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The Signal and the Noise in Cost Estimating                                                                        
Christian B. Smart, Ph.D. 

Abstract 

We seek to extract signal and eliminate noise when building models with historical data to 
predict future costs. One common problem is normalization, which is necessary when making 
comparisons but can inject noise when used in modeling. We discuss kernel smoothing and 
distribution fitting as ways to avoid overfitting peculiarities in historical data and the important 
issues of cross-validation and parsimony as ways to validate models and avoid the lure of 
overfitting. 

Introduction 

We seek to extract signal and eliminate noise when building models with historical data to 
predict future costs. However, there are many pitfalls in this process that can lead you to confuse 
signal with noise. Overfitting is a common problem that interferes with the attempt to develop 
accurate predictions. There is a tendency to want to use all the available data for modeling, and 
to include many parameters. This is appealing since it allows you to account for many different 
factors in a model which gives you the feeling that your predictions will be more accurate 
because you can account for a variety of influences – scope, technical parameters, programmatic 
parameters, heritage, etc. The addition of these parameters is also appealing because it makes the 
model easier to sell to decision makers, and it makes the model more appealing to consumers of 
canned models. The more inputs you include, the more the end user feels that they have control 
of the prediction, and they often feel more comfortable with such a model.  

However actual data, like life, is often messy. The final outcome of an event, such as the actual 
cost of a historic program, is subject to influences that will repeat themselves in a foreseeable 
way in the future, but it is also subject to a great deal of noise that will not repeat itself in the 
future in a predictable manner. For example, the Space Shuttle Challenger disaster in the 1980s 
increased the cost of several satellite programs, since some programs had find other means for 
launch to space. Occasionally labor strikes occur at prime contractor facilities. And some of the 
noise in the data is pure error – reported actuals are sometimes wrong, either at the total level, or 
some of the lower level elements are mis-allocated. In collecting historical costs, estimators are 
often like forensic investigators, trying to solve a mystery and put together a story that makes 
sense. This involves much guesswork and requires assumptions and guesses that lead to some 
amount of distortion of the true historical cost. A recent paper discusses some of the challenges 
of collecting and validating contractor cost data (Petty et al., 2015). All these events are 
embedded in the cost of these programs, but are not a part of the cost that can be accurately 
forecasted going forward.  

Despite this there is a tendency to try to explain all the variation in historical data, including the 
noise. This leads to too many independent variables. The famous mathematician, physicist, and 
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computer scientist John von Neumann once said, “with four parameters I can fit an elephant, and 
with five I can make him wiggle his trunk.” (Dyson 2004) 

This also leads to trying too many different types of equations and other approaches to 
estimating, all of which reduces the number of degrees of freedom. Small data sets only 
exacerbate this issue. In small data sets, you can find patterns where none reliably exist. 

We present three solutions for avoiding overfitting: keeping the number of independent variables 
in your models small relative to the number of data points, splitting the data set into training and 
validation subsets, and cross-validation. 

Another common problem with confusing the signal and the noise in cost estimating is 
normalization, which is necessary when making comparisons but can inject noise when used in 
modeling. We discuss this issue, and provide an example of how it can lead to a degradation in 
the quality of a model.  

We also propose kernel smoothing and distribution fitting as ways to avoid overfitting errors 
distribution in small data sets.  

Overfitting 

Nate Silver calls overfitting “the most important scientific problem you’ve never heard of.” 
Silver defines overfitting as mistaking noise for signal. (Silver 2012). If the fit is too loose, the 
model is underfit, which means you are not capturing as much of the signal as possible. On the 
other hand, the fit can be too good to be true. This is the problem of an overfit model, which 
means you are fitting the noise in the data rather than discovering the underlying structure of the 
data. Such models will have great fit statistics, but will not predict costs of future missions well. 
Overfitting is attractive because it makes the fit statistics and significance tests look great; thus in 
practice, overfitting is more common than underfitting. 

