Propulsion Cost Model (PCM)

Presented to:

Presented by:

Richard Webb KAR Enterprises

Outline

- PCM as part of Project Cost Estimating Capability (PCEC)
- Propulsion Cost Model
 - Overview
 - Liquid Rocket Engines
 - Nuclear Thermal Rocket
 - Solid Rocket Motors
- Summary and Next Steps

What is PCEC?

- The Project Cost Estimating Capability (PCEC) is the primary NASA-sponsored parametric cost tool for space system estimates
 - Developed and maintained by NASA at MSFC beginning in late 2013
 - Excel Add-in that provides capabilities and cost estimating artifacts used to build a spacecraft cost estimate in Excel
 - Based on more than 70 missions/system elements, but with separate approaches for modeling different types of systems
 - Robotic Spacecraft (Robotic SC)
 - Crewed & Space Transportation Systems (CASTS)
 - Completely transparent tool: no code passwords, protected sheets, etc.
 - Available to the general public via ONCE and the NASA Software Catalog (https://software.nasa.gov/)

PCEC Email Contact: MSFC-PCEC@mail.nasa.gov **Application Website(s):** ONCE (NASA Civil Servants)

https://software.nasa.gov/, search for PCEC

Propulsion Cost Model (PCM) Overview

What is PCM?

- A new model for use in estimating the life cycle cost of different earth-toorbit and in-space transportation propulsion systems
- Add-on model to CASTS PCEC Model
 - Standalone model to PCEC/CASTS
 - Linkable to PCEC estimate similar to other specialized NASA models
 - Suite of tools: model + historical data (Unrestricted and Restricted versions)
 - Spreadsheet-based cost model plus documentation
 - Historical data
 - Technical and programmatic data (Unrestricted)
 - Non-recurring development and recurring production cost data (Restricted)

Why PCM?

- Plato: "Necessity is the mother of invention"(?)
- Or not . . .

I don't think necessity is the mother of invention. Invention, in my opinion, arises directly from idleness, possibly also from laziness—to save oneself trouble. — Agatha Christie

PCM Capability

PCM Capability

- Ultimately: Liquid Rocket Engines, Solid Rocket Motors, Nuclear Thermal Propulsion, . . .
- Current near term release = Liquid Rocket Engines

Availability

- Similar approach to PCEC/CASTS
- General Public (Unrestricted) model (spreadsheet) + documentation
- NASA-approved Users (Restricted) model + documentation
 - Manual and Historical Technical data sheets plus (restricted) source cost database/calibrations

PCM Liquid Engines Summary

- Parametric model built on non-cost technical and programmatic characteristics
 - Engine cycle, propellants, thrust, production rates and quantities, etc.
 - Certification testing approach, design maturity, state of the art, etc.
- Based on Liquid Rocket Engine Cost Model (LRECM)
 - Developed by Rocketdyne (circa 1992-2003)
 - "Bought" by NASA mid-90's; updated mid '00's
 - "Engineering" model limited number data points
- Modifications for PCM version
 - Adding additional data points
 - Propellant combinations, pressure (versus pump) fed
 - Modifying/changing CER's
 - Calibration of historical engine data points
 - Fixed/variable production cost as function of production rate

PCM Liquid Engines Cost Elements

- OUTPUT: Cost Elements/Work Breakdown Structure
 - Model Base = constant Millions of Dollars, 2015 (M 2015\$)
 - Escalation using NASA New Start or user-input indices

ST SUMMARY				
31 JOIVINIAN1	R	aw Output	Fsc	alated Value
Design, Development, Test, & Engineering	IX.	aw Output	LJC	alated value
besign, bevelopment, rest, & Engineering				
		2015 \$M		2020 \$M
Design / Development Engineering Labor	\$	694.92	\$	783.59
Development Test Hardware	\$	1,847.03	\$	2,082.73
System Test Hardware	\$	1,754.68	\$	1,978.59
Integration, Assembly, Checkout	\$	92.35	\$	104.14
System Test Operations	\$	1,332.03	\$	1,502.01
System Test Labor	\$	896.21	\$	1,010.58
Development/Qualification Test Propellants	\$	435.82	\$	491.43
Tooling and Ground Support Equipment	\$	414.17	\$	467.02
Tooling	\$	41.42	\$	46.70
Mechanical/Electrical GSE	\$	372.75	\$	420.32
System Engineering & Integration	\$	44.36	\$	50.02
Program Management	\$	116.90	\$	131.82
DDT&E Tota	I \$	4,449.41	\$	5,017.18

