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Outing the Outliers – Tails of the Unexpected 

 
 

 

Cynics would say that we can prove anything we 

want with statistics as it is all down to 

interpretation and misinterpretation. To some 

extent this is true, but in truth it is all down to 

making a judgement call based on the balance of 

probabilities. 

 

The problem with using random samples in estimating is that for a small sample size, the values 

could be on the “extreme” side, relatively speaking – like throwing double six or double one 

with a pair of dice, and nothing else for three of four turns. The more random samples we have 

the less likely (statistically speaking) we are to have all extreme values. So, more is better if 

we can get it, but sometimes it is a question of “We would if we could, but we can’t so we 

don’t!” Now we could argue that Estimators don’t use random values (because it sounds like 

we’re just guessing); we base our estimates on the “actuals” we have collected for similar tasks 

or activities. However, in the context of estimating, any “actual” data is in effect random 

because the circumstances that created those “actuals” were all influenced by a myriad of 

random factors. Anyone who has ever looked at the “actuals” for a repetitive task will know 

that there are variations in those values. What we want to know is, is there a pattern to the 

variation, and therefore can we pick a value that suits our purpose, or better still three values1; 

generally speaking we will want to avoid the extreme values.  

To help us identify whether a value is reasonably representative of all the others, and is not an 

outlier, or more generally, where a sample statistic falls in relation to the population to which 

it belongs, statisticians have developed a number of tests, some of which are known by the 

name of their “inventor” or who added significantly to the “body of knowledge”, and others by 

a single latter (e.g. Z, t, F or U) 

Before we explore these, we need to explore the idea of making an assumption (or a 

Hypothesis) and then how we might substantiate or repudiate that assumption or hypothesis. 

                                                 
1 Optimistic, Most Likely and Pessimistic perspectives, but not necessarily Minimum or Maximum in an absolute 

sense 

 

… a word (or two) from the Wise? 

 

“The great tragedy of Science: the slaying 

of a beautiful hypothesis by an ugly fact” 

Thomas Henry Huxley 

(1825-1895) 

British Biologist 
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1. Hypothesis Testing 

Statistical Tests usually involve either Significance Testing or Hypothesis Testing, where the 

practitioner, estimator, planner etc tests the validity of an assumption or hypothesis against 

another. These hypotheses are usually referred to as: 

 The Null Hypothesis 

 The Alternative Hypothesis 

As with everything statistical, there is always more than one interpretation of these things. We 

have to decide which perspective we are going to take: Something is assumed to be 

true until we prove it is false (Significance Testing), or something is assumed to be 

false unless we can prove it is true (Hypothesis Testing). This is akin to the legal 

perspective of “innocent until proven guilty”! Both type of test refer to Hypotheses, 

and sentence them based on the level of significance calculated; to some extent this is 

the difference between the optimistic and pessimistic perspectives – is this glass half-

full or half-empty? 

 

 

 

Definition 1: Null Hypothesis 

 

In experiments, or in using empirical results, the Null Hypothesis generally assumes that the 

implied relationship in the data is wrong (Field, 2005, p.739), and we have to test whether that 

assumption could be true. In the context of the justice system, the Null Hypothesis can be 

likened to “Not Guilty”; it is the prosecution’s job to show that the evidence does not support 

that assumption, beyond reasonable doubt. 

 

 

 

Definition 2: Alternative Hypothesis 

 

The Alternative Hypothesis is called the Experimental Hypothesis by Field (2005, p.730). If 

the Null Hypothesis can be shown to be wrong then the Alternative Hypothesis is implied to 

be correct, i.e. that the relationship generated by the empirical results is valid. In the context of 

our judicial example, the defendant has just been found guilty. 

Definition 

Null Hypothesis 
A Null Hypothesis is that supposition that the difference between an observed value or effect 

and another observed or assumed value or effect, can be legitimately attributable to random 

sampling or experimental error. It is usually denoted as H0. 

Definition 

Alternative Hypothesis 
An Alternative Hypothesis is that supposition that the difference between an observed value 

and another observed or assumed value or effect, cannot be legitimately attributable to random 

sampling or experimental error. It is usually denoted as H1. 

Presented at the 2016 International Training Symposium: www.iceaaonline.com/bristol2016



  Outing the Outliers – Tails of the Unexpected 

© Copyright 2014-2016   Alan R Jones. All rights reserved 3 

As with any Justice System though, there is always the possibility of a miscarriage of justice, 

where the verdict of the court is inadvertently misplaced based on the evidence presented; the 

same can be said of Statistical Hypothesis Testing. We can classify any errors in the 

interpretation of Statistical Tests in two ways, for instance: 

 Type I Error: False positive i.e. accepting a hypothesis we should have rejected

  e.g. reaching an innocent verdict for a guilty person 

 Type II Error: False negative i.e. rejecting a hypothesis we should have accepted

  e.g. reaching a guilty verdict for an innocent person 

The problem is that if we decrease the chance of one type of error, then generally speaking we 

will be increasing the other type of error. Consequently, as estimators, we have to decide which 

of the two errors are the lesser or greater of the two evils: 

1 a) Be too optimistic – win the job and lose money … or 

1 b) Be too pessimistic – avoid losing 

money by not winning the job 

2 a) Be too optimistic – treat a disease with 

medication that doesn’t actually work 

… or 

2 b) Be too pessimistic – don’t treat a 

disease with medication that would 

have worked had we used it 

 

In terms of “Tails of the Unexpected”, this is not a spelling mistake, but a reference to the low 

probability of values falling in the tails of a Probability Distribution. The “tails” being those 

little curly bits at either “end” of a Probability Distribution (either CDF or PDF/PMF) that go 

“flat” or “asymptotically flat” along the axis as illustrated in Figure 1. Values in these areas 

have low significance in the context of all others. 

 

 

Figure 1:  Hypothesis Testing - A Tale of Two Tails 

 

The tests are all implying that the chances of getting a value in either tail, that far away from 

the assumed value of the Null Hypothesis, is remote. 

Tests can have the following tails: 
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Left-tailed Test: The Alternative Hypothesis is that the true value is less than the value 

assumed in the Null Hypothesis – used to test for a negative difference. 

Right-tailed Test: The Alternative Hypothesis is that the true value is greater than the value 

assumed in the Null Hypothesis – used to test for a positive difference 

Two-tailed Test: The Alternative Hypothesis is that the value assumed in the Null 

Hypothesis is simply wrong – used to test that there is simply a difference 

between the values and it doesn’t matter which way 

When it comes to our interpretation of “beyond reasonable doubt”, we have a choice over the 

level of probability that constitutes that “reasonable doubt”; we can be excused for thinking 

that it has to be outside the realms that we can physically determine on a graph, but in truth, 

rarely is it interpreted with such extreme vigour! Instead the acceptable level of probability or 

confidence in the result, is dependent on a degree of estimating judgement, or is a matter of 

custom and practice. (However, we should challenge custom and practice if we do not think it 

is appropriate – that’s all part of the reality of being an estimator!)  

Depending on the context of the analysis being performed, and the consequences of getting a 

false positive or a false negative test result, the significance levels chosen are often from, but 

not restricted to, the values in Table 1. To continue the earlier legal analogy it is recommended 

that the Significance Level is decided before the data is analysed to avoid “selection bias” in 

choosing a particular answer; in judicial terms we might be accused of “leading the witness”. 

 

Possible Context 

where the consequences of being wrong are … 

Confidence 

Level for 

Left or 

Right-Tailed 

Tests 

Confidence 

Interval  

for Two-

Tailed Tests 

Moderate – used in situations where a general purpose Pareto 

type of approach is acceptable or where the consequences of 

getting a Type I Error (False Positive) is highly undesirable 

10% / 90% 80% 

High – with possible financial losses or minor reputational 

damage,  
5% / 95% 90% 

High – with possible heavy financial losses or serious 

reputational damage 
2.5% / 97.5% 95% 

Very high – with potentially life-threatening implications e.g. 

medical research where we want to minimise the risk of a 

Type II Error (False Negative) 

1% / 99% 98% 

Unthinkable or untenable (truly beyond reasonable doubt) 0.1% / 99.9% 99.8% 

Table 1:  Typical Confidence Levels (Significance Levels) 
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1.1. Mitigation of Type I and Type II Outlier Errors 

When we run any statistical test we always run with the risk of being misguided by the data 

available, i.e. accepting a hypothesis we should have rejected (Type I Error) or rejecting a 

hypothesis we should have accepted (Type II Error). This is not because we are fundamentally 

inept, but because the data sample has led us to that conclusion; if we had had different data 

(possibly just one more data point) we may have reached a different conclusion. 

Potentially both types of error may lead to our estimates being skewed one way or the other; 

leaving in data that we could have legitimately removed, and could lead to a skewed or even 

atypical answer. However, removing a legitimate “extreme value” outlier can be equally 

flawed, giving more confidence in a “central” value than is due in the wider reality of things. 

For example, suppose we wanted to know the average weight of an orange. To 

do this we might weigh six pieces of fruit from a bowl, and having made the 

assumption that they were all oranges, divide by six to get the average weight 

of an orange. Unfortunately, we may have failed to notice that one of the alleged 

oranges was in fact an apple. (Accept it; people do dumb things in life!) 

Total weight of 6 “alleged oranges” = 1200g 

Estimated average weight of an orange =  200g 

Actual weight of 1 rogue apple    = 150g 

Actual weight of 5 real oranges      = 1050g 

True average weight of an orange       =  210g 

The average weight of a real orange is 5% higher than our estimated weight. 

In this example we can resolve the issue without the need for a statistical test by resorting to 

one of the fundamental principles of estimating: normalisation, or comparing like with like; in 

this case by eliminating all fruit that are not oranges! 

We can always try to mitigate the effects of the outlier by factoring. Assuming that we knew 

as a “Rule of Thumb” that an orange weighed some 40% more than an apple of similar size, 

then we could normalise the quantity of oranges in our sample to reflect that we have 55/7 

equivalent oranges2. 

When we are “certain” that our comparative data is equivalent and comparable, or has been 

normalised to an acceptable level of equivalence and comparison, then we must stand back and 

consider whether we still have any outliers. 

 

 

 

                                                 
2 1 orange = 1.4 apples = > 1 apple = 5/7 orange. Note: this relationship is not always true; the data is based on 

bowl of fruit selected at random from the kitchen at home. I knew I’d find a practical use for all that fruit! 
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 [ Caveat Augur ] 
 

There is a view that any removal of outliers is inappropriate, especially if we are 

certain that the data is all drawn from the same population – if an atypical value has 

occurred once then who’s to say it won’t occur again? We have to have some 

sympathy with that argument, but Estimators also have to be pragmatic; there’s no 

point in allowing for the improbable if all we want is the typical value or range of 

values.  

 

 

Note:  Taking account of the improbable may be better served in many cases by examining the 

risks, opportunities, or simply the range of uncertainty around the basic task. 

Consider the example of some sequential data. If we have two possible outliers in close 

proximity (e.g. in a time or other natural sequence) where one value is high and the other is 

low, we need to assure ourselves that we have not uncovered a case of “data contamination” 

where values have been incorrectly recorded against one event or activity rather than another. 

A not uncommon example is where manual recording of cost or time is required. Can we really 

be sure that some of the costs have not “migrated” from one event or activity to the other to a 

greater extent than might be expected to happen in the normal course of operations as a 

consequence of human error? We can’t be sure of that even when we don’t see any obvious 

outliers – so we have to accept that that is part of the natural “noise” or scatter around the true 

relationship. However, if we do have two suspected outliers that have cross-contaminated 

values, we have three options: 

1. Reject both the potential outliers (with a loud “tutting” noise) 

2. Estimate (or is that “guess”) the degree of contamination and artificially adjust the 

“actuals” so that we can then use it along with the other data we have. (Maybe just 

take the average of the two for each instead?) 

3. Make an assessment of the potential degree of contamination as above, then put the 

two outliers to one side. We can then perform the analysis without the two outliers 

and create our estimate using the remaining data. Finally, we can then use the two 

adjusted data points that we set aside to test the sensitivity or sensibilitity of our 

estimate, asking ourselves whether the adjusted data points fit the pattern? 

Personally, I would always go with the last one, even though the second one is making 

some attempt at normalisation. 