To better understand overfitting, consider the following simple example. We start with a pure 
signal,   y = x1.5, as shown in Figure 1. 
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Figure 1. Example of Pure Signal. 

We then add random noise to each data point. In order to better fit this noise, we add degrees to 
the polynomial, resulting in a sixth-degree polynomial, with a R2 = 98%. This is illustrated in 
Figure 2. 

 

Figure 2. Sixth-degree polynomial fit to noisy data. 

But how well does this sixth-degree polynomial mimic the true signal, versus a simpler second- 
degree polynomial fit? The sixth-degree polynomial better fits the noisy data, but what more 
closely represents the true signal? To do that, we compare the fits on the noisy data with the true 
underlying signal. This is illustrated in Figure 3. Just doing a visual comparison, the simpler 
model fits the underlying true signal better. The second-degree fit is closer to the true signal for 
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10 of 11 data points. The Pearson’s R2 between the second-degree polynomial and the true 
underlying signal is much better as well – 98% versus 88% for the sixth-degree polynomial.  

 

Figure 3.  Comparing the fits to noisy data with the underlying signal. 

If we only had access to the true signal, we would not be misled by the noisy data. Alas, we can 
only see the noisy data. As Nassim Taleb writes in Fooled by Randomness (2004), in the real 
world, we have to work by induction, which means we have to infer the structure from the 
available evidence. Taleb, as well as Nate Silver in The Signal and the Noise, note that you are 
most likely to overfit a model when the data are limited and noisy and when your understanding 
of the fundamental relationships is poor. (Silver 2012)  

When there is a small number of data points is that it might be possible to think that you have 
found a signal when there is only noise. In Figure 4 below, there is a strong correlation between 
the variate and its covariate. 
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Figure 4. There is a strong correlation between these two variables. 

It’s only 10 data points but surely there is a strong connection between these two variables, 
right? There is a clear upward pattern. But the truth is that I randomly generated these 10 points.  
You wouldn’t likely see this in larger data sets, but it is easier to find these in small data sets. 

This is only the case for two variables, but adding more randomly generated variables in a small 
data set allows for even better ostensible fits. Consider the data set displayed in Table 1. 

 

Table 1. 10 randomly generated data points. 

The data in Table 1 were randomly generated between specific values. The “Y” values are 
random numbers between 1 and 100, for example.  Regressing Y on X1 results in an R2 of only 
16%, but adding more variables significantly improves this fit.  
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Adding four variables with 10 data points drives the R2 up to 92% and the standard error down to 
39%. 

 

Table 2. Fitting random noise can result in a good fit. 

Again this is random data, but the fit looks great. This is due to the fact that we have a small 
sample size, and we have used four variables. Indeed with nine variables we could use up all the 
degrees of freedom and explain all the variation in the data.  

In a large set of 100 random data points of pairs of variables that are uncorrelated there are 
several small 10-point samples that have clear patterns, as in Figure 5. 

 

Figure 5. A population of 100 random data points, with a small sample that displays a 
“trend.” 

In Figure 5, the overall correlation for all 100 data points is 0.2%, but it is easy to find a sample 
of 10 data points that are strongly correlated. 

Correlations between variables that have no connection are referred to as “spurious correlations.” 
It is easy to find spurious correlations for small data sets. Tyler Vigen has built a website and has 
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published a book devoted to the subject. It shows that there are high correlations between 
seemingly unrelated statistics, such as the yearly number of math PhDs awarded and the amount 
of uranium stored at US nuclear power plants. There is a 95% correlation between these two 
from 1996 to 2008. There is a 95% correlation between per capita cheese consumption and the 
number of people who died by becoming entangled in their bedsheets between 2000 and 2009 
(Vigen 2015). What these spurious correlations all have in common is that they are small data 
sets, tend to be around 10-15 data points. 

