
Process-Related Effort and Schedule Estimating
Relationships for Software Cost Estimating

Corinne Wallshein
IT Estimating Division

Naval Center for Cost Analysis
corinne.wallshein@navy.mil

Nicholas Lanham
Aviation Estimating Division

Naval Center for Cost Analysis
nicholas.lanham@navy.mil

Wilson Rosa
IT Estimating Division

Naval Center for Cost Analysis
wilson.rosa@navy.mi

ABSTRACT
This paper will present updated findings of software effort and
duration growth factors (using estimated parameters at the
beginning of the effort), effort estimating relationships (EERs),
and schedule estimating relationships (SERs) with selected
subsets of United States Department of Defense (DoD) Computer
Software Configuration Item (CSCI) records. Focusing on early
and initial estimating parameters such as requirement counts, staff
hours, peak staff counts, duration in months, and source lines of
code, data subsets are by software processes and tools. These
subsets are process maturity as measured by Capability Maturity
Model Integrated (CMMI), primary language, and, when
applicable, cost-plus contract type. EERs and SERs will be
displayed per goodness of fit criteria. Effort and duration
distribution benchmarks are provided to guide cost analysts in
normalizing and inspecting data for early and initial estimating
parameters. These methods are applicable to all industry sectors.

General Terms
Management, Measurement, Software cost estimation

Keywords
Software effort estimation, software cost estimation, source lines
of code, process maturity, CMMI, contract type, software
language, software size, empirical analysis, regression

1. INTRODUCTION
1.1 Problem Statement
While efforts to characterize software cost and schedule have
been advanced by recent papers, variability in the human
endeavor of creating or modifying software to meet specific (and
evolving) requirements remains. Some of this may be able to be
ameliorated by examining aspects of software processes and
techniques. This paper explores CMMI, primary software
language, and cost-plus contract types as mechanisms to
accurately predict effort and schedule by using and comparing
initial parameters.

1.2 Deficiencies in Past Studies
Prior studies pairing initial and final records are extremely limited
to identify main cost drivers for process oriented categories. A
small set of studies [1, 2] have examined the impact of CMMI
level 5 on software effort and schedule. One study found higher
levels of process maturity increased productivity, decreased
development time, and reduced dis-economies of scale [3]
although empirical research into this issue, including that in this
paper do not establish clear productivity gains or decreased

development times with higher CMMI levels. A recent paper and
presentation focused on paired initial and final records at an
aggregated level with 40 records [6], categorized by government
and information technology (IT), not by process orientation.

Another examined paired initial and final records by CSCI level
[5] as a whole dataset, only focusing on percentage change
between initial and final effort hours categorized by contract type.
No studies found in the literature have specially examined the cost
impact of government contract types on software effort and
schedule.

While degree of software language familiarity is a tunable input
parameter in software tools such as COCOMO and SEER-SEM,
recent literature searches did not uncover peer-reviewed papers
showing direct impacts of specific primary software programming
languages on software effort or schedule.

1.3 Purpose of the Study
This study attempts to contribute to the knowledge base by
exploring whether process oriented categories accurately estimate
effort and duration and if using productivity benchmarks by these
categories would be helpful to assess the validity of future DoD
data submissions. This study examines the effect of process types
on software cost and schedule. It provides statistics and regression
models for process-oriented EERs and SERs.

1.4 Significance of the Study
This study will address deficiencies in past studies by:

• Developing simple estimation models by process type
instead of complex models with many parameters.

• Using a large and recent dataset to reduce sampling
error.

• Normalizing the dataset to improve consistency, and to
enable valid comparisons and projections.

1.5 Paper Organization
This research paper is organized into nine sections:

• Section 1 discusses deficiencies in past studies and a
proposed solution.

• Section 2 summarizes the scholarly literature of related
studies. It highlights previous process-driven analyses
and discusses the taxonomy used in this study.

• Section 3 reviews the research method step by step. It
briefly explains the survey method, instrumentation,

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016

mailto:corinne.wallshein@navy.mil
mailto:nicholas.lanham@navy.mil
mailto:wilson.rosa@navy.mil

data normalization framework, and criteria for selecting
the best fit models.

• Section 4 describes the data demographics, including
segmentation, age of data, size, effort distribution
percentages, and productivity benchmarks.

• Section 5 discusses the data analysis results.

• Section 6 presents the effort estimating models.

• Section 7 presents the schedule estimating models.

• Section 8 provides the research conclusions on the basis
of the hypotheses. It also highlights the contributions
and limitations, and outlines areas for further research.