When we look at the data we should keep an open mind about the nature of the underlying 

relationship that we expect. For instance, in Figure 2 (left-hand plot) we might suspect that 

there is a potential outlier against an assumption of a linear relationship, but if we can convince 

ourselves that the relationship is non-linear (right-hand plot), then the case for a potential 

outlier diminishes. This does not mean that we should always assume a non-linear relationship 

just to accommodate an apparent outlier. We have to ask ourselves which relationship makes 

more sense in it context. 
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Figure 2:   Example – A Linear Outlier may not be a Non-Linear Outlier 
 

At the moment though all we have is conjecture about whether something is an outlier or not. 

There are a number of tests we can to use to aid us in that decision rather than leave it down to 

subjectivity (remember that two estimators’ subjective opinions are likely to differ.) Before we 

consider some of the better known ones, they do all have one shortfall in common. Most of 

them assume that data is distributed Normally (broadly speaking) around some underlying 

pattern or relationship. This is probably only true for linear relationships. If we think that the 

relationship is non-linear instead, then other models of scatter are more appropriate. For 

instance, the Lognormal Distribution is more appropriate for the scatter of the data around a 

class of non-linear relationships called Power Functions. 

If we have a non-linear relationship, then we should always consider whether we can transform 

it to a linear one before we apply these Outlier tests. If we are unhappy with assumption of 

normality, we can always try fitting the data scatter to some other non-Normal distribution. It 

is important where possible to consider the scatter around the assumed relationship. 

Let’s look at some of the techniques open to us to identify potential outliers. 

 

2. Outing the Outliers: Detecting and Dealing with Outliers 

A very important type of test that estimators and other analysts should perform, but one perhaps 

(at the risk being accused of an over-generalisation) that is not always performed quite as 

formally as it might, is in the detection of Outliers. 

There is always the easy option, of which we have probably all been guilty at some time, of 

looking at some data and excluding a value or two that clearly don’t match the pattern formed 

by the rest of the data. It doesn’t mean we were or were not justified in making that judgement 

call, but we can hardly claim that it was TRACEable3. 

So, what is an “outlier”? The Oxford English Dictionary (Stevenson, 2011) gives us four 

alternatives: 

i. A person or thing situated away or detached from the main body or system 

ii. A person or thing differing from all other members of a particular group or set 

iii. In Geology: A younger rock formation isolated among older rocks 

                                                 
3 TRACE = Transparent, Repeatable, Appropriate, Credible and Experientially-based 
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iv. In Statistics: A data point on a graph or in a set of results that is very much bigger or 

smaller than the next nearest data point 

We would probably accept the first definition, but in relation to the second option, good 

estimating practice would encourage us to avoid comparing like with unlike as part of our 

standard normalisation process. 

The only link we can probably make to the third definition is that inclusion or exclusion of 

outliers is a contentious issue, and estimators may find themselves in-between a rock and a 

hard place whatever they decide to do! 

The fourth option sounds quite promising, but fails if we have two similar points close to each 

other but distant from the rest; we might want to consider them both as potential outliers.  

An outlier is sometimes referred to as an “extreme value”, implying a very low or high value 

relative to all others, but this may not be the case as we will see shortly; it may be just 

“displaced” from a pattern. This “extreme value” view is somewhat one-dimensional, and 

estimating is often a multi-dimensional problem that we can only resolve by looking at the 

context within which the data was created. 

Let’s combine the first and last definition offered by the Oxford English Dictionary. 

 

 

Definition 3: Outlier 

 

There is no rigid quantification of what constitutes the degree of displacement of a potential 

outlier from the rest of the data pack, and each case should be examined on its own merits. 

Having said that all of the tests we will review have Confidence-based rules associated with 

them or implied by them. 

Consider the three plots of data in each of Figures 3 and 4. We have highlighted one data value 

or point differently to the rest. 

 In Figure 3, Example 1A the highlighted value appears somewhat displaced from 

the rest of the data. The intuitive response is usually to classify it as an Outlier. On 

the other hand, Example 1C would usually be considered to be an Inlier (i.e. not an 

Outlier) because its value is relatively close to the next smallest value. The difficulty 

arises with the middle one, Example 1B. If we moved it to the right we would 

probably say “Outlier”, whereas if we moved it to the left, we would lean more 

towards including it as an Inlier. 

 

Definition 

Outlier 
An outlier is a value that falls substantially outside the pattern of other data. The outlier may 

be representative of unintended atypical factors or may simply be a value which has a very low 

probability of occurrence. 
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Figure 3:   When does an Extreme Value Become an Outlier? Example 1 

 

 The second set of examples in Figure 4 is for the same three datasets but this time 

we have added some context to each in that we have related the values to some other 

variable (for example, linking a cost of an item to its weight). Now, we would 

probably conclude that Example 2A is in fact an Inlier, not an Outlier, and that 

Example 2C is in fact an Outlier, not an Inlier. The jury is still out on the middle 

one, Example 2B 

.  

 

Figure 4:   When does an Extreme Value Become an Outlier?  Example 2 
 

If we performed an internet search on the detection of outliers, we might conclude that there is 

almost a plethora of tests and techniques that we can apply to detect outliers; unfortunately, 

they don’t always point us to the same conclusion. In short there is no simple sure-fire test that 

will say once and for all “that is an outlier and that is not”, but before we jump straight into 

considering what’s on offer, let’s consider a few alternative strategies for dealing with outliers 

– think of it as a Quality Assurance Step: Preventative Action is better than Corrective Action.  

 

2.1 Tukey Fences 

Time for an honesty session: How many of us did a 

‘double take’ here having initially misread the title as 

‘Turkey Fences’? Hmm, surprisingly many! However, 

I can assure you that it does read ‘Tukey’ without an 

‘r’, after John Tukey (1977), who as an esteemed 

former Professor of Science could never be considered 

to be a Turkey! 
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Tukey’s technique is very simple and rather elegant, relying on our understanding of Quartiles 

and Interquartile Ranges in order to define two inner and two outer fences: 

1. Calculate the end of the first and third Quartiles of our data range. We can use Microsoft 

Excel’s function4 QUARTILE.INC(array, quart) where array is our data range, and 

quart is an integer referring to the Quartile we are interested in.  

2. Calculate the Interquartile Range (IQR) of the data sample. This is simply the difference 

between Quartile 3 and Quartile 1. 

3. The Upper Inner Tukey Fence is positioned at the value calculated by adding one and 

a half times the IQR to the value of the third Quartile 

4. The Lower Inner Tukey Fence is positioned at the value calculated by subtracting one 

and a half times the IQR from the value of the first Quartile 

5. The Upper Outer Tukey Fence is positioned at the value calculated by adding three 

times the IQR to the value of the third Quartile 

6. The Lower Outer Tukey Fence is positioned at the value calculated by subtracting 

three times the IQR from the value of the first Quartile 

7. Any data point falling between the Inner and Outer Fences (on the same side obviously) 

is categorised as a “potential outlier” 

8. Any data point falling outside the Outer Fences (on either side) is deemed to be an 

“extreme outlier” 

Now, the use of the IQR, and the choice of multipliers of one and a half and three, are not some 

random selection, but relate directly (in an approximation sense of the word, estimators will be 

pleased to hear) to the underlying assumption of Normality i.e. that the sample data is Normal 

Distributed. Figure 5 illustrates how Tukey Inner Fences are a very close approximation to a 

Standard Normal Distribution, being close to the Mean + 3 Standard Deviations that give us a 

99.73% Confidence Interval. (Although Figure 5 relates Tukey Fences to the Standard Normal 

Distribution, they can equally be mapped against any Normal Distribution.) 

 

                                                 
4 In Microsoft Excel 2003 and earlier the function was QUARTILE(array, quart) 
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Figure 5:   Principle Underpinning Tukey Fences 
 

From a practical standpoint most of us would probably accept that any value beyond  3 

Standard Deviations from the Mean (equivalent to the bounds of a 99.73% Confidence Interval) 

would be reasonable grounds for its classification as an outlier. The Inner Tukey Fences 

(equivalent to  2.7 Standard Deviations bounding a Confidence Interval of 99.3%) also sound 

like a reasonable basis for identifying potential Outliers. (See Table 2 for the supporting data.) 

Now we might wonder why Tukey stopped slightly short of the 3 sigma boundary, 

when if he had used a multiplier of 1.75 instead of 1.5, he would have been closer to 

that landmark boundary. But does it really matter? How precisely inaccurate do we 

need to be? 

We might also wonder why Tukey didn’t try to equate his Inner Fence to being 

equivalent to a 95% Confidence Interval. In terms of rounded numbers, this would have 

been equivalent to an IQR Multiplier of one. Let’s revisit that in Section 2.2. 

If we go beyond the Tukey Inner Fences to the Outer Fences, then these are pitched just outside 

the four and a half times the standard deviation (4.5 sigma) distance from the Mean. (This nine 

sigma range forms the basis of the oxymoron we refer to as six-sigma process control.) 

Anything beyond these points is in the “one in fourteen million” category. That by anyone’s 

reckoning is an extreme outlier! 
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Table 2:  Tukey Fences in the Context of a Standard Normal Distribution 

 

However, where we have small sample sizes (SSS) it may be more appropriate to assume a 

Student t-Distribution for the sample, and examine where the Tukey Fences stand in that 

context.  

 

 

Figure 6:   Principle Underpinning Tukey Fences Revisited with a Student t-Distribution 

 

Z-Score CDF Comment on Relevance of Points

Lower Outer Tukey Fence -3 -4.721 0.0001% Q1 - 3 x IQR

-4.5 0.0003% Mean - 4.5 x Standard Deviations

-3 0.135% Mean - 3 x Standard Deviations

Lower Inner Tukey Fence -1.5 -2.698 0.35% Q1 - 1.5 x IQR

-1 -2.023 2.15% Q1 - IQR

-2 2.28% Mean - 2 x Standard Deviations

-1 15.87% Mean - 1 x Standard Deviations

-0.674 25% Q1, End of First Quartile

0.000 50% Q2, Median

0.674 75% Q3, End of Third Quartile

1 84.13% Mean + 1 x Standard Deviations

2 97.72% Mean + 2 x Standard Deviations

1 2.023 97.85% Q3 + IQR

Upper Inner Tukey Fence 1.5 2.698 99.65% Q3 + 1.5 x IQR

3 99.865% Mean + 3 x Standard Deviations

4.5 99.9997% Mean + 4.5 x Standard Deviations

Upper Outer Tukey Fence 3 4.721 99.9999% Q3 + 3 x IQR

Standard Normal Distribution

IQR = Q3-Q1

Tukey Fence 

Muliplier

Presented at the 2016 International Training Symposium: www.iceaaonline.com/bristol2016



  Outing the Outliers – Tails of the Unexpected 

© Copyright 2014-2016   Alan R Jones. All rights reserved 13 

Let’s consider the case of a small sample size of 10 data points scattered around a Linear Line 

of Best Fit, implying 8 degrees of freedom in a Student t-Distribution. We can redraw Figure 

5 to get Figure 6. Similarly, if we assume that we have only have a sample size of 6, (and 4 

degrees of freedom), to which we want to find the Line of Best Fit, then we would get the 

Tukey Fences shown in Figure 7. This latter diagram seems to fit with the chosen Outer and 

Inner Fences more logically around the usual Significance Levels that Statisticians often bandy 

around of 1% and 5% respectively. 

 

 

Figure 7:   Principle Underpinning Tukey Fences Revisited with a Student t-Distribution 
 

The use of Tukey Fences hinges on the use of Quartiles. (Hmm, wouldn’t that make them gates 

and not fences?) However, by interpolation we can imply four quartiles from any two numbers, 

but from an estimating perspective it is hardly sensible and even less meaningful in the context 

of identifying outliers. There is a logical argument that the minimum sample size we should 

consider for quartiles is five, one to define each end of the four quartiles i.e. Minimum, Median, 

Maximum and the first and third Quartile end points, but even that is stretching the bounds of 

sensibility. There is perhaps an even stronger argument that there should be at least eight data 

points thus ensuring at least two data points fall in each quartile. 

Let’s look at an example in action. For this we will use the data from our earlier Example 2B 

in Figure 4. From a Confidence Interval perspective, this is equivalent to Figure 6 with 10 data 

points: 

1. Firstly we need to calculate the provisional Line of Best Fit (LoBF, which is only 

provisional because it will change if we identify and exclude an Outlier.) We can use 

the SLOPE(y-range, x-range) and INTERCEPT(y-range, x-range) functions in 

Microsoft Excel 

2. We can then determine how far each observed point deviates from the LoBF 
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3. Calculate the First and Third Quartile positions using QUARTILE.INC(quart) 

function, and calculate their difference as the Interquartile (IQR) Range 

4. Finally, we can construct our Tukey Fences around first and third Quartiles. 

The results are demonstrated in Table 3 and Figure 8. 