Another popular example of spurious correlation is that when the National Football Conference 
team wins the Super Bowl, the stock market tends to have an up year, and when the America 
Football Conference team wins the Super Bowl, the stock market tends to have a down year. 

In Fooled by Randomness, Nassim Taleb (2004) notes that we are hard wired to look for 
patterns, even where none exist. He posits that this is due to our hunter-gatherer ancestors where 
finding patterns in small data sets about potential prey could mean the difference between life 
and death. 

As a practical example, given a set of cost data points, a simple model would be to take the 
average of those values and use that as a model. For example, for 72 historical attitude control 
systems for NASA and Air Force satellites, the plot of weight and cost is shown in Figure 6. The 
data ranges from $74,000 for simple earth-orbiting systems to $800 million for crewed 
spacecraft. The average of these 72 data points is $24 million. This simple model of using the 
average is definitely not overfit to the data but it is very likely underfit since it underestimates 
many of the historical data points by a wide margin and overestimates most of the data. We can 
do better. 

The most common independent variable in government project cost estimating relationships is 
weight. Weight is not a true cost driver, but it is a very good proxy for the scope of a project. 
Indeed the term “cost driver” is a problematic term. As Andy Price points out in his recent paper 
“The Dangers of Parametrics,” “one of the worst terms in parametric cost modeling is ‘cost 
driver.’ Because our parameters are most often associate or scaling, they no more ‘drive’ cost 
than your dog can drive your car.” (Prince 2016) 
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Figure 6. Weight/Cost for 72 historical attitude control systems for NASA and AF 
spacecraft. 

As is evident in Figure 7, going from a simple arithmetic average to a regression model based on 
weight seems promising. It has a decent R2 (greater than 50%) and seems to follow the general 
trend of the data. 

 

Figure 7. Using a simple weight-based cost estimating relationship for 72 historical attitude 
control systems for NASA and AF spacecraft. 

$0.01

$0.10

$1.00

$10.00

$100.00

$1,000.00

1 10 100 1,000 10,000

At
tit

ud
e 

Co
nt

ro
l D

ev
el

op
m

en
t C

os
t  

   
   

   
   

 
($

 M
ill

io
ns

)

Attitude Control Mass (Lbs.)

R² = 0.5339

$0.01

$0.10

$1.00

$10.00

$100.00

$1,000.00

1 10 100 1,000 10,000

At
tit

ud
e 

Co
nt

ro
l D

ev
el

op
m

en
t C

os
t  

   
   

   
   

 
($

 M
ill

io
ns

)

Attitude Control Mass (Lbs.)

Presented at the 2016 International Training Symposium: www.iceaaonline.com/bristol2016



9 
 

But can we do better? One option would be to add additional variables. There are many from 
which to choose and many methods for adding variables to a regression equation. A popular and 
traditional method is stepwise automated selection of variables. This approach entails starting 
with the best single variable. One logical criterion for selecting the variable is to choose the one 
with the highest correlation with the output. We then check if this variable is significant. If not, 
we quit and adopt the average cost of the data set as our model. Then the variable that improves 
the goodness of fit the most (e.g. the R2 or the partial F-value) is added. This process is repeated 
until the selected goodness-of-fit value fails to increase by a significant amount. This is a long-
standing and popular method endorsed by authors of well-known text books such as Draper and 
Smith’s Applied Regression Analysis (1998), and has been implemented in commercial statistical 
software tools including MINITAB. However, this method leads to overfitting. The issue is that 
each time we sift through the data, which occurs at each step in the stepwise regression, we lose 
degrees of freedom. Studies of stepwise regression indicate that 30-70% of the predictions 
included in stepwise regressions are pure noise. (Babyak 2004) 

Another way to select variables for use in regression is to look at those that are highly correlated 
with cost and then include only those variables that are above a certain threshold in a 
multivariate model. This univariate pre-screening of variables is also a form of stepwise 
regression. 