• Section 9 cites the sources used in the paper.

2. RELATED WORK

Agrawal and Chari [1] studied 37 projects in four CMMI
level 5 organizations and found high levels of process maturity
reduce the effect of a number of factors expected to impact
software development effort, quality, and cycle time. Software
size influenced development effort, quality, and cycle time.
Models with software size, transformed by natural logarithms, on
average, predicted transformed effort and cycle time around 12
percent of the actuals across organizations. The authors posited
reduced variance of software development outcomes due to
factors other than software size.

 Wallshein and Loerch [2] studied thirty CSCI records from
software projects completed from 2003 to 2008 certified from
CMMI level 5 organizations. Initially estimated software size in
either thousands of new lines of code (KNEW) or thousands of
total source lines of code (KSLOC), after being transformed by
natural logarithms, were found to be reasonable predictors of
transformed final, actual software effort. Another variable,
untransformed, found to be statistically valid to predict final,
actual effort was initially estimated Peak Staff (PS).

 Alyahya, Ahmad, and Lee [3] studied the impact of the
staged representation of CMMI-based process maturity levels
using the Constructive Cost Model (COCOMO) to compute
software development effort. They found each higher CMMI
maturity level decreased development effort, increased the
productivity rate, and reduced the diseconomy of scale. They
recommended collecting historical data for each process area to
examine the impacts and documenting CMMI representations as
staged or continuous.

 Rosa, Madachy, Boehm, Clark, and Dean [4] studied the
predictor PMAT for software process maturity and determined it
should be considered in a schedule model as there was sufficient
evidence at α = 0.05 that correlations were significant. They also
found the predictors thousands of lines of effective source lines of
code (KESLOC) and full time equivalent (FTE) personnel as

measured by PS to be significant as well. KESLOC and FTE were
the two variables documented in the schedule models for
application types.

 Lanham, Wallshein, Rosa, and Popp [5] examined initial
and final effort hours at the CSCI level and determined initial
hours, requirements count, and PS represented statistically
significant independent variables. In one of the first published
papers on software development segregated by contract type, cost-
plus contract types were examined for percent change between
initial and final effort hours. Cost-Plus Award Fee (CPAF)
contracts and Cost-Plus Fixed Fee (CPFF) contracts demonstrated
significantly different average values. CPAF, typically granted for
large research and development projects with an award fee to
motivate the contractor to meet government’s desired
performance objectives, had the highest mean growth value
between initial and final effort hours.

 Rosa, Boehm, Clark, Madachy, Jones, McGarry, Lanham,
and Wallshein [6] studied initially estimated PS and requirements
as predictors of the actual effort for 40 development projects, with
rolled-up CSCIs, at the early elaboration phase. Actual effort was
measured by person month (PM) using the COCOMO factor of
152 hours per PM. Initially estimated effort in PM was found to
highly significant to predict actual software development duration.

3. RESEARCH METHOD
3.1 Research Question
This study will address the following questions:
Is CMMI, primary software language, and contract type a
good predictor of software engineering labor?
Does software development duration relate to size and staffing
levels, when grouped by CMMI, primary software language,
and contract type?

3.2 Quantitative Method
Second order data was used in the methods in this study to
analyze effort and cost drivers of software development projects.
A non-random sample was used since the researchers had access
to records showing effort in all the areas described by IEEE
12207, Systems and software engineering -- Software life cycle
processes, for software development.

3.3 Population and Sample
The sample was 204 paired software projects implemented for the
United States Department of Defense (DoD) based on Mr. Nick
Lanham’s pairing algorithm. These projects were completed
during the time period from 2002 to 2013. The number of projects
considered for effort analysis was 219. After extensive analysis
over the course of this year, fifteen records were determined to be
outside the scope of analysis. Reasons included being initially
recorded as a single CSCI when the paired submission was for
multiple CSCIs. For benchmarking, box plots of actual effort
hours to initial requirements are shown for the analyzed process
orientation types.

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016

3.4 Instrumentation
Data were compiled from a questionnaire containing over 20
items. The data collection questionnaire used in the study was
obtained from the Software Resource Data Report (SRDR)
questionnaire [16]. The source questionnaire entitled “SRDR
Sample Formats” can be downloaded from the Defense Cost
Analysis Resource Center (DCARC) website:

http://dcarc.cape.osd.mil/Files/Policy/2011-SRDRInitial.pdf

http://dcarc.cape.osd.mil/Files/Policy/2011-SRDRFinal.pdf

http://dcarc.cape.osd.mil/Files/Policy/Initial_Developer_Report.xlsx

http://dcarc.cape.osd.mil/Files/Policy/Final_Developer_Report.xlsx

Data on product size, effort, schedule and product attributes like
required reliability, software process maturity, were recorded and
new fields were added. Multiple personnel within the Naval
Center for Cost Analysis researched and collected data on contract
type. Lists of contract types were obtained from multiple
government sources [7 8].