 

 

Table 3:  Example of Tukey Fences Based on Line of Best Fit Deviations 

 

 

Figure 8:   Example of Tukey Fences Based on Line of Best Fit Deviations 
 

x y
Line of 

Best Fit

Deviation 

from LoBF

Absolute 

Deviation

Deviation 

Rank

6 5 4.18 0.82 0.82 5

7 5 5.23 -0.23 0.23 10

8 7 6.27 0.73 0.73 6

9 8 7.31 0.69 0.69 7

11 9 9.40 -0.40 0.40 9

12 8 10.44 -2.44 2.44 2

13 10 11.48 -1.48 1.48 4

14 13 12.52 0.48 0.48 8

15 12 13.56 -1.56 1.56 3

16 18 14.61 3.39 < Not an Outlier 3.39 1

Count 10

Mean 11.1 9.5 9.50 0.00

Std Dev 3.48 3.98 3.63 1.64

1.04

-2.07 -3 -7.00

Quartile 0 -2.44 -1.5 -4.10

Quartile 1 -1.21

Quartile 2 0.13

Quartile 3 0.72

Quartile 4 3.39 1.5 3.61

3 6.51

Fence 

Position

Lower Outer

Lower Inner

Provisional Regression Slope

Provisional Regression Intercept

IQR 1.93

Upper Inner

Upper Outer

Fence 

Multiplier
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As we suspected in Example 2B earlier, this was going to be close. In this particular case the 

last data point (16,18) is not being flagged as a potential outlier by Tukey Inner or Outer Fences, 

lying just inside the Upper Inner Fence, which is at the 98.88% Confidence Level.  

Despite (or should that read ‘because of’) their simplicity and elegance, the integrity of Tukey 

Fences is not necessarily maintained if we add a potential outlier to the pot! For instance, 

suppose we find an extra value to add to our sample, Let’s suppose that it is y=12 when x=10. 

We may find the results surprising (Table 4 and Figure 9.) All of a sudden we get two potential 

outliers … the new point, AND the one that we just decided wasn’t an outlier! 

 

 

Table 4:  Impact of an Additional Data Point on Tukey Fences Based on Line of Best Fit Deviations 

 

As its deviation from the Line of Best Fit is only marginally greater than that of the original 

point that was just inside the inner fence from (Table 4), then intuitively we may have expected 

that this would have been similarly positioned, or at worst would have just popped over the 

fence onto the Potential Outlier side … if anything, as the deviation is very similar to the 

original suspect point then we may have expected it to confirm that neither point was an Outlier, 

not drag the other one with it into “no man’s land” between the Tukey Inner and Outer Fences. 

It is not unreasonable in some people’s mind to expect this to be flagged as a Potential Outlier. 

Unfortunately, life as an Estimator is full of disappointments and unwanted surprises. As we 

will observe from Table 4 the addition of the extra point has moved the goalposts. 

 

x y
Line of 

Best Fit

Deviation 

from LoBF

Absolute 

Deviation

Deviation 

Rank

6 5 4.68 0.32 0.32 8

7 5 5.69 -0.69 0.69 7

8 7 6.70 0.30 0.30 9

9 8 7.71 0.29 0.29 10

11 9 9.73 -0.73 0.73 6

12 8 10.74 -2.74 2.74 3

13 10 11.75 -1.75 1.75 5

14 13 12.75 0.25 0.25 11

15 12 13.76 -1.76 1.76 4

16 18 14.77 3.23 < Potential Outlier 3.23 2

10 12 8.72 3.28 < Potential Outlier 3.28 1

Count 11

Mean 11 9.73 9.73 0.00

Std Dev 3.32 3.85 3.35 1.90

1.01

-1.37 -3 -5.87

Quartile 0 -2.74 -1.5 -3.55

Quartile 1 -1.24

Quartile 2 0.25

Quartile 3 0.31

Quartile 4 3.28 1.5 2.63

3 4.95

Fence 

Multiplier

Fence 

PositionProvisional Regression Slope

Provisional Regression Intercept Lower Outer

Lower Inner

IQR 1.55

Upper Inner

Upper Outer
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Figure 9:   Example of Tukey Fences Based on Line of Best Fit Deviations 
 

We might conclude from this that Tukey Fences are not particularly robust for small sample 

sizes. However, here we have a peculiar set of values. The Median is a more robust measure 

of Central Tendency than the common Average or Arithmetic Mean, as it is less susceptible to 

change by an Outlier. Tukey’s technique doesn’t directly use the Median, but the Interquartile 

range around the Median. The introduction of the extra point has reduced the Median by 

equivalent of half a Rank Position, but it has also changed the third Quartile quite significantly, 

creating a knock-on effect to the Tukey Fence Positions. 

If we follow the advice and eliminate one outlier at a time then we would first remove the data 

point (10,12) as a potential Outlier, and then re-do the test with the remaining points, which as 

we saw previously suggests that this is not an Outlier. As the Deviations from the Line of Best 

Fit are so similar, we may feel a little uncomfortable rejecting one and not the other. The key 

to this is that word “potential”. Perhaps we should try an alternative test? 

 

 

… let’s just reflect for a moment on Confidence Intervals 

You may have spotted something of an inconsistency or double standards being applied 

when it comes to Outlier Detection with Tukey Fences and Hypothesis Testing. Surely the 

determination of potential outliers is a matter of hypothesizing on the existence of an outlier 

and then testing that hypothesis. 

When it comes to thresholds or Critical Values for Hypothesis Testing we are frequently 

happy to accept a 95% Confidence Interval, and sometimes as low as 90%, yet here we are 

with Tukey Fences pushing the boundaries as it were out to 99.3%. 

As we saw with Figures 5 to 7 the Confidence Interval associated with Tukey Inner Fences 

varies depending on the number of data points (and therefore Degrees of Freedom).  

With this in mind, for larger Sample Sizes, we might want to consider what we will call 

Tukey Slimline Fences. 
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2.2 Tukey Slimline Fences – For Larger Samples 

If we refer back to Figure 7, the Tukey Inner Fences with only 6 data points is equivalent to a 

Confidence Interval of some 96%. This is reasonably comparable with a Confidence Interval 

of some 95% for a Normal Distribution Range of the Mean  2 Standard Deviations.  

If we have a large data sample (nominally greater than 30 data points) then there may be a case, 

depending on the criticality of the estimate being produced, to use Tukey Fences with an IQR 

multiplier of  1 for Tukey Inner Fences to identify Potential Outliers, and  2 for the Outer 

Fences.  

However, we should not reject Potential Outliers determined in this manner without first 

performing another more rigorous test. 

Finally, in Microsoft Excel 20105 and later we can calculate Q1 and Q3, using the inclusive 

Quartile function QUARTILE.INC(array, quart) where quart takes the parameter value 1 or 

3 and array is the sample array. Consequently, we can derive Tukey Fences (either the Full 

Fat or Slimline version) based on an appropriate multiplier value, simply in relation to the first 

and third quartiles in a single step for each fence. 

 

For the Formula-philes: Tukey Fences in One Step 

 

Consider a range of values xi to xn in a sample. Denote the First and Third Quartile end points 

as Q1 and Q3. Consider also, a positive constant, m, to be used as the Interquartile Range 

multiplier in determining Tukey Fences. 

 

The Interquartile Range, IQR, is: 

 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1 

 

(1) 

 

Using (1) the Lower Tukey Fence, LTF, based 

on multiplier, m applied to the IQR, is: 

 

𝐿𝑇𝐹 = 𝑄1 −𝑚(𝑄3 − 𝑄1) 
 

(2) 

 

Similarly, the corresponding Upper Tukey 

Fence, UTF, can be expressed as: 

 

𝑈𝑇𝐹 = 𝑄3 +𝑚(𝑄3 − 𝑄1) 
 

(3) 

 

Re-arranging (2): 

 

𝐿𝑇𝐹 = (1 +𝑚)𝑄1 −𝑚𝑄3 

 

(4) 

 

Re-arranging (3): 

 

 

𝑈𝑇𝐹 = (1 +𝑚)𝑄3 −𝑚𝑄1 
 

 

(5) 

 

 

… typically the Inner Tukey Fences would use a value of m = 1.5, and the Outer Tukey 

Fences would use a value of m = 3, but any modified multiplier could be used 

 

 

 

                                                 
5 In earlier versions of Excel, the function was simply QUARTILE(array, quart). 
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2.3 Chauvenet’s Criterion 

Chauvenet’s Criterion (Chauvenet, 1863) is also based on that assumption of Normality (I 

agree; when was the life of an estimator ever normal?) It calculates the number of data points 

we might reasonably expect to get from a known sample size based on the Cumulative 

Distribution Function (CDF) of a Normal Distribution; in effect it uses the Z-Score. The 

procedure is simple enough. (If we are looking at one-dimensional data rather than a scatter 

around a line of best fit, then this procedure must be adapted to reflect a standard Z-Score.) 

1. Count the number of observations in the sample 

2. Calculate the Line of Best Fit (LoBF) using Microsoft Excel SLOPE(y-range, x-range) 

and INTERCEPT(y-range, x-range) functions 

3. Calculate the Deviation (difference) between each point and the Line of Best Fit 

4. Calculate the Deviation Mean using AVERAGE(range) in Microsoft Excel. Note: this 

should always be zero. If it is not, then there is something wrong with the LoBF. 

5. Calculate the Standard Deviation of the point Deviations using STDEV.S(range) in 

Excel 

6. Calculate the absolute value for a Z-Score for each Deviation (we can use ABS(Z) in 

Excel), i.e. find the absolute value of the difference from Step 3 (ignoring any negative 

signs) between each point’s deviation value divided by the Standard Deviation of the 

Deviations from Step 6. 

 Strictly speaking, we should deduct the Deviation Mean from each Point’s 

Deviation, but as it is zero (Step 4), it is irrelevant here. 

7. Determine the probability of getting a Z-Score larger than that calculated in Step 6 for 

each point (we can use complementary function 1-NORM.S.DIST(ABS(Z), TRUE) in 

Excel for this.) We must multiple this by two to get a two-tailed probability. 

8. Multiply the Z-Score probability for each observation by the total number of 

observations counted in Step 1 

9. Round the answer from Step 8 to the nearest integer. This then represents the number 

of observations we would reasonably expect to get this far from the Deviation Mean of 

zero with the sample size in question 

10. Any observation with a net score of zero can be deemed to be a potential outlier 

If we identify any potential outliers, we can then set them aside and repeat the procedure until 

there are no additional potential outliers detected.  

Applying Chauvenet’s Criterion to the data in Example 2B (reproduced in the upper half of 

Figure 10) we get the results in Table 5 which tell us that we shouldn’t expect any points to be 

as far away from the line of best fit as (16,18) appear to be. This blatantly contradicts the result 

indicated previously by Tukey Fences! (Oh dear!) 
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Figure 10:   Example of Using Chauvenet’s Criterion to Detect an Outlier 

 

 

Table 5:  Example Use of Chauvenet’s Criterion to Detect Potential Outliers 

 

x y
Line of 

Best Fit

Difference 

to LoBF

Absolute

Z-Score

Prob > Z

~ N(0,1)

Expected 

# Points

Rounded 

# Points

6 5 4.18 0.82 0.497 61.9% 6.19 6

7 5 5.23 -0.23 0.138 89.0% 8.90 9

8 7 6.27 0.73 0.446 65.6% 6.56 7

9 8 7.31 0.69 0.420 67.5% 6.75 7

11 9 9.40 -0.40 0.241 80.9% 8.09 8

12 8 10.44 -2.44 1.487 13.7% 1.37 1

13 10 11.48 -1.48 0.903 36.7% 3.67 4

14 13 12.52 0.48 0.291 77.1% 7.71 8

15 12 13.56 -1.56 0.954 34.0% 3.40 3

16 18 14.61 3.39 2.069 3.9% 0.39 0 < Outlier

Count 10

Mean 11.1 9.5 9.50 0.00  =

Std Dev 3.48 3.98 3.63 1.64  =

1.04

-2.07

Provisional Regression Slope

Provisional Regression Intercept
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Despite contradicting the conclusion indicated by Tukey Fences, the Chauvenet approach 

seems to be quite a reasonable one on the face of it for detecting a potential outlier. Whether 

we then choose to exclude the outlier from our analysis is a separate issue. However, as the 

number of observations or data points increases so too does the threshold or Critical Value of 

the Z-Score by which we calculate the number of observations that we might reasonably expect 

(i.e. equivalent to Step 8 in our procedure). Table 6 highlights the issue it then gives us: 

 The advantage that this technique gives us is an objective measure with a repeatable 

procedure.  