oduction			
oduction			
		2015 \$M	2020 \$M
Average Unit Hardware	\$	28.00	\$ 31.57
Integration, Assembly, Checkout	\$	2.92	\$ 3.29
System Engineering & Integration	\$	2.06	\$ 2.32
Program Management	\$	1.37	\$ 1.55
Average Unit Cost	\$	34.35	\$ 38.73
Total Production Quantity		98	
Total Production Cost	\$	3,366.35	\$ 3,795.92
'			
T1,1	\$	84.92	\$ 95.76
Variable Cost per Engine*	\$	29.32	\$ 33.06
Fixed Cost per Year *	\$	87.75	\$ 98.95
* Estimated based on Steady State Production			
perations and Support			
		2015 \$M	2020 \$M
Ops and Support Cost per Engine per Flight	\$	0.39	\$ 0.44
Ops and Support Cost per Engine per Flight Ops and Support Cost per Flight	\$ \$	0.39 1.95	\$ 0.44 2.19

PCM Liquid Engines Source Database

Added to LRECM Data Set	Engine	Cycle	Propellants	Reusable /Expendable	Thrust (klbf)	Launch System(s)
	F1	Gas Generator	RP/LOX	Expend	1,522	Saturn V
0	MA5	Gas Generator	RP/LOX	Expend	490	Atlas II
0	RS27	Gas Generator	RP/LOX	Expend	237	Delta II
	J2	Gas Generator	LH2/LOX	Expend	230	Saturn II
Х	J2X	Gas Generator	LH2/LOX	Expend	294	not apply
Х	RL10A3	Split Expander*	LH2/LOX	Expend	15	Multiple
0	RS68	Gas Generator	LH2/LOX	Expend	797	Delta IV
Х	LR87	Gas Generator	Hypergolic	Expend	543	Titan IV
Х	LR91	Gas Generator	Hypergolic	Expend	105	Titan IV
Х	Viking VI	Gas Generator	Hypergolic	Expend	171	Ariane 4, 5
	SSME	Stg Combustion (2 shaft)	LH2/LOX	Reus	512	Shuttle
Х	RD180	Stg Combustion (1 shaft)	RP/LOX	Expend	930	Atlas V
Х	LM Ascent	Pressure-Fed	Hypergolic	Expend	3.5	Lunar Module
Х	LM Descent	Pressure-Fed	Hypergolic	Expend	10	Lunar Module
Х	OMS	Pressure-Fed	Hypergolic	Reus	6	Shuttle
Х	RL10C1	Split Expander*	LH2/LOX	Expend	22.9	Multiple
	*Split Expander = use Gas Generator					ator

0	Included in original LRECM data but not documented
X	Added to LRECM data set

PCM Liquid Engines Key Variables

- Key Variables
 - Technical & Programmatic Characteristics
 - Thrust, Chamber Pressure (Pc), Total and Average Production Rates/Year, etc.
 - "K1" Variable value = f(Engine Cycle + Propellants)
 - Engine Cycle: Gas Generator, Staged Combustion (1, 2-shaft), Pressure Fed
 - Reusable/Expendable
 - Propellants: Fuel (RP, LH2, A-50) + Oxidizer (LO2, N2O4)
 - Subjective Variables
 - · Manufacturing Maturity, Design Maturity, Certification Approach, etc.
- CER Example: Flight Average Unit Cost (AUC)

<u>AUC</u> = K1 Factor x Thrust Factor x Pc Factor x Mfg Factor x Constant x Adjustment Factor Where...

- K1 Factor = from lookup table; f(Cycle, Propellant)
- Thrust Factor = 0.2455 x Thrust^{0.54}
- Pc Factor = multi-order polynomial: f(Pc, K1)
- Manufacturing Factor = lookup table; Mfg Maturity Level, Mfg Automation Level
- Constant = 3.000 (M 15\$'s)
- Adjustment Factor = (restricted version only), value at which AUC = historical calibrated data

PCM Liquid Engines Documentation

- Available Documentation
 - Unrestricted
 - General User's Guide
 - Specific (e.g. LRE) Guide
 - Historical Database Technical Data Sheets
 - Restricted
 - Unrestricted documentation
 - + Historical Database Source Cost Data and DDTE and AUC Adjustment Factors
- Technical Data Sheets
 - Part of CASTS "Virtual Black Books" data set
 - Modeled after NASA Cost Analysis Data Requirement (CADRe) historical project data sets
 - One for each member of LRE historical data set
 - Contents: Overview, development and production history, primary technical parameters, engine description

PCM Nuclear Thermal Rocket Overview

- Why a Nuclear Thermal Rocket (NTR) parametric cost model?
 - Necessity (again) inquiring minds want to know
 - More efficient than chemical propulsion for interplanetary travel (and beyond)
 - Nuclear Thermal and Nuclear Electric are two primary Nuclear Thermal Propulsion (NTP) concepts
 - Nuclear materials heat/expand working fluid (usually liquid hydrogen) no combustion
 - Replaces combustion/expansion of chemical fuel and oxidizer
- PCM NTR cost model is based on work done by Rocketdyne for NASA Glenn (then Lewis) Research Center circa 1992
 - Original work defined two models:
 - 1) In-situ nuclear power generation (e.g. located on Moon for Moon-base power generation)
 - 2) NTR propulsion for in-space transportation