Babyak (2004) describes overfitting as “asking too much from the available data” and 
“capitalizing on the idiosyncratic characteristics of the sample at hand.” The problem with 
overfitting yields overly optimistic model results – findings that appear in an overfitted model do 
not exist in the population and will not replicate. Virtually any data-driven decision about 
modeling will lead to an overly-optimistic model. 

One way to avoid overfitting is to limit the number of parameters to a percentage of the sample 
data size. A typical statistical rule of thumb is 50 data points, plus one parameter for every 10 
data points after that. So for one parameter, 50+10*1 = 60 data points are needed. For two 
parameters, 70 data points are required; for three parameters, 80 data points; and so on. This is 
the idea of parsimony in modeling – to paraphrase Einstein, keep the model as simple as possible 
(but no simpler).  

In my experience there are not many data sets for government programs that have 50 applicable 
data points, meaning that in many cases we will need to turn to alternate methods, such a 
Bayesian regression, to help circumvent this issue (Smart 2014). In our attitude control example, 
this means we could add a second variable to our number of variables since we have 72 data 
points. Adding a heritage factor increases the R2 significantly to 90%. New design is a subjective 
variable, unlike weight. The use of subjective parameters has its own set of pitfalls, as pointed 
out in a recent paper by Prince (2016). 
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Using the stepwise process we can add variables for management rating, mission type, 
technology maturity, launch year, spin type, and some other miscellaneous parameters to bring 
the total to 11 significant parameters, all of which are statistically significant as measured by the 
ratio of the variable’s coefficient to its standard error. The overall R2 increases slightly to 96% 
but at the potential cost of fitting the model to much of the noise. 

In addition to adding variables to a regression model, it is also tempting to try out many different 
types of models, equation forms, and ways to model. Each attempt to improve the fit of a model, 
whether it is the addition of a variable, trying a different equation form, or a different approach 
(traditional regression vice say a neural network), we reduce the number of degrees of freedom 
available to us, so this also leads to overfitting. 

Some ways to avoid overfitting include: collecting more data; combining correlated predictors; 
clustering; fixing some regression coefficients - e.g., always include weight and heritage in a cost 
estimating relationship; use of shrinkage and penalization techniques; splitting the data into 
training and validation sets; and cross-validation. We next discuss these latter two approaches, 
and apply it to the attitude control subsystem example.  

Training, Testing, and Cross-Validation 

A popular way to increase the predictive accuracy of a model is to split the data into a training 
set and a testing set. One widely used rule of thumb is to split one-third of the available data for 
validation, and use the other two-thirds for training (Mitchell 1998). The model is fit to the 
training data, and then tested on the validation set. The idea is that the more training you do to 
try to find the perfect fit for the historical data (adding variables, exploring model forms) the 
lower your training error will be. But at some point the real-world generalization and 
predictability of the model reaches an optimum level, and then gets worse as you enter the 
overfitting zone. This is shown graphically in Figure 8. As can be seen from the graph there is a 
sweet spot where the complexity is high enough to minimize the testing error, but the model is 
not so complex that we are overfitting the noise. The key is having the discipline to stop at the 
sweet spot. Splitting the data into training and testing sets is one way to do that. 
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Figure 8. Training vs. testing error as a function of model complexity. 

Re-visiting our attitude control example, if we split the data set into a training and a 
testing/validation set, we use 48 data points for training, and 24 for testing the model fit. 

The standard percent error versus the number of independent variables in the regression model 
for the two sets is shown in Figure 9. 

 

Figure 9. Training and testing error as a function of the number of variables. 
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We measure the standard percent error for both the training set and the testing set. But we only 
use the data in the training set to fit the model. The testing set gives you an idea of how well the 
model will generalize in the real world. The sweet spot in this case is five variables. At this 
point, the standard percent error for the testing set is 98%, still much higher than the training 
error at 38%. This is expected - the training error should be lower than the testing error. The 
testing error is what you are more likely see when using the model in the real world.  