 Its shortcoming is that where the outlier is close to the Critical Value, then one more or 

one less point may pull it or push it back over the “wall”. 

 

 

Table 6:  Chauvenet’s Criterion Critical Values 

 

The principle that underpins Chauvenet’s Criterion is that it assumes probabilistically that we 

have a greater chance of getting a more remote value with larger sample sizes. This then implies 

that the Critical Value of the Z-Score increases with the number of data points. 

Some of us may find this disappointing as we might feel inclined to argue that a point is either 

an outlier or it is not! However, if we reflect on the Z-Score calculation then perhaps it is not 

so bad as there is a degree of compensation inherent in the calculation. 

 

 

 

 

 

 

 

 

 

Sample 

Size

Min Z-Score 

Probability to get at 

least one value

Potential Outlier 

when Absolute

Z-Score Exceeds

4 12.5% 1.534

5 10.0% 1.645

6 8.3% 1.732

7 7.1% 1.803

8 6.3% 1.863

9 5.6% 1.915

10 5.0% 1.960

12 4.2% 2.037

15 3.3% 2.128

20 2.5% 2.241

25 2.0% 2.326

33 1.5% 2.429

50 1.0% 2.576

75 0.7% 2.713

100 0.5% 2.807
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For the Formula-phobes: Z-Score Critical Values 

 

Suppose we have a small sample with a known outlier of a high value. Suppose that we 

increase the size of the sample with other values that are typical of the main body of data i.e. 

no more outliers. The Mean of the original sample will be skewed to the right in comparison 

with the larger sample, as the contribution made by the outlier’s inflated value will be diluted 

by dividing it by a larger 

sample size quantity. The 

deviation from the 

sample mean of the 

outlier is greater in the 

case of the large sample. 

 

Similarly, the Standard 

Deviation of the larger 

sample will be smaller 

too, but the effect of the 

larger sample size 

quantity is reduced by the 

square root function used 

in its calculation. 

 

 

As with Tukey Fences, we should resist any temptation to reject multiple outliers in a single 

iteration, especially if: 

 The points are at either end of the scale in relation to the main body of the data 

 The two points are not physically close to each other 

As Estimators, we are all prone to asking the question “what if”. For example: 

 In our example in Table 5, if the first point (6,5) was not available to us, then the value 

(16,18) would NOT be a potential outlier according to Chauvenet’s Criterion. (This 

would also have been the case with Tukey, by the way.) 

 The question many of us are probably thinking is “what if we added that extra data 

point as we did with the Tukey Fences example?” (Now is that me being clairvoyant or 

what?) 

Let’s do that. In Table 7 we have added the point (10,12) and re-run our calculations. 

This has gone in the opposite direction to Tukey Fences! This test is saying that neither of the 

two suspect points are outliers. Now some of us may be thinking words that we cannot print 

but they boil down to “Why does this happen?” or perhaps even “Statistics! I always said it 

was just all smoke and mirrors!” However, this is not always the case, the two tests are often 

consistent with each other, but sometimes we can get an arrangement of values where the 

bizarre happens. 

 

Sample
Point 

Number
Value Mean Std Dev Z-Score

1 3 0.828

2 5 0.414

3 6 0.207

4 14 1.449 < Outlier

1 3 0.828

2 5 0.276

3 6 0.000

4 14 2.207 < Outlier

5 5 0.276

6 4 0.552

7 8 0.552

8 3 0.828

1 7 4.83

2 6 3.63
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Table 7:  Impact of an Additional Data Point on Chauvenet’s Criterion Based on LoBF Deviations 

 

In the context of Chauvenet’s Criterion why has a case of “one potential outlier” turned into a 

case of “no outliers”? If we think about it, it begins to make some sense: 

 If we have a relatively small number of observations and we remove one from the 

“middle ground” then we will have less evidence to support the Measures of Central 

Tendency as being representative of the whole data set, so the distribution flattens 

and widens in effect. 

 On the other hand, if we add another point in the region of the first potential outlier, 

we are in effect moving the Sample Mean towards that “distribution tail” and also 

widening the dispersion. The net result is a lowering of the absolute value of the Z-

Score which in turn reduces the chance of an outlier. 

With a small number of random observations in our sample we have a greater chance of having 

an unrepresentative distribution which means that we may identify a potential outlier at a 

relatively low Z-Score – probably not a good idea … but perhaps there is something that we 

can do about it? 

 

2.4 Variation on Chauvenet’s Criterion for Small Sample Sizes (SSS) 

In Section 2.1 we introduced a discussion on the Student t-Distribution; we said that we 

consider a Student t-Distribution to be the Small Sample Size Equivalent of a Normal 

Distribution. The scatter of data points around a Line of Best Fit (LoBF) will be a Student t-

Distribution with degrees of freedom of two less than the number of data points. It only 

approximates to a Normal Distribution for larger sample sizes (>30). Perhaps we should then 

look at our normalised deviation Z-statistic as a Student t-Distribution instead of as a Normal 

Distribution. In Tables 8 and 9 we have revisited our two Chauvenet’s Criterion examples from 

Tables 5 and 7 but replaced the Probability calculation with a two-tailed t-Distribution. We can 

do this using the Microsoft Excel Function 1-T.DIST.2T(x,deg_freed).  

x y
Line of 

Best Fit

Difference 

to LoBF

Absolute

Z-Score

Prob > |Z|

~ N(0,1)

Expected 

# Points

Rounded 

# Points

6 5 4.68 0.32 0.167 86.7% 9.54 10

7 5 5.69 -0.69 0.363 71.6% 7.88 8

8 7 6.70 0.30 0.158 87.5% 9.62 10

9 8 7.71 0.29 0.153 87.8% 9.66 10

11 9 9.73 -0.73 0.382 70.2% 7.72 8

12 8 10.74 -2.74 1.439 15.0% 1.65 2

13 10 11.75 -1.75 0.918 35.9% 3.95 4

14 13 12.75 0.25 0.129 89.7% 9.87 10

15 12 13.76 -1.76 0.927 35.4% 3.89 4

16 18 14.77 3.23 1.697 9.0% 0.99 1 < Not an Outlier

10 12 8.72 3.28 1.726 8.4% 0.93 1 < Not an Outlier

Count 11

Mean 11 9.73 9.73 0.00  =

Std Dev 3.32 3.85 3.35 1.90  =

1.01

-1.37

Provisional Regression Slope

Provisional Regression Intercept
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In both cases, the revised test is suggesting that these points are not Outliers, as we can expect 

one value of each that far from the line of best fit, unlike the traditional Chauvenet’s Criterion 

based on a Normal Distribution. 

 

 

Table 8:  Example of Substituting a t-Distribution into Chauvenet’s Criterion 

 

 

Table 9:  Impact of an Additional Data Point on Chauvenet’s Criterion Using a t-Distribution 

 

Perhaps it may help us to understand what is going on here if we look at the Q-Q Plots for 9, 

10 and 11 data points (Figure 11), in which the only differences are the two suspect data points. 

If we reject both the suspected outliers we definitely get a better Q-Q Plot, closer to a 

true linear relationship (left hand plot). However, the slight mirrored S-Curve is 

suggestive that a Student t-Distribution may be a potentially better solution, based on 

our previous Figure 15. 

x y
Line of 

Best Fit

Difference 

to LoBF

Absolute

Z-Score

Prob > |Z|

~ t(0,n-2)

Expected 

# Points

Rounded 

# Points

6 5 4.18 0.82 0.497 63.2% 6.324 6

7 5 5.23 -0.23 0.138 89.3% 8.934 9

8 7 6.27 0.73 0.446 66.8% 6.676 7

9 8 7.31 0.69 0.420 68.6% 6.856 7

11 9 9.40 -0.40 0.241 81.5% 8.154 8

12 8 10.44 -2.44 1.487 17.5% 1.754 2

13 10 11.48 -1.48 0.903 39.3% 3.931 4

14 13 12.52 0.48 0.291 77.8% 7.783 8

15 12 13.56 -1.56 0.954 36.8% 3.680 4

16 18 14.61 3.39 2.069 7.2% 0.723 1 < Not an Outlier

Count 10

Mean 11.1 9.5 9.50 0.00  =

Std Dev 3.48 3.98 3.63 1.64  =

1.04

-2.07

Provisional Regression Slope

Provisional Regression Intercept

x y
Line of 

Best Fit

Difference 

to LoBF

Absolute

Z-Score

Prob > |Z|

~ t(0,n-2)

Expected 

# Points

Rounded 

# Points

6 5 4.68 0.32 0.167 87.1% 9.58 10

7 5 5.69 -0.69 0.363 72.5% 7.97 8

8 7 6.70 0.30 0.158 87.8% 9.66 10

9 8 7.71 0.29 0.153 88.2% 9.70 10

11 9 9.73 -0.73 0.382 71.1% 7.82 8

12 8 10.74 -2.74 1.439 18.4% 2.02 2

13 10 11.75 -1.75 0.918 38.3% 4.21 4

14 13 12.75 0.25 0.129 90.0% 9.90 10

15 12 13.76 -1.76 0.927 37.8% 4.16 4

16 18 14.77 3.23 1.697 12.4% 1.36 1 < Not an Outlier

10 12 8.72 3.28 1.726 11.9% 1.30 1 < Not an Outlier

Count 11

Mean 11 9.73 9.73 0.00  =

Std Dev 3.32 3.85 3.35 1.90  =

1.01

-1.37Provisional Regression Intercept

Provisional Regression Slope

Presented at the 2016 International Training Symposium: www.iceaaonline.com/bristol2016



  Outing the Outliers – Tails of the Unexpected 

© Copyright 2014-2016   Alan R Jones. All rights reserved 24 

When leave the first suspect data point in our Q-Q Plot we still have a reasonable 

straight line (centre plot), albeit not as good. 

The addition of the extra data point in the right hand plot, makes a marginal 

improvement in the straight line Q-Q Plot. This is supported by the increase in 

probability associated with these two points in the revised Chauvenet’s Criterion we 

calculated in Tables 8 and 9. 

 

 

Figure 11:   Q-Q Plot Comparison for Example Data 

 

2.5 Peirce’s Criterion 

Peirce’s Criterion (Peirce, 1852; Gould, 1855) pre-dates Chauvenet’s Criterion by some eleven 

years and can be applied to cases of multiple potential outliers. To use it we require access to 

a set of tables for the “Maximum Allowable Deviation”, R, for “Ratio” as Peirce called it (not 

to be confused with Pearson’s Linear Correlation Coefficient, R.)  Peirce’s R is again based on 

an assumption of Normality but is less tolerant of outliers than Chauvenet’s Criterion until we 

get a sample size of 35 or more (Table 10).  

Chauvenet (1863) commented that Peirce’s Criterion and associated procedure was statistically 

more robust than his proposal. Gould (1855) made a valiant effort to create a Table of Critical 

Values based on a rather convoluted-looking formula, and these are still used today, but there 

are also a few anomalies in comparison to Peirce’s original work. The Ratio used in comparison 

with the Maximum Allowable Deviation, R, is the same as the Z-Score that we use for 

Chauvenet’s Criterion, and as we will see, for some other tests as well. 