PCM NTR Source Data and CERs

- PCM model currently focused on Nuclear Thermal in-space propulsion
 - In-situ power model not included with PCM at present
- Primary NTR model source data
 - Nuclear Engine for Rocket Vehicle Applications (NERVA)
 - Plus preceding ROVER program
 - Systems for Nuclear Auxiliary Power (SNAP) series
 - Space Station Freedom (SSF) power studies Rocketdyne
- Primary independent variables
 - Reactor Thermal Power (MWth: megawatts thermal)
 - Weight: CERs for non-nuclear subsystems

PCM NTR Example Output/CER

Example input/output for NTR system

	Dev			Unit		TOTAL	
Propellant Supply	\$	435.10	\$	355.05	\$	790.15	
Thruster	\$ 2	2,029.17	\$	360.00	\$ 2	2,389.17	
Structures	\$	116.47	\$	15.53	\$	132.00	
Control/Condition Monitor	\$	68.02	\$	24.00	\$	92.02	
SUBTOTAL	\$ 2	2,648.76	\$	754.58	\$3	3,403.34	
Ground Test Hardware	\$	830.04			\$	830.04	
Ground Test	\$	695.76			\$	695.76	
SEI	\$	834.91			\$	834.91	
Assembly			\$	75.46	\$	75.46	
Acceptance Test			\$	124.51	\$	124.51	
PM&S			\$	47.73	\$	47.73	
TOTAL	\$!	5,009.47	\$1	L,002.27	\$6	5,011.74	

Thrust 75 klbf
Reactor Power 1600 MWth
Reactor Temp 2700 K

Example CER: Nuclear Reactor (portion of Thruster subsystem)

Reactor Development M15\$ = [376 + (880 x MWth^.07)] x 3.000 x NERVA Inheritance Factor

PCM Solids Overview

- Why a Solid Rocket Motor (Booster) parametric cost model?
 - Expand basis of current CASTS top-level CER for large-diameter SRMs
 - Adds small-diameter SRM data set
 - Expands large-diameter data set
 - More data points + greater insight/depth
 - E.g. end item + activity level CERs
 - Case, propellant, nozzle; mix/cast, QA/Xray, nozzle buildup, integration, etc.
 - Reusable versus expendable recurring cost contributors
- Enable "better" SLS + other launch systems non-recurring and recurring cost analyses
- Provide additional insight to understand/address solid industry issues
- Current PCM Status: next on the list

PCM SRM Basic CASTS CER

15

CASTS provides point-of-departure CER and data set

Unit Cost versus Total Impulse = Average Thrust x Burn Time

PCM Solids Issues (1 of 2)

- Sustainability of large-diameter solid motor industrial base
- Cost/pound of solid propellant (Ammonium Perchlorate (AP)) vs. demand

Comparing Space Shuttle RSRM to other SRMS						
Missile Program	Pounds of Propellant	Equivalent # of SRMS to Equal One Space Shuttle RSRM				
Space Shuttle RSRM	1,106,059	1				
Trident II D-5	110,200	10				
Minuteman III (MM III)	66,642	17				
Ground Missile Defense (GMD)	43,469	25				
Kinetic Energy Interceptor (KEI)	20,026	55				
Patriot Advanced Capability-3 (PAC-3)	350	3,160				
Guided Multiple Launch Rocket System (GMLRS)	216	5,121				
Advanced Medium-Range Air-to- Air Missile (AMRAAM)	113	9,788				
Hellfire	20	55,303				
Javelin	3	368,686				

NASA man-launched space systems represented ~70% of the demand base — that is now gone

PCM Solids Issues (2 of 2)

- AP Production pricing per pound very sensitive to quantity procured
 - Reflects significant fixed cost to maintain production capability (~\$50M/yr)
- NASA decisions impact recurring cost of many DOD agencies/programs

PCM Summary & Next Steps

- PCM Summary
 - PCM development is "demand driven"
 - Addresses liquid, nuclear, solid propulsion systems
 - Provides top level insight into non-recurring and recurring cost of alternative propulsion options for ballistic, earth-to-orbit, and in-space transportation systems
 - Unrestricted version available for general distribution
 - Restricted version available to TBD NASA-approved personnel
- PCM Next Steps
 - Release Liquid model and documentation
 - · Selected beta-testing
 - Finalize, then release NTR model and documentation
 - Develop, Document, Release SRM model
 - Potential Enhancements: Decomposition of cost estimates to lower level end-item and activity-based cost elements