This is just a simple example, we have used many more variables than stipulated by the 
statistical rule of thumb we discussed earlier. The standard would not allow you to use any 
variables in a 48-element model. Recall this is based on simulation experiments of random data 
and how many data points you need to have confidence that you are not just fitting a model to 
noise, so this is a serious consideration. There is a significant chance that you could just be 
fooling yourself. And our testing set is only a couple of dozen data points, which makes the 
testing set even more likely to be prone to noise. You could just be lucky in finding a set of 
variables that fit the testing set well. This is one of those times that you need to balance the 
science of modeling with the artistic aspect and make a judgment call about what makes the most 
sense.  Using the testing and training split approach does help with avoiding some amount of 
overfitting, even for relatively small data sets such as the example.  

An alternative when the data set is small is to perform cross-validation instead of separating the 
data into training and testing sets.  The idea is simple – split the data set into multiple partitions 
and do the testing over multiple small partitions and average the results. This has the advantage 
that you can save more of the data for training.  

For the attitude control subsystem example, we use six-fold cross validation. This means we will 
split the data into six sets of 12 data points, fit the model on 60 data points, and validate on 12, 
and do this process six times. We then average the results over the six validation sets. 

The results of six-fold cross validation are shown in Figure 10. The figure shows the standard 
percent error for each fold as a function of the number of variables, along with the overall 
average. The average reaches a minimum on the third variable. This is a little more severe, but 
probably more realistic, than splitting the data set into a training and validation set. 

Once cross-validation has helped you decide to not use more than three variables in your 
regression model, you can go back and fit the final model using all the data, keeping in mind that 
the predictive accuracy in practice will be worse than the fit on the sample space. Another option 
is to notice that for each set of variables, six-fold cross validation has produced six different 
models. One option would be to average the coefficients from the six different models and use 
the average model to make predictions. This is a simple form of bagging, a powerful technique 
for variance reduction. (Wasserman 2005) 
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Figure 10. Results of six-fold cross validation. 

Cross-validation is a modern technique, and a lot of research has been conducted in this area in 
the last two decades. There are other novel techniques, such as bootstrap validation, that allow 
you to use the entire data set for training and still do validation. (Harell 2010) 

Normalization vs. Noise-ification 

Normalizing data is the process of manipulating raw data to make it comparable with each other. 
While intended for just comparing data points, it is typically the case that estimators model with 
normalized data, rather than raw data. This normalization is a source of noise if normalized data 
are used in modeling. Examples of this include learning, test hardware, and inflation. We begin 
with a set of data, we then apply some type of linear or nonlinear transformation, and then run a 
regression on this transformed data. To get back to the original data we then have to apply the 
transformation in reverse. For inflation, we begin with real or “then year” data, normalize to a 
constant base year, and develop a model in base year dollars. Then in order to budget we have to 
convert the model back to real of “then year” cost. In the end we have to convert the model back 
to “then year.” The modeling process does not need the transformation - instead, the information 
can be used in the model as a variable.  

For example, consider inflation. If we wish to compare the cost of a missile  designed and built  
in the 1960s with a missile designed and built in the 2000s, we need to normalize the data to a 
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otherwise. For example, the average price of a house built in 1950 was less than $9,000 
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(https://www.census.gov/construction/nrs/pdf/uspricemon.pdf). To have a meaningful 
comparison we have to consider inflation, as well as taking into account other changes, such as 
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the fact that the average home today is much bigger than a house built in the 1950s, and has 
much different amenities.  

This is all well and good for comparing historical data points.  But it doesn’t mean we should 
model the data after it has been normalized for inflation. Instead of normalizing the data before 
we model, we should add a variable that accounts for the year or years in which the project was 
executed and model the impact directly. 