The procedure for Peirce’s Criterion is outlined succinctly by Ross (2003): 

1. Calculate the Mean and Standard Deviation for the sample in question 

2. Assume one potential outlier initially, and obtain R from the Table of Critical Values 

for the appropriate sample size (Table 10) 

3. Calculate the Z-Score for each point 

4. Compare the value from Step 2 with that from Step 3, and mark the data point as an 

outlier if the Max Z-Score (Step 3) is greater than the Critical Value, R (Step 2) 

5. Now assume that we have two outliers (still keeping all the data points and the data 

calculated for the mean, standard deviations and Z-Scores) 
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Table 10:  Peirce’s R Values for Suspect Data Compared with Chauvenet’s Criterion Critical Values 

 

6. Look up the Critical Value of R from the Table 10 for two outliers for the appropriate 

sample size  

7. If this results in two values exceeding the Maximum Allowable Deviation, then mark 

them both as outliers and continue to the next highest number of suspect points (and so 

on) 

Chauvenet's 

Criterion

1 2 3 4 5 6 7 8 9

3 1.196 1.383

4 1.383 1.078 1.534

5 1.509 1.200 1.645

6 1.610 1.299 1.099 1.732

7 1.693 1.382 1.187 1.022 1.803

8 1.763 1.453 1.261 1.109 1.863

9 1.824 1.515 1.324 1.178 1.045 1.915

10 1.878 1.570 1.380 1.237 1.114 1.960

11 1.925 1.619 1.430 1.289 1.172 1.059 2.000

12 1.969 1.663 1.475 1.336 1.221 1.118 1.009 2.037

13 2.007 1.704 1.516 1.379 1.266 1.167 1.070 2.070

14 2.043 1.741 1.554 1.417 1.307 1.210 1.120 1.026 2.100

15 2.076 1.775 1.589 1.453 1.344 1.249 1.164 1.078 2.128

16 2.106 1.807 1.622 1.486 1.378 1.285 1.202 1.122 1.039 2.154

17 2.134 1.836 1.652 1.517 1.409 1.318 1.237 1.161 1.084 2.178

18 2.161 1.864 1.680 1.546 1.438 1.348 1.268 1.195 1.123 2.200

19 2.185 1.890 1.707 1.573 1.466 1.377 1.298 1.226 1.158 2.222

20 2.209 1.914 1.732 1.599 1.492 1.404 1.326 1.255 1.190 2.241

21 2.230 1.938 1.756 1.623 1.517 1.429 1.352 1.282 1.218 2.260

22 2.251 1.960 1.779 1.646 1.540 1.452 1.376 1.308 1.245 2.278

23 2.271 1.981 1.800 1.668 1.563 1.475 1.399 1.332 1.270 2.295

24 2.290 2.000 1.821 1.689 1.584 1.497 1.421 1.354 1.293 2.311

25 2.307 2.019 1.840 1.709 1.604 1.517 1.442 1.375 1.315 2.326

26 2.324 2.037 1.859 1.728 1.624 1.537 1.462 1.396 1.336 2.341

27 2.341 2.055 1.877 1.746 1.642 1.556 1.481 1.415 1.356 2.355

28 2.356 2.071 1.894 1.764 1.660 1.574 1.500 1.434 1.375 2.369

29 2.371 2.088 1.911 1.781 1.677 1.591 1.517 1.452 1.393 2.382

30 2.385 2.103 1.927 1.797 1.694 1.608 1.534 1.469 1.411 2.394

31 2.399 2.118 1.942 1.812 1.710 1.624 1.550 1.486 1.428 2.406

32 2.412 2.132 1.957 1.828 1.725 1.640 1.567 1.502 1.444 2.418

33 2.425 2.146 1.971 1.842 1.740 1.655 1.582 1.517 1.459 2.429

34 2.438 2.159 1.985 1.856 1.754 1.669 1.597 1.532 1.475 2.440

35 2.450 2.172 1.998 1.870 1.768 1.683 1.611 1.547 1.489 2.450

36 2.461 2.184 2.011 1.883 1.782 1.697 1.624 1.561 1.504 2.460

37 2.472 2.196 2.024 1.896 1.795 1.711 1.638 1.574 1.517 2.470

38 2.483 2.208 2.036 1.909 1.807 1.723 1.651 1.587 1.531 2.479

39 2.494 2.219 2.047 1.921 1.820 1.736 1.664 1.600 1.544 2.489

40 2.504 2.230 2.059 1.932 1.832 1.748 1.676 1.613 1.556 2.498

Sample 

Size

Number of Suspected Data Points

Peirce's Criterion

Min Z-Score 

Probability to 

get at least 

one value
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8. If only one data point falls inside the Critical Value of R, then stop and only reject the 

previous outliers. 

9. We can now recalculate the sample mean and standard deviation based on the remaining 

data 

Whilst in theory, as Table 10 implies, we can apply Peirce’s Criterion to very small sample 

sizes, or moderately small ones, where we have a significant number of “suspect” data points, 

However, we should really be questioning whether we should be using any outlier test on such 

a high proportion of the data. For example, if we had a sample size of 9, would it be reasonable 

to classify (and potentially remove) 5 of them? 

In Table 11 we apply Peirce’s Criterion to the original example data we used for Tukey Fences 

and Chauvenet’s Criterion, taking the Critical Value of Peirce’s R from Table 10 based on a 

sample size of 10. In this case, first assuming one outlier, the test agrees with Chauvenet’s 

Criterion that the point furthest from the Line of Best Fit is an outlier. We can then move to the 

next stage where we assume two outliers and re-test. This time Peirce’s Criterion indicates that 

the furthest point from the Line of Best Fit is indeed an outlier, but that the next nearest is not. 

In conclusion, the furthest point from the Line of Best Fit is an Outlier.  

 

 

Table 11:  Example of the Application of Peirce’s Criterion 

 

In Table 12 we have re-run the test for the second example in which we added the second 

potential outlier. On the first pass of the test, on the assumption of one suspect value, the Z-

Score is less than Peirce’s Critical Value of R, and therefore we would not reject the most 

distant point from the Line of Best Fit. If we were to follow Peirce’s procedure as described by 

Ross (2003) then we would not proceed to a second stage of assuming two outliers. However, 

if we started with the assumption of two outliers then this would lead us to the same conclusion 

that neither of the two suspect points are indeed outliers. 

In both cases, Peirce’s Criterion gives the same results as Chauvenet’s Criterion. However, in 

different circumstances, i.e. alternative values, they could easily have given us conflicting 

answers.  

x y
Line of 

Best Fit

Difference 

to LoBF

Absolute

Z-Score

Reverse 

Rank

Assume 1 

Outlier

Assume 2 

Outliers

6 5 4.18 0.82 0.497 5

7 5 5.23 -0.23 0.138 10

8 7 6.27 0.73 0.446 6

9 8 7.31 0.69 0.420 7

11 9 9.40 -0.40 0.241 9

12 8 10.44 -2.44 1.487 2 < Not an Outlier

13 10 11.48 -1.48 0.903 4

14 13 12.52 0.48 0.291 8

15 12 13.56 -1.56 0.954 3

16 18 14.61 3.39 2.069 1 < Outlier < Outlier

Count 10

Mean 11.1 9.5 9.50 0.00  = 1.878 1.570

Std Dev 3.48 3.98 3.63 1.64  =

1.04

-2.07

Peirce's R Value

Provisional Regression Intercept

Provisional Regression Slope

Presented at the 2016 International Training Symposium: www.iceaaonline.com/bristol2016



  Outing the Outliers – Tails of the Unexpected 

© Copyright 2014-2016   Alan R Jones. All rights reserved 27 

 

Table 12:  Example of the Application of Peirce’s Criterion with Additional Suspect Data Point 

 

2.6 Iglewicz and Hoaglin’s MAD Technique 

Most of the Outlier Tests require the calculation of a value based on the Mean of the sample in 

question. Unfortunately, the Mean is not a robust statistic and is sensitive to changes in the 

constituent data, such as potential outliers. The Median of the other hand is more robust and 

will not vary as significantly if a potential outlier is present or added to the sample. 

That’s probably where Iglewicz and Hoaglin (1993) got their idea for a MAD Technique. It 

centres (pun intended) on a double Median … the Median of the absolute deviations from the 

Median, otherwise known as the Median Absolute Deviation or MAD for short. It is based on 

the Z-Score but uses the Median instead of the Mean and the Median Absolute Deviation 

instead of the Standard Deviation. Iglewicz and Hoaglin called this their Modified Z Score or 

M-Score. 

Let’s go through the procedure in Table 13 using the first of our two examples that we have 

been using throughout this section. 

1. Calculate the Line of Best Fit (LoBF) using Microsoft Excel SLOPE(y-range, x-range) 

and INTERCEPT(y-range, x-range) functions 

2. Calculate the Deviation (difference) between each point and the Line of Best Fit. (The 

average or Mean Deviation should be zero for reference.) 

3. Calculate the Deviation Median using MEDIAN(range) in Excel. 

4. Calculate the Absolute Deviation from the Deviation Median for each point using 

ABS(Point Deviation – Median Deviation) in Excel 

5. Calculate the Median Absolute Deviation (MAD) by taking the Median of the 

individual Absolute Point Deviations from Step 4 

6. Calculate the M-Score for each point by multiplying the point’s Absolute Deviation 

from the Median (from Step 4) by the constant 0.6745 and dividing by the Median 

Absolute Deviation (from Step 5) 

7. If a point is greater than a Critical Value of 3.5, then it can be classed as an outlier 

x y
Line of 

Best Fit

Difference 

to LoBF

Absolute

Z-Score

Reverse 

Rank

Assume 1 

Outlier

Assume 2 

Outliers

6 5 4.68 0.32 0.167 8

7 5 5.69 -0.69 0.363 7

8 7 6.70 0.30 0.158 9

9 8 7.71 0.29 0.153 10

11 9 9.73 -0.73 0.382 6

12 8 10.74 -2.74 1.439 3

13 10 11.75 -1.75 0.918 5

14 13 12.75 0.25 0.129 11

15 12 13.76 -1.76 0.927 4

16 18 14.77 3.23 1.697 2 Test not Required

10 12 8.72 3.28 1.726 1 < Not an Outlier Test not Required

Count 11

Mean 11 9.73 9.73 0.00  = 1.925 1.619

Std Dev 3.32 3.85 3.35 1.90  =

1.01

-1.37

Peirce's R Value

Provisional Regression Slope

Provisional Regression Intercept
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Using this technique and critical value we can see that our suspect point (16,18) should not be 

classed as an Outlier as the M-Score is less than the recommended value of 3.5 (but only just 

… as was the case with Tukey’s Inner Fence). 

 

 

Table 13:  Example of the Application of Iglewicz and Hoaglin’s MAD Technique 

 

We can repeat the technique for our second example using the extra data point (Table 14), 

which confirms that neither suspect point is an outlier. 

 

 

Table 14:  Example of the Iglewicz and Hoaglin’s MAD Technique with Additional Suspect Data Point 

 

Constant

0.6745

x y
Line of 

Best Fit

Difference 

to LoBF

Absolute

M-Score

6 5 4.18 0.82 0.69 0.718

7 5 5.23 -0.23 0.35 0.367

8 7 6.27 0.73 0.61 0.631

9 8 7.31 0.69 0.56 0.587

11 9 9.40 -0.40 0.52 0.543

12 8 10.44 -2.44 2.56 2.669

13 10 11.48 -1.48 1.61 1.672

14 13 12.52 0.48 0.35 0.367

15 12 13.56 -1.56 1.69 1.760

16 18 14.61 3.39 3.27 3.402 < Not an Outlier

Mean 11.1 9.5 9.5 0.0

Median 11.5 8.5 9.92 0.13 0.65 < MAD

1.04

-2.07

Provisional Regression Slope

Absolute 

Deviation 

from 

Median

Provisional Regression Intercept

Constant

0.6745

x y
Line of 

Best Fit

Difference 

to LoBF

Absolute

M-Score

6 5 4.68 0.32 0.07 0.050

7 5 5.69 -0.69 0.94 0.649

8 7 6.70 0.30 0.05 0.038

9 8 7.71 0.29 0.05 0.032

11 9 9.73 -0.73 0.97 0.675

12 8 10.74 -2.74 2.98 2.068

13 10 11.75 -1.75 1.99 1.381

14 13 12.75 0.25 0.00 0.000

15 12 13.76 -1.76 2.01 1.393

16 18 14.77 3.23 2.98 2.068 < Not an Outlier

10 12 8.72 3.28 3.04 2.105 < Not an Outlier

Mean 11 9.7 9.7 0.0

Median 11 9 9.73 0.25 0.97 < MAD

1.01

-1.37

Provisional Regression Slope

Provisional Regression Intercept

Absolute 

Deviation 

from 

Median
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As Estimators we are probably wondering “Why multiply by the constant of 0.6745?” The value 

comes from the Reciprocal of the 75% Confidence Level of a Standard Normal Distribution. 

Iglewicz and Hoaglin observed that the expected value of the Median Absolute Deviation is 

approximately 67.45% of the Standard Deviation … hence the reason it is referred to as a 

Modified Z-Score. 