3.5 Data Normalization
An objective of data normalization is to improve data consistency,
so that comparisons and projections are more valid. The software
data set in this study was normalized using two steps:

3.5.1 Converting to Logical SLOC Count
It is considered best practice [8] to use logical SLOC as the
standard counting rule for software cost estimation. Several
projects were reported in either Physical or Non‐Commented
Source Statements (NCSS). Those projects were converted into
Logical SLOC using empirical factors from recent studies [9]:

Conversion Factor
Logical SLOC = 0.66 x NCSS SLOC
Logical SLOC = 0.33 x Physical SLOC

3.5.2 Data Grouping
According to the United States Government Accountability Office
[15], it is considered best practice to normalize data by similar
characteristics. Products created within organizations having
similar CMMI levels use similar processes certified by an outside
expert. Products developed with similar primary programming
languages adhere to certain rulesets and processes for the software
to be compiled and execute. Furthermore, products developed
under cost-plus contract types transfer the risk to the government,
allowing for the development to be sanctioned by the servicing
organization since the government is financially responsible. Data
for contract types not explicitly labeled as cost-plus were scarce
(i.e., having less than 12 records per subset) or unknown and were
excluded from further analysis within the scope of this study.

To reduce variation and ensure valid comparisons, the process
oriented categories are shown in the tables below.

The first table discusses the CMMI levels.

Table 1 Taxonomy for Process Maturity [10]

Process
Maturity Symbol Definition

Defined CMMI 3 A standard software process meets the
organizations specific needs. Attention
is paid to documentation,
standardization, and integration.
Projects follow defined process even
under schedule pressure. Management
recognizes these processes are the
quickest route to completion.

Managed CMMI 4 Processes are predictable. Detailed,
quantitative measurements of process
and product quality are collected.
Management can adjust and adapt the
process to specific projects without
losing quality or deviating from
specifications.

Optimizing CMMI 5 Processes are continuously improving.
Processes are improved through
quantitative feedback and shared ideas.
Mangers introduce innovative
processes to better serve the
organizations particular needs. Pilot
projects are common.

The next table discusses the primary software language types.

Table 2 Taxonomy for Primary Software Language Types

Aggregated
Primary
Software
Language Symbol Definition

Ada,
Ada-83,
Ada-95

Ada Named after Ada Lovelace, a
nineteenth century mathematician, and
commissioned by the US DoD to
defense contractor CII Honeywell Bull,
Ada is a structured, object-oriented,
high-level language unique in providing
support for real-time embedded
software with tasks and synchronous
messages.[11]

C# C# Per http://searchwindevelopment.techtarget.com/definition/C, C#
(pronounced "C-sharp") is an object-
oriented programming language from
Microsoft based on C++ with features
similar to Java. C# is designed to work
with Microsoft's .Net platform to
facilitate exchange of information and
services over the Web, and to enable
developers to build highly portable
applications. [12]

C/C++ C/C++ This hybrid of C and C++ has the least
precise definition in the dataset. C was
created in conjunction with the UNIX
operating system and is the forerunner
of C++ although not an object-oriented
language itself. Both C and C++ are
designed for use by systems
programmers, with C++ having an
object-oriented style.[11]

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016

http://dcarc.cape.osd.mil/Files/Policy/2011-SRDRFinal.pdf
http://dcarc.cape.osd.mil/Files/Policy/2011-SRDRFinal.pdf
http://dcarc.cape.osd.mil/Files/Policy/2011-SRDRFinal.pdf
http://dcarc.cape.osd.mil/Files/Policy/2011-SRDRFinal.pdf
http://dcarc.cape.osd.mil/Files/Policy/Final_Developer_Report.xlsx
http://dcarc.cape.osd.mil/Files/Policy/Final_Developer_Report.xlsx
http://dcarc.cape.osd.mil/Files/Policy/Final_Developer_Report.xlsx
http://dcarc.cape.osd.mil/Files/Policy/Final_Developer_Report.xlsx
http://dcarc.cape.osd.mil/Files/Policy/Final_Developer_Report.xlsx
http://dcarc.cape.osd.mil/Files/Policy/Final_Developer_Report.xlsx
http://searchwindevelopment.techtarget.com/definition/C