For example, applying and modeling the cost of reaction control subsystems for 62 NASA and 
Air Force missions with weight as the independent variable on normalized data results in the 
equation 0.17*Weight0.74. Modeling the non-normalized data with the mid-point of design added 
as a variable yields the equation 0.07*Weight0.85*Yr of Tech-0.12, where Yr. of Tech = Year of 
Technology is defined as the mid-point of project design – 1960. The first equation produces a 
cost in a constant base year, whereas the second equation produces cost in real year dollars, 
based on the year input variable. Note that the value of the year variable is negative. Why is this, 
when we know there is a strong and steady uptick in prices every year? The time coefficient 
reflects the overall real productivity growth over time, which on average exceeds inflation, 
reducing net costs overall over time, everything else being equal (ceteris paribus). When we 
deflate the normalized data and compare it to the original, raw data, we find a Pearson’s R2 equal 
to 30%. When we compare the model on un-normalized data with the raw actual data we find a 
Pearson’s R2 equal to 39%, a big improvement over the normalized model. The standard error of 
the normalized data is 358% vs. 278% for the non-normalized model.  

The process of normalization when applied to modeling should be called “noise-ification” since 
it is better to model the raw data directly. Much of this is due to the nonlinearity of the data – if 
the coefficient of the power equation were equal to 1 then applying a linear filter to the data 
before and after modeling will have little to no impact. But the application of a linear filter in the 
presence of nonlinearities, as seen with this example, when introduce noise and error into the 
equation, reducing predictive capability. 

Similarly, manipulating raw data to produce a “theoretical” first unit cost is highly sensitive to 
assumptions about the learning and rate percentages. A small difference between what is 
assumed and what is experienced in practice make a big difference in the estimate of cost for 
production units. 

Test hardware has a similar impact. It is often the case that the data are manipulated to adjust for 
test hardware quantities, but this can be modeled directly as an input, or even better, estimated 
separately for even better predictive accuracy. 

Figure 11 compares the common practice with what should be done in practice to avoid adding 
more error to the modeling process. The model step in the two approaches is a little more 
complicated since it involves another variable, but that is at it should be. You should let the data 
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tell you how to account for inflation and productivity, rather than rely on a separate 
normalization process. 

 

Figure 11. Illustrating the differences between the common noise-ification approach to 
modeling versus directly modeling inflation in the model. 
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For example, consider the histogram of CER percentage errors for a small data set as shown in 
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would ignore this possibility. 
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Figure 12. Example of CER percentage errors for a small data set. 
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based on the available data at hand. This produces a continuous distribution that fills in the gaps 
left by the original discrete histogram.  A simple uniform kernel with bandwidth equal to 0.50 
produces a density function shown in Figure 13.  While simple, and with some jaggedness, this 
illustrates a way to generalize the data to fill in the gaps left by a small data set. Using the mean 
and standard deviation of the sample to fit a continuous distribution is also an appealing choice 
for a small data set. 

 

 

Figure 13. Uniform kernel smoothing with bandwidth = 0.5. 
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Summary 

Prediction is a perilous business. As we have discussed in this paper, the process of developing a 
model is filled with pitfalls. The lure of overfitting is very powerful, as it is a natural human 
tendency to want to explain past actual behavior completely. However, the actual data is a 
combination of signal and noise, and if we are not careful we fit both the noise along with the 
signal, making our predictions less accurate and reliable. For small data sets, it is easy to confuse 
noise and signal. We have discussed ways to overcome this, such as keeping the number of 
independent variables to a minimum, splitting data into training and validation sets, and cross-
validation.  Cross-validation is particularly powerful, and it should be part of every 
parametrician’s tool kit. 

We have also discussed a couple of topics related to overfitting, such as the fact that normalizing 
the data prior to modeling can lead injecting to additional noise that could be avoided by directly 
modeling the phenomenon using the data. Another topic is the potential misuse of bootstrapping 
on small data sets. In such cases we have shown the using kernel smoothing or using the 
moments to define a continuous distribution can be a better approach. 
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