 

For the Formula-phobes: Justifying the 75% Confidence Level as the M-Score Constant  

 

Consider a Standard Normal Distribution. By definition it has a Standard Deviation of 1. 

 

Consider all the points to the right 

of the Median or 50% Confidence 

Level. They all have a positive 

deviation from the Median. 50% of 

these positive points occur above 

the 75% Confidence Level or third 

Quartile, and 50% of them below it. 

The third quartile is therefore the 

Median of the upper half points. 

 

Similarly, the first quartile is the 

median of the lower half points, all 

of which have a negative deviation 

from the population Median. 

 

As the Standard Normal Distribution is symmetrical, the absolute value of the first and second 

quartile deviations equals the value of the third and fourth quartile deviations, so we can use 

the 75% Confidence Level as the Median of the Absolute Deviations from the Median … 

which by definition is the Median Absolute Deviation. 

 

This argument is valid for any symmetrical distribution. 

 

 

However, we can argue that the presence of this constant is largely redundant, and that we can 

delete it from the calculation and adjust the Critical Value for the Outlier determination to 5.2, 

or 5.19 (or 5.1891 if we want to be unnecessarily precise): 

3.5 ÷ 0.6745 = 5.1891 

However, the value of the constant should be regarded as a theoretical value only … and as 

such it is one that we should not take as being “sacrosanct” in practice. (Wow, that’s a bold 

statement!) If we consider a random sample of 30 observations from a Normal Distribution, 

and calculate the sample’s Median Absolute Deviation and its Standard Deviation, we can 

determine the ratio of the two for that sample. It is highly unlikely that the ratio will be exactly 

0.6745. If we did it again, we’d probably get a different answer. We can use Monte Carlo 

Simulation to model the range of values we might get and the associated Confidence Levels 

for those values. In Figure 12 we get the simulation output based on 10,000 iterations of a 

Sample Size 30. In the left hand graph, we show the range and relative frequency that each 

ratio value occurs, and in the right hand graph, we show the confidence level that the ratio will 
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be a particular value or less. The graphs look to be fairly symmetrical and could be 

approximated by a Normal Distribution.  

 

 

Figure 12:   Range of Potential Ratio Values for Median Absolute Deviation cf. Standard Deviation (30) 

 

Quite often in real life estimating we will not have a sample size as large as 30, so let’s look at 

the equivalent Monte Carlo Simulation based on a smaller Sample Size of, say, 10 data points. 

The range of potential ratio values is shown in Figure 13. It is still broadly symmetrical but 

wider, and displaced slightly to the left compared with the Sample Size of 30. 

 

 

Figure 13:   Range of Potential Ratio Values for Median Absolute Deviation cf. Standard Deviation (10) 

 

These two simulations create some interesting statistics as shown in Table 15. (Well, I found 

them interesting and we’ve already confirmed that I need to get out more!) 

 

 

Table 15:  Confidence Levels for M-Score Constant 

 

Depending on the Sample Size, Iglewicz 

and Hoaglin M-Score Constant of 0.6745 

occurs to the right of the Median for 

smaller sample sizes and to the left for 

larger samples. 

By implication our confidence in the 

Critical Value of 3.5 is only around 50%, 

whereas if we had used a constant of 

around 0.9 our confidence in the Critical 

Value would increase to some 97.5%. 

Sample Size 30 10

Ratio Ratio

2.50% 0.43 0.28

5% 0.47 0.33

10% 0.51 0.39

Median 0.660 0.62

Mean 0.661 0.63

90% 0.80 0.85

95% 0.83 0.90

97.50% 0.87 0.94

Confidence 

Level

Confidence 

Level
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Using the same random samples, we can produce another pair of Monte Carlo Models that 

show that the Critical Value of 3.5 or less (using the 0.6745 constant) occurs with some 87.5% 

Confidence for a sample size of 10, and at the 91.5% Confidence Level for a sample size of 30, 

suggesting that we will get an outlier from random sampling around 10% of the time … which 

seems a little high. If we want to use a 5% Significance Level, then with the aid of Monte Carlo 

Simulation we can derive the following alternative Rule of Thumb for the Critical Values of 

the M-Score for probable outliers for varying Sample Sizes greater than 10 in Table 16; (the 

Rule of Thumb begins to breakdown for smaller Samples than this). 

 

Rule of Thumb Sample Size 
M-Score 

Critical Value 

The M-Score will vary depending 

on the Sample Size such that: 

M = 3.5 + 10 / (Sample Size) 

 

10 4.5 

15 4.17 

20 4 

25 3.9 

30 3.83 

Table 16:  Suggested M-Score Critical Values for Varying Batch Sizes at the 5% Significance Level 

 

These increased values will make it even less likely that either of our examples are outliers. 

 

2.7 Grubbs’ Test 

Frank Grubbs (1969) proposed a test to detect a SINGLE outlier, again on the assumption that 

the data is Normally Distributed. It compares the largest Absolute Deviation from the Mean of 

the data points in a sample to their Standard Deviation. So, by default it only considers the 

Minimum or Maximum Value in a sample. (As does any test for a single Outlier in reality.) 

Grubbs’ Test assumes the Null Hypothesis that there is no outlier in the sample. The Alternative 

Hypothesis is that there is exactly one outlier in the data set. Grubbs’ Test is sometimes referred 

to as the Maximum Normed Residual Test; (yes, well, I think we’ll stick to Grubbs’ Test here.) 

By comparing the Deviation from the Sample Mean and dividing by the Sample Standard 

Deviation, it bears more than a passing resemblance to a Z-Score, but that’s where the similarity 

ends. Here, the Critical Value of Grubbs’ Test Statistic is derived from a Student t-Distribution, 

albeit a somewhat more complicated one than that which we contemplated for the SSS 

Chauvenet’s Criterion in Section 2.4.  

The really nice thing about Grubbs’ test is that it allows the user to specific the Significance 

Level at which to apply the cut-off or Critical Value that determines whether a point is an 

outlier or not. (It’s all beginning to sound a bit more promising, isn’t it?) 
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For the Formula-philes: Grubbs’ Test 

 

Consider a range of values 𝑥1 to 𝑥𝑛 in a sample with a Mean of 𝑥̅ and a sample 

standard deviation 𝑠: 

 

Grubbs’ test Statistic, G, is defined as: 

 

𝐺 =
𝑚𝑎𝑥(|𝑥𝑖 − 𝑥̅|)

𝑠
 

 

If the Maximum Value is furthest from 

the Mean: 

 

𝐺 =
𝑥𝑚𝑎𝑥 − 𝑥̅

𝑠
 

If the Minimum Value is furthest from 

the Mean: 

 

𝐺 =
𝑥̅ − 𝑥𝑚𝑖𝑛

𝑠
 

 

At a Two-Tailed Significance Level of 

 the point tested is an outlier if: 
𝐺 >

(𝑛 − 1)

√𝑛
√

(𝑡𝛼
2𝑛⁄ ,𝑛−2)

2

𝑛 − 2 + (𝑡𝛼
2𝑛⁄ ,𝑛−2)

2 

 

 

Yes, it’s OK to wince a little at this complicated expression for the Critical Value of G, 

especially when we realise that there is no single function in Microsoft Excel that will do this 

for us, although it is included in some other Commercial-off-the-Shelf software applications, 

but not Excel. 

However, if we take it one step at a time, we can create a table of Critical Values for Grubbs’ 

Statistic in Microsoft Excel. Table 17 derives the Critical Value in a number of small steps for 

a range of Sample Sizes and a Two-Tailed Significance Level of 10%. However, the good news 

is that we can download Tables of Critical Values from the Internet using commom 

Significance Levels (1%, 5%, 10% etc.) 

From this table we will see that the Critical Values of Grubbs’ G are much higher than the 

equivalent for Peirce’s R (Section 2.5), and yet the calculation of Grubbs’ G Test Statistic is 

fundamentally the same as Peirce’s R Test Statistic! (It’s OK to ask “What’s all that about?”) 

The basic difference is: 

 Peirce’s Criterion can be used to detect multiple suspect values or outliers 

 Grubbs’ Test looks to see if there is one, and only one, outlier so inherently the 

boundaries have to be much more stringent i.e. further away, and by default are more 

“forgiving” towards less extreme values. 

 Grubbs’ Test utilises the Student t-Distribution which was “discovered” until 1908 by 

Gosset 

So, what if you try to use Grubbs’ techniques iteratively? Well, assuming that it has identified 

an extreme value, we would be really unlucky to get a second observation that far away from 

the rest of the pack (or we are looking at two distributions mixed up), so in that sense Grubbs’ 

technique is only expected to find a single outlier. 
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Table 17:  Generation of Critical Values for Grubbs’ Statistic @ 5% Significance Level 

 

 

Table 18:  Example of Grubbs’ Outlier Test @ 5% Significance Level 

 

In Table 18 we revisit the example we have been using to compare with all the tests so far, we 

will find that Grubbs’ G-Statistic for the point furthest from the Line of Best Fit i.e. the point 

(16,18) is less than the Critical Value at the 5% Level of Significance for a sample size of ten, 

which from Table 17, has the value 2.290. 

5%

Sample 

Size, n

Degrees of 

Freedom

n-2

(n - 1)

n



2n

t =

T.INV(/2n,n-2) t2 / (n-2+t2)
Critical 

Value

E F G

=T.INV(D,B ) =E 2/(B+E 2) =CF

4 2 1.5000 0.625% -8.860 0.9752 1.481

5 3 1.7889 0.500% -5.841 0.9192 1.715

6 4 2.0412 0.417% -4.851 0.8547 1.887

7 5 2.2678 0.357% -4.382 0.7934 2.020

8 6 2.4749 0.313% -4.115 0.7384 2.127

9 7 2.6667 0.278% -3.947 0.6899 2.215

10 8 2.8460 0.250% -3.833 0.6474 2.290

11 9 3.0151 0.227% -3.751 0.6099 2.355

12 10 3.1754 0.208% -3.691 0.5768 2.412

13 11 3.3282 0.192% -3.646 0.5472 2.462

14 12 3.4744 0.179% -3.611 0.5208 2.507

15 13 3.6148 0.167% -3.584 0.4970 2.548

20 18 4.2485 0.125% -3.510 0.4063 2.708

25 23 4.8000 0.100% -3.485 0.3456 2.822

30 28 5.2947 0.083% -3.479 0.3018 2.908

A B C D

2 Tailed Significance Level,  Grubb's G, Critical Value

2.290

x y
Line of 

Best Fit

Difference 

to LoBF

G: |Abs Dev|

(Std Dev)

6 5 4.18 0.82 0.497

7 5 5.23 -0.23 0.138

8 7 6.27 0.73 0.446

9 8 7.31 0.69 0.420

11 9 9.40 -0.40 0.241

12 8 10.44 -2.44 1.487

13 10 11.48 -1.48 0.903

14 13 12.52 0.48 0.291

15 12 13.56 -1.56 0.954

16 18 14.61 3.39 2.069 < Not an Outlier

Count 10

Mean 11.1 9.5 9.50 0.00

Std Dev 3.48 3.98 3.63 1.64

1.04

-2.07

Critical Value @ 5% Level > 

Provisional Regression Slope

Provisional Regression Intercept
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If we examine the example with the additional suspect data point, we will find (Table 19) 

Grubbs’ Test will also support the hypothesis that there are no outliers. 

 

 

Table 19:  Example of Grubbs’ Outlier Test @ 5% Significance Level with Additional Data Point 

 

We can say then that in both cases, using this particular test that there is insufficient evidence 

to support the rejection of the Null Hypothesis of there being no outliers (yes, it’s not a double 

but a treble negative) in other words we can say that the values (16,18) and (10,12) are probably 

not outliers.  

 

 

Table 20:  Comparison of Critical Values 

As the statistic we are testing in Grubbs’ 

Test is the same one that we are testing 

in Chauvenet’s Criterion (the traditional 

and our revised SSS one using the t-

Distribution), it is really just a question 

of how we determine the Critical Value. 

In Table 20 we compare the Critical 

Values for a range of Sample Sizes. This 

shoes that Grubbs’ Test is less likely to 

reject a value as an Outlier than the 

traditional Chauvenet’s Criterion, but 

more likely to do so that the proposed 

SSS Chauvenet technique using the 

Student t Distribution for Sample Sizes 

of ten or less. For very small samples we 

should be questioning the wisdom of 

rejecting any point at all. 