Aggregated
Primary
Software
Language Symbol Definition

C++ C++ Per http://www.cplusplus.com/info/description/, C++
is an open ISO-standardized language,
since 1998. C++ compiles directly to a
machine's native code, allowing it to
run fast, if optimized. C++ allows type
conversions to be checked either at
compile-time or at run-time. Most C++
type checking is static. C++ supports
procedural, generic, and object-oriented
programming paradigms. Code that
exclusively uses C++'s standard library
will run on many platforms with few to
no changes. C++, as a language directly
built off C, is compatible with almost
all C code. [13]

Java Java Per http://searchsoa.techtarget.com/definition/Java,
Java is a programming language for use
in the distributed environment of the
Internet. It was designed to have the
"look and feel" of the C++ language,
but it is simpler to use than C++ and
enforces an object-oriented
programming model. Java can be used
to create complete applications that
may run on a single computer or be
distributed among servers and clients in
a network. It can also be used to build a
small application module or applet for
use as part of a Web page. [14]

Contract types are described below. [7 8]

Table 3 Taxonomy for Cost-Plus Contract Types

Contract
Types Symbol Definition

Cost Plus
Award
Fee

CPAF The contract level of effort is uncertain
and it is not feasible or effective to
negotiate an adjustment formula. The
likelihood of meeting objectives can be
enhanced by a clear subjective fee plan
established by the government.

Cost Plus
Fixed
Fee

CPFF Cost uncertainty is extremely high.
Establishment of predetermined targets
and incentive sharing arrangements could
result in a final fee out of alignment with
the actual work.

Cost Plus
Incentive
Fee

CPIF The cost uncertainties are so great that any
fixed-price contract would force the
contractor to accept an unreasonable risk,
but reasonable targets and formulas for
sharing costs may be negotiated.

3.6 Variables in the Study
The variables considered in the study are identified in Table 2.
The variable selection procedure is described in Section 5.

Table 4 Variables in the Study
Variable Symbol Definition

Effort Hours EH Software engineering effort (in
Effort Hours). Includes:
• software requirements

analysis,
• architecture/detailed design
• code and unit testing,
• systems/software integration,
• qualification test,
• development test &

evaluation,
• Other direct support:

documentation and
configuration management,
quality assurance, software
verification & validation,
software review and audit,
and software problem
resolution.

Software
Development
Duration

SCHED The time required to complete all
activities up to the point of
development test & evaluation
(DT&E) by the vendor’s
implementation team.

Initially
Estimated Peak
Staffing Level

PS This is the peak staffing number of
full time equivalent (FTE) people
employed by the vendor’s
implementation team involved in
the software development.

Initially
Estimated New
Logical
Statements (LS)
of Code

NEW Amount of new code developed by
the vendor for the software
configuration item, converted to
logical statements.

Initially
Estimated
Source Lines of
Code (SLOC) in
LS

SLOC Amount of total source lines of
code (SLOC) developed by the
vendor for the software
configuration item, converted to
logical statements.

Initially
Estimated
Requirements

REQ Total number of requirements for
the configuration item, combining
software requirements with
external, interface requirements.
These requirements are at various
stages of maturity and elaboration,
with lower levels expected for
cost-plus contract types.

3.7 Effort Model Forms
Although several model forms were examined for each
specified process type containing 12 or more observations, the
predominant equation displaying consistently better goodness
of fit was the following:

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016

 aEHi = A x (eEHi
B) Equation (1)

 aEHi = A x (eNEWiB) Equation (2)

Where:

aEH = Actual Engineering labor in effort hours

eEH = Estimated Engineering labor in effort
hours

i = Process-orientation type (Tables 1 – 3)

eNEW = Estimated amount of new code in
logical statements

A = Productivity constant (a.k.a. coefficient)

B = Scaling factor expressing degree of the
diseconomy of scale (a.k.a. exponent)

The scaling influence is found in the exponent, B. An estimated
value for B < 1.0 indicates an economy of scale. An estimated
value of B > 1.0 indicates a diseconomy of scale.

