.e., often ranked number 1 or number 2 in the report). 
Should we go ahead and use these two distributions to model CER error distributions for cost 
uncertainty analysis? 
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A beta distribution is commonly defined by four parameters: the lower and upper bounds 

of the distribution (L and H) and two shape parameters (α and β). This distribution is largely 
used in management science to model continuous probability distribution over a finite interval. 
Many analysts prefer using beta distribution in describing cost uncertainty because it is finite, 
continuous, and allows virtually any degree of skewness and kurtosis. Also, it tends to have more 
density around the mode than the triangular distribution, which is considered to be a plus. 
Besides the shape parameters, the low/high bounds of the beta distribution are also estimated by 
the distribution finding tool. Since the boundaries can have a substantial impact on the beta 
distribution, we should explore more realistic examples to determine whether beta distribution is 
more probable than Student’s t and Log-t distributions to model CER errors. 

Analyze CER error distributions for the USCM9 component-level CERs.  This study 
analyzes the error distribution for several USCM9 subsystem-level CERs. We should also use a 
distribution fitting tool to analyze the error distribution for the USCM9 component-level CERs.  
This will be a useful follow-on study because the lower level CERs have many more data points, 
so we can apply a distribution fitting tool objectively to model the error distributions for USCM9 
CERs. 
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APPENDIX A – DATA SET A 
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APPENDIX B – DATA SET B 

 
 



Tecolote Research, Inc. PRT-152, Fit, Rather Than Assume, a CER Error Distribution 

Page 30 

APPENDIX C – MUPE/ZMPE FACTOR PI = UNIVARIATE PI 

Given the following factor equation with a multiplicative error term: 

Yi = β*Xi*εi for i = 1, …, n (42) 

where: 
 β = the factor (to be estimated by the regression equation) 
 n = sample size 
 Yi = the ith observation of the dependent variable (i = 1, …, n) 
 Xi = the ith data point of the independent variable (i = 1, …, n) 

 εi = the error term (with a mean of 1 and a variance σ2) 

Both the MUPE and ZMPE methods derive the same solution for Equation 42. It can be shown 

within two iterations that the MUPE solution (denoted by b) for the factor β is a simple average 
of the Y to X ratios: 
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where n is the sample size and Z denotes the Y to X ratio. 

This is also the solution using the ZMPE method and it is even more straightforward to 

derive the factor β of Equation 42 using the ZMPE method due to the following constraint: 
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Based upon Equation 16 above, a (1-α)100% PI for a future observation Y, when X is at 
xo is given below: 
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We now prove that the SE in the above equation is equal to the coefficient of variation (CV) of 
the Y to X ratio: 

SE = Sz / Z  = CV(Z) = CV(Y/X) (45) 

where: 

Z = Y/X 

Sz is the sample standard deviation of Z 

Z  is the sample mean of Z 

Equation 45 can be verified by the definition of the standard error of regression equation and 
Equation 43: 
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where wi is the weighting factor for the ith data point (i = 1,…, n). Note that for the MUPE and 
ZMPE CERs, the weighting factor for the ith data point is the square of the reciprocal of its 
predicted value; namely, wi = (1/bxi)

2 for i = 1,…, n.  
 
As shown by Equation 46, the SE measure is the same for both the univariate analysis and 
MUPE/ZMPE factor CER, except that the ratios are used to compute the CV for the 
MUPE/ZMPE factor CER. Therefore, these two PIs are the same, since the SE, location factor, 
and t ratio are all the same between them. 