2.355

x y
Line of 

Best Fit

Difference 

to LoBF

G: |Abs Dev|

(Std Dev)

6 5 4.68 0.32 0.167

7 5 5.69 -0.69 0.363

8 7 6.70 0.30 0.158

9 8 7.71 0.29 0.153

11 9 9.73 -0.73 0.382

12 8 10.74 -2.74 1.439

13 10 11.75 -1.75 0.918

14 13 12.75 0.25 0.129

15 12 13.76 -1.76 0.927

16 18 14.77 3.23 1.697 < Not an Outlier

10 12 8.72 3.28 1.726 < Not an Outlier

Count 11

Mean 11.00 9.73 9.73 0.00

Std Dev 3.32 3.85 3.35 1.90

1.01

-1.37

Provisional Regression Slope

Provisional Regression Intercept

Critical Value @ 5% Level > 

Sample 

Size, n

Grubbs' 

Test @ 

5% Level

Grubbs' 

Test @ 

10% Level

Chauvenet 

based on 

~t(0,n-2)

Chauvenet 

based on 

~N(0,1)

4 1.481 1.463 2.556 1.534

5 1.715 1.671 2.353 1.645

6 1.887 1.822 2.296 1.732

7 2.020 1.938 2.281 1.803

8 2.127 2.032 2.283 1.863

9 2.215 2.110 2.293 1.915

10 2.290 2.176 2.306 1.960

11 2.355 2.234 2.320 2.000

12 2.412 2.285 2.335 2.037

13 2.462 2.331 2.350 2.070

14 2.507 2.372 2.365 2.100

15 2.548 2.409 2.380 2.128

20 2.708 2.557 2.445 2.241

25 2.822 2.663 2.500 2.326

30 2.908 2.745 2.546 2.394

Critical Values
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Whilst there appears to be large differences between the Revised Chauvenet Criterion Test and 

the other three sets of Critical Values for very small sample sizes of 4, 5 or 6, in practice it is 

very difficult to create an example where all four tests would say “Reject”. This is because the 

Line of Best Fit will compensate more for single displaced points more than in the case of large 

sample sizes. 

 

2.8 Generalised Extreme Studentised Deviate (GESD)  

Generalized Extreme Studentised Deviate (ESD), despite its name sounding like a radicalised 

student protest movement from the nineteen-sixties or seventies, is a more general purpose 

version of Grubbs’ Test allowing multiple outliers rather than just the one. 

If we have a number of potential outliers we can run the Grubbs’ Test iteratively, but we must 

first identify how many outliers we think we have. In a practical sense it is easier to use with 

one-dimensional data (we’ll expand on that shortly.) The procedure is: 

1. Identify the suspect data points 

2. Perform a Grubbs’ Test on the full data set 

3. Remove the most extreme of our suspect points, and perform a Grubbs’ Test on the 

remaining data (irrespective of the result of the previous test) 

4. Continue by removing the furthest most point until we have performed a Grubbs’ Test 

on all our suspect data 

5. If the last of these tests show that the outlier is significant, then we can reject all the 

previous suspect data points regardless of their individual tests. This compensates for 

any of the innermost outliers (if that is not too much of an oxymoron) distorting the 

mean values for the outermost outliers 

6. If the innermost is not an outlier, we can look back at the last test that was significant 

and reject those outwards. 

The difficulty we have for two or multiple dimensional data, unlike one dimensional data, is 

that as we set aside one suspect data point it fundamentally changes the Line of Best Fit through 

the remaining data, and this can then change our view of the potential number of suspect data 

points. 

 

2.9 Dixon’s Q-Test  

Dixon’s Q-Test is conceptually very simple but requires access to published Tables of Critical 

Values (Table 21) in order to determine the outcome. These tables are not available in 

Microsoft Excel but values can be sourced from the Internet, but forewarned is forearmed… 

 

 

 [ Caveat Augur ] 
 

If you use this test and access Q-Tables from the internet, make sure they come 

from a reputable source. A simple trawl will highlight that there are conflicting 

values published, which is not helpful.  
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Table 21:  Critical Values for Dixon’s Q-Test 

The premise of Dixon’s Q-Test (Dixon, 

1950) is that an outlier by definition is 

significantly distant from the rest of the data 

with which it is being considered. The Test 

compares the distance between the potential 

outlier and its nearest neighbour (i.e. the 

gap) in comparison to the overall range of 

the data (including the potential outlier). It 

is intended to be used to detect a single 

outlier only. Table 22 looks at this for our 

sample example. 

It is not suitable for our second example 

where we have two suspect data points. 

 

 

Table 22:  Example of Dixon’s Q-Test for Outliers 

 

The Critical Value of Dixon’s Q-Test statistic for a sample size of 10 is 0.466 at the 95% 

Significance Level and 0.412 at the 90% Confidence Level. Our example value is a deviation 

gap of 2.58 out of a range of 5.83, giving us a Q-Statistic of 0.442. This is significant at the 

90% level but not at the 95% level. We have a decision to make … reject or keep! 

 

2.10 Doing the JB Swing - Using Skewness and Excess Kurtosis to identify Outliers  

In relation to Skewness and Excess Kurtosis, they have the useful property of quantifying 

whether our sample data is anything approaching a Normal Distribution: 

 Skewness measures the degree to which the distribution “leans” to one side or the other 

with a Skewness Coefficient of zero being synonymous with a Symmetrical 

99% 95% 90%

3 0.994 0.970 0.941

4 0.926 0.829 0.765

5 0.821 0.710 0.642

6 0.740 0.625 0.560

7 0.680 0.568 0.507

8 0.634 0.526 0.468

9 0.598 0.493 0.437

10 0.568 0.466 0.412

11 0.542 0.444 0.392

12 0.522 0.426 0.376

13 0.503 0.410 0.361

14 0.488 0.396 0.349

Critical Values of Q

Obs, n
Two Tailed Confidence

x y
Line of 

Best Fit

Deviation 

from LoBF
Rank Sort Order

Deviation 

from LoBF
Gap

Q Statistic 

(Max Gap) 

/ Range

6 5 4.18 0.82 9 1 -2.44 0.87

7 5 5.23 -0.23 5 2 -1.56

8 7 6.27 0.73 8 3 -1.48

9 8 7.31 0.69 7 4 -0.40

11 9 9.40 -0.40 4 5 -0.23

12 8 10.44 -2.44 1 6 0.48

13 10 11.48 -1.48 3 7 0.69

14 13 12.52 0.48 6 8 0.73

15 12 13.56 -1.56 2 9 0.82

16 18 14.61 3.39 10 10 3.39 2.58

Count 10 Obs, n 10

Mean 11.1 9.50 9.50 0.00 2.58 >

Std Dev 3.48 3.98 3.63 1.64 Range 5.83 > >

1.04 0.466

-2.07 0.412

0.442

Provisional Regression Intercept

Provisional Regression Slope Critical Value @ 95% Level >

Critical Value @ 90% Level >

Max Endpoint Gap >
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Distribution; the Normal Distribution or Student t-Distribution assumption that most 

Outlier Tests have in common suggests that we would expect the sample’s Skewness 

Coefficient to be reasonably close to zero in an ideal world (which is usually not the 

case for Estimators.) 

 Excess Kurtosis measures the degree of peakedness or spikeyness of a distribution 

relative to its effective range in comparison with that of a Normal Distribution, which 

is baselined to have an Excess Kurtosis value of zero6. 

o In the case of a Student t-Distribution, which might be considered to be an 

acceptable approximation to a Normal Distribution for small sample sizes, the 

Excess Kurtosis is 6/(-4) where  is the number of Degrees of Freedom. If we 

are considering the scatter around a regression line then we can assume the 

Degrees of Freedom to be two less than the Sample Size, n. Therefore, the 

Excess Kurtosis for a Student t-Distribution representing the scatter around a 

Line of Best Fit would be 6/(n-4). 

o A Symmetrical Triangular Distribution can give us a reasonable impersonation 

of a Normal Distribution. The Excess Kurtosis in that case would be -0.6. 

It does not seem to be an unreasonable assumption then that if our data sample has a Skewness 

Coefficient close to zero (i.e. slightly positive or negative) and an Excess Kurtosis between in 

the range of approximately -0.6 and 6/(n-4) then perhaps we can say that for the purposes of 

applying our Outlier Tests that “Normality reigns” (or near Normality at least). We may find, 

however, that if our data has an outlier, especially an extreme one, it will distort our measures 

of Skewness and, or Peakedness (Excess Kurtosis). Small sample sizes are more prone to 

statistical distortion than larger ones. 

The Jarque-Bera Statistic (Jarque & Bera, 1987) combines the measures of Skewness and 

Excess Kurtosis, to test for Normality. Perhaps we can use it here as well to detect potential 

outliers, i.e. as values that disrupt our assumption of Normality. Let’s explore that thought… 

As an indicator only then, perhaps we can look at the “shape” of the sample data with 

and without our suspected outlier, i.e. does the removal of the suspect data point or 

points move the Skewness and/or the Excess Kurtosis significantly closer to zero? We 

can also measure what we might call the “JB Swing” (No, that’s not the name for a new 

Jazz Band.)  

Table 23 illustrates the JB Swing procedure and results using our benchmark sample … and 

nine other random samples (just in case we think that the result in itself was an outlier … don’t 

worry about being sceptical, it goes with the job.) These extra samples are ostensibly Normally 

Distributed or Normalesque deviations around a regression line (e.g. Student t-Distributions).  

1. Arrange the data in ascending order (just so that we can easily eliminate a suspect data 

point). We have highlighted the suspect point in bold font in each sample. 

2. Calculate the Skewness Coefficient using Microsoft Excel’s SKEW(range) function 

with and without the suspected outlier. Let us assume that the data is Normally 

Distributed, and therefore we expect a Skewness Coefficient of around zero. 

3. Calculate the Excess Kurtosis using Microsoft Excel’s KURT(range) function with 

and without the suspected outlier. If the data is Normally Distributed then we should 

expect an Excess Kurtosis of around zero, but for a Student t-Distribution with ten 

                                                 
6 The Kurtosis of a Normal Distribution is 3. Excess Kurtosis is defined to be the Kurtosis minus 3 
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points, we would expect a value of 1; for nine points, this would increase to around an 

Excess Kurtosis of 1.27 

4. We can calculate the Jarque-Bera Statistic for the scatter around the regression line 

using the Skew and Excess Kurtosis 

JB = Sample Size x (Skew Squared + a quarter of Excess Kurtosis Squared) / six 

For a Sample Size of 10 with a t-Distribution, we would expect JB = 5/12 (or 0.4167) 

For a Sample Size of 9 with a t-Distribution, we would expect JB = 27/50 (or 0.54) 

5. Typically, we would reject a sample as being non-Normal at the 5% Significance level 

if the JB-Statistic was greater than 6. This Test would be performed using a Chi-

Squared Right Tailed Test using CHISQ.TEST.RT(JB,2). Here, we can look to 

improve on the Significance level of the JB Statistic by an amount that we specify. In 

this example we have chosen a 40% swing towards perfect Normality 

 

 

Table 23:  Doing the JB Swing 

 

In our original Sample 1, the removal of the suspect point does nothing to improve the degree 

of Skewness, Excess Kurtosis, or the value of the Jarque-Bera Statistic for Normality, so we 

would conclude that the suspect data point is not an outlier. 