3.8 Schedule Model Form
A non-linear model form was used for each application type
containing 12 or more observations.

 aSCHEDi = A x (eSCHEDi
B) Equation (3)

 aSCHEDi = A x (eREQiB) Equation (4)
Where:

aSCHED = Actual Time (in months) to develop the
Software Product

i = Process orientation type
A = Duration constant

eSCHED = Estimated Time (in months) to develop
the Software Product

eREQ = Estimated requirements

B = Scaling factor to account for changing
productivity

The primary schedule equation predicts the duration of software
development phase as a function of estimated duration. The
schedule begins with software requirements analysis, ends at the
completion of qualification test, and precedes development test &
evaluation phase.

3.9 Model Validity, Accuracy, and Selection
The measures for assessing the validity and accuracy of the effort
and schedule model forms are described in Table 3 and Table 4
respectively. The best model form for a given application type, is
the one that surpasses the criterion shown in Table 5.

Table 5 Model Validity Measures
Measure Symbol Description
T-test T-stat Provides a measure of the significance

of the predictor variables in the

regression model. The variable is
significant when the t-stat is greater than
the two-tailed value, given the degrees
of freedom and coefficient alpha (α =
0.05)

Table 6 Model Accuracy Measures
Measure Symbol Description
Standard
Error of the
Estimate

SE Measures the average amount of
variability remaining after the
regression. Standard Error of the
Estimate is a measure of the
difference between the observed
and model estimated effort.

Coefficient of
Determination

R2 Shows how much variation in
dependent variable is explained by
the regression equation.

Coefficient of
Variation

CV Percentage expression of the
standard error compared to the
mean of the dependent variable. A
relative measure allowing direct
comparison among models.

Mean
Absolute
Deviation

MAD Measures the average percentage by
which the regression overestimates
or underestimates the observed
actual value.

Mean
Magnitude of
Relative Error

MMRE Nearly identical to MAD, this
measures the average magnitude of
relative error (the absolute value of
the actual value subtracted from the
predicted value is divided by the
actual value).

Predictive
Accuracy

PRED(X) X is found in the literature at 25 or
30 percent with the predictive
accuracy computed from the
number of records having a
magnitude of relative error less than
or equal to X. A higher PRED value
is better.

Table 7 Model Selection Criterion

Measure Criterion
MAD ≤ 45%
CV ≤ 45%
R2 ≥ 55%
t-test > Two tailed critical value (DF, α = 0.05)

4. Data Demographics
The dataset began with 204 records selected from 2015 after
determining which of the 219 paired records used in [5] should
continue to be analyzed, given the effort hour distribution
verifications per Table 4, of the software engineering activities in
IEEE 12207, prior to record pairing. As these records were
analyzed from 2015 to 2016, outliers were scrubbed from the
dataset. Outliers were compared against data subset populations,
double checked with original entries and programs’

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016

documentation. The table below lays out the 2624 total CSCI
records processed down into the 204 total CSCI records analyzed.

Table 8 Software Dataset

Figure 1shows the age of the software projects by delivery year.
The age of data does not pose a challenge to validity as these are
recent projects completed between 2002 and 2013.

Figure 1 Age of Data

Figure 2 shows the break-out of aggregated primary software
programming languages for the 204 CSCI records. Each CSCI
recorded which programming language was considered to be the
primary, principal, or majority language. These languages were
grouped according to categories shown below. The C language
represented by the aggregated categories C/C++ and C++ alone
account for sixty-seven percent of the 204 CSCI records in the
analyzed dataset.

Figure 2 Aggregated Primary Language

Figure 3 shows the break-out of CMMI levels for the CSCI
records. Although 20 records were not specified as to their CSCI

level, there were five records specifying CMMI level 2, where
processes become defined, documented, and repetitive. Ninety
percent of the 204 paired CSCI records analyzed were CMMI
level 3 or CMMI level 5.

Figure 3 Capability Maturity Model Integrated (CMMI)

Levels

Figure 4 shows the break-out of data by contract type. FFP, IDIQ,
and FPIF stand for Firm Fixed Price, Indefinite Delivery
Indefinite Quantity, and Fixed Price Incentive Fee contracts,
respectively. Seventeen records were unable to be categorized as
to contract vehicle type. Eighty-four percent of the CSCI records
had cost-plus contracts where the government assumed the risk of
the contract.

Figure 4 Contract Type

Figure 5 shows contract types from www.acq.osd.mil/dpap/ [7]
where FPEPA stands for Fixed Price Economic Price Adjustment.
Cost-plus contracts figure predominately when systems are in
early acquisition phases.

Dataset Records
2624 Total CSCI Records

911 Completed Program / Build CSCI Records
403 Completed CSCIs with Software Engineering Activity Break-Outs

219 Completed