                                                 
7 Excess Kurtosis for the Scatter around a Regression Line assuming a Student t-Distribution is 6/(n-4) 

1 2 3 4 5 6 7 8 9 10

6 1 -2.44 -1.67 -1.83 -2.27 -1.52 -1.89 -2.67 -3.14 -3.04 -2.11

9 2 -1.56 -1.02 -1.66 -1.52 -1.49 -1.83 -1.81 -1.90 -1.50 -1.71

7 3 -1.48 -1.01 -1.57 -0.26 -1.23 -1.59 -1.57 -1.59 -1.20 -1.66

5 4 -0.40 -0.26 -1.31 -0.14 -0.35 -0.38 -0.60 -0.56 -0.96 -0.55

2 5 -0.23 -0.24 -0.28 -0.07 -0.13 -0.14 -0.20 0.22 -0.84 -0.46

8 6 0.48 -0.02 0.40 0.25 -0.11 -0.02 0.70 0.98 0.06 -0.08

4 7 0.69 -0.01 1.20 0.91 0.75 0.21 1.03 1.08 0.26 0.78

3 8 0.73 0.63 1.24 0.92 0.82 0.30 1.39 1.16 1.07 1.66

1 9 0.82 0.71 1.54 1.02 0.85 0.87 1.65 1.56 2.07 1.66

10 10 3.39 2.88 2.27 1.16 2.39 4.48 2.08 2.20 4.08 2.47

0.59 1.25 0.08 -1.04 0.48 1.63 -0.37 -0.63 0.73 0.18

-0.65 -0.36 0.13 -1.01 -0.17 -0.43 -0.39 -0.57 0.05 0.21

1.08 2.63 -1.76 0.36 -0.06 3.85 -1.25 -0.72 0.79 -1.34

-1.04 -0.57 -2.06 0.96 -1.66 -1.43 -1.32 -0.94 0.22 -1.36

1.07 5.49 1.30 1.87 0.39 10.61 0.88 0.89 1.15 0.80

1.15 0.35 1.80 2.09 1.19 1.17 0.99 0.91 0.02 0.85

59% 6% 52% 39% 82% 0% 64% 64% 56% 67%

56% 84% 41% 35% 55% 56% 61% 63% 99% 65%

-2% 78% -11% -4% -27% 55% -3% -1% 43% -2%

Swing > 40% Outlier? Outlier? Outlier?

Jarque-Bera 

Statistic

Jarque-Bera 

Significance

Significance SwingJB Swing 

Indicator

With Remote Value

Without Remote Value

With Remote Value

Without Remote Value

Skewness
With Remote Value

Without Remote Value

Excess 

Kurtosis

With Remote Value

Without Remote Value

Sample Example NumberSample 1 

Order

Ascending 

Rank Order
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Sample 6, however, shows that the removal of the suspect point, 4.48 improves the Skewness 

and Excess Kurtosis towards nominal values close to zero. The JB statistic shows the most 

improvement, swinging from a totally unacceptable value over 10 to one just above 1. 

Samples 2 and 9, show that both the Skewness and Excess Kurtosis improve towards zero is 

the suspect point is removed. Whilst the JB Statistic for the sample size of ten is not indicative 

of non-Normality in itself at the 5% Significance Level, there is still an order of magnitude 

improvement towards the nominal value of zero that we would expect for a Normal 

Distribution. 

Note: If we are using this technique with Regression data scatter (as in our example) then we 

should re-test the scatter around the revised regression line after we have removed any 

outlier; the deviations will change and so might their Skewness and Excess Kurtosis 

Incidentally, in case we were wondering, if we ran the JB Swing Indicator for our example 

with the additional suspect data point then we would find that the significance swing would not 

be triggered. 

 

3. Outlier Tests: A Comparison 

 

The proliferation of outlier tests tells us one important thing – it is not a clear-cut matter when 

it comes to deciding whether a point should be considered to be an outlier or not, and more 

importantly, whether we should be excluding it from our data. There is a definite component 

of subjective judgement that has to be applied, even where we try to use an objective measure 

because there is no single measure of correctness. 

 

 

 [ Caveat Augur ] 
 

As we have already discussed, there is also a school of thought that we should never 

exclude an outlier. 

 

In response to that, let’s just say that perhaps it is better to “set it aside” and not 

include it in the initial analysis, and re-introduce it later as part of the estimate 

validation and sensitivity analysis stage of our process. 

 

That way we can always raise a risk or opportunity to cover the possibility that we 

may get that result again. 

 

 

As we have seen there are a number of tests to detect outliers, none of which are fool proof, 

hence the proliferation of them. (Yes, I know, all we wanted was a simple reliable test. Soon 

you can go for a lie down in a darkened room.) So which should we be using? It is worth 

considering whether as a matter of good practice all Estimators should only use Outlier Tests 

with which they feel comfortable and understand. The logic of some tests are easier to follow 

than others. 
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Using the data from Table 23, we have run all the tests for each of our ten sample examples 

and compared the results in Table 24 for: 

 Chauvenet’s Criterion (plus its SSS t-Distribution variation) 

 Peirce’s Criterion 

 Grubbs’ Test 

 Tukey Fences (both Traditional and Slimline) 

 Iglewicz and Hoaglin M-Score (the MAD Technique) 

 Dixon’s Q-Test 

 JB Swing in Skewness and Excess Kurtosis 

There is a lot of agreement between the various tests (which may be comforting for the 

statistical cynics amongst us) but there are also some differences (which may be expected from 

those same statistical cynics amongst us.) 

 All the tests agree that Sample 6 contains an Outlier, but even then the Tukey Outer 

Fence does not classify it as an extreme outlier. However, had we included a 

significance the 99% Level for Grubbs’ test, its Critical Value of 2.482 would have 

indicated that it was not an Extreme Outlier in the same sense as Tukey. 

 In contrast, Peirce’s Criterion appears to be overly strict and highlights 6 out of 10 of 

our random samples as having outliers … one more than our Slimline Tukey Fences 

that we have already indicated are better suited to large sample sizes. 

 Chauvenet’s Criterion is almost as intolerant as Peirce’s Criterion, identifying potential 

outliers in half of our samples. 

 Our revised SSS (Small Sample Size) Chauvenet’s Criterion using a Student t-

Distribution rather than a Normal Distribution, is more lenient and only identifies one 

sample in which we have an outlier. This is the consistent with Grubbs’ Test and the 

Iglewicz-Hoaglin MAD Technique 

 Dixon’s Q-Test seems to be the outlier amongst outlier tests in the context of our 

samples. Whilst it agrees with other tests in some cases, it also produces some results 

that others do not. For example, it does not highlight Sample 9 as a potential outlier 

whereas the Grubbs’ Test, SSS Chauvenet and JB Swing do. In contrast this highlights 

Sample 1 as containing an Outlier at the 90% level, but not at the 95% level, suggesting 

that the 90% Level is too stringent. 

 Our JB-Swingometer (with a 40% Positive Confidence Swing) also flags up Samples 

2, 5 and 9 in common when some of the other tests. 

With larger sample sizes we may find that there is a greater (but not total) consistency between 

the various tests. With smaller sample sizes we are more likely to find an increase in conflicting 

results. We should exercise great caution when considering potential outliers with very small 

samples as the practice of rejecting outliers becomes even more questionable as the sample size 

reduces; what appears to be an extreme value in a small sample may not be the case, just the 

luck of the draw … it’s a bit like the lottery in which all the numbers bar one are low; it’s just 

a fluke of the random sampling used. In these cases, we are probably better erring towards the 

more tolerant tests. 
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Table 24:  Comparison of Different Outlier Detection Techniques 

 

In determining whether data should be considered to be an outlier, there is no definitive 

technique that works consistently in all cases. It very much depends on our “tolerance level” 

as indicated in Table 25. 

 

1 2 3 4 5 6 7 8 9 10

6 1 -2.44 -1.67 -1.83 -2.27 -1.52 -1.89 -2.67 -3.14 -3.04 -2.11

9 2 -1.56 -1.02 -1.66 -1.52 -1.49 -1.83 -1.81 -1.90 -1.50 -1.71

7 3 -1.48 -1.01 -1.57 -0.26 -1.23 -1.59 -1.57 -1.59 -1.20 -1.66

5 4 -0.40 -0.26 -1.31 -0.14 -0.35 -0.38 -0.60 -0.56 -0.96 -0.55

2 5 -0.23 -0.24 -0.28 -0.07 -0.13 -0.14 -0.20 0.22 -0.84 -0.46

8 6 0.48 -0.02 0.40 0.25 -0.11 -0.02 0.70 0.98 0.06 -0.08

4 7 0.69 -0.01 1.20 0.91 0.75 0.21 1.03 1.08 0.26 0.78

3 8 0.73 0.63 1.24 0.92 0.82 0.30 1.39 1.16 1.07 1.66

1 9 0.82 0.71 1.54 1.02 0.85 0.87 1.65 1.56 2.07 1.66

10 10 3.39 2.88 2.27 1.16 2.39 4.48 2.08 2.20 4.08 2.47

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1.640 1.255 1.528 1.141 1.242 1.844 1.626 1.736 2.021 1.595

2.069 2.296 1.485 1.994 1.928 2.429 1.643 1.810 2.020 1.548

1.878 Outlier? Outlier? Outlier? Outlier? Outlier? Outlier?

Critical Z @ 95% 2.29 Outlier? Outlier?

Critical Z @ 98% 2.410 Outlier?

0 0 1 0 1 0 1 1 0 1

Outlier? Outlier? Outlier? Outlier? Outlier?

1 1 2 1 1 0 1 1 1 2

Outlier?

3.402 2.533 1.045 1.943 1.777 4.640 1.558 2.372 3.146 1.304

3.5 Outlier?

4.5 Outlier?

1.39 1.86 0.38 0.21 0.87 2.68 0.30 0.43 1.60 0.37

0.64 0.65 0.12 1.79 0.28 0.39 0.51 0.73 0.95 0.26

Inner Fence 1.5 IQR Outlier? Outlier? Outlier? Outlier?

Outer Fence 3 IQR

Inner Fence 1 IQR Outlier? Outlier? Outlier? Outlier? Outlier?

Outer Fence 2 IQR Outlier?

0.442 0.477 0.178 0.219 0.395 0.567 0.181 0.232 0.282 0.176

Critical Q @ 90% 0.412 Outlier? Outlier? Outlier?

Critical Q @ 95% 0.466 Outlier? Outlier?

0.59 1.25 0.08 -1.04 0.48 1.63 -0.37 -0.63 0.73 0.18

-0.65 -0.36 0.13 -1.01 -0.17 -0.43 -0.39 -0.57 0.05 0.21

1.08 2.63 -1.76 0.36 -0.06 3.85 -1.25 -0.72 0.79 -1.34

-1.04 -0.57 -2.06 0.96 -1.66 -1.43 -1.32 -0.94 0.22 -1.36

1.07 5.49 1.30 1.87 0.39 10.61 0.88 0.89 1.15 0.80

1.15 0.35 1.80 2.09 1.19 1.17 0.99 0.91 0.02 0.85

59% 6% 52% 39% 82% 0% 64% 64% 56% 67%

56% 84% 41% 35% 55% 56% 61% 63% 99% 65%

-2% 78% -11% -4% -27% 55% -3% -1% 43% -2%

Swing > 40% Outlier? Outlier? Outlier?

Note: SSS = Small Sample Size

Jarque-Bari 

Swing Indicator

Sample 1 

Order

Ascending 

Rank Order

Significance Swing

Z-Score for Potential Outlier 

Sample Standard Deviation 

Sample Mean 

Max M-Score (calculation not show n) 

Max Gap / Range (calculation not show n)

Jarque-Bera 

Statistic

Jarque-Bera 

Significance Without Remote Value

JB Swing

Grubbs' Test

Traditional

Slimline

Tukey Fences

Dixon's Q-Test

With Remote Value

Deviation from Q1 divided by IQR >

With Remote Value

Deviation from Q3 divided by IQR >

Excess 

Kurtosis

Without Remote Value

With Remote Value

Without Remote Value

Critical Z-Score (10 pts)

No of Values Expected

Traditional Test Result

Based on 

Normal Dist

Based on 

Student t

Sample Example Number

Without Remote Value

With Remote Value
Skewness

Peirce's Criterion

Chauvenet's 

Criterion No of Values Expected

Revised SSS Test Result

Iglewicz and 

Hoaglin M-Score
Trad Critical M-Score

SSS Critical M-Score
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Tests that are more 

tolerant of “Extreme 

Values” 

Middle of the Road Tests 

Tests that are less 

tolerant of “Extreme 

Values” 

Grubbs’ Test 

Tukey Traditional Outer 

Fence  

SSS Adaptation of 

Chauvenet’s Criterion 

Iglewicz-Hoaglin M-Score 

(MAD Technique) 

 

 

Tukey Traditional Inner 

Fence 

Tukey Slimline Outer 

Fence 

JB Swing 

Dixon’s Q-Test 

Peirce’s Criterion 

Chauvenet’s Citerion 

(Traditional) 

Tukey Slimline Inner 

Fence 

Table 25:  Summary of Main Differences Between Outlier Detection Techniques 

 

If we were to sum up Statistical Testing in one phrase it would be: 

We can never say “Never” for certain … but with some degree of 

Confidence we might say “Hardly ever” … and that is a significantly 

more honest reflection of reality for an estimator. 

We wouldn’t want our “Tails of the Unexpected” to turn out to be our personal horror story. 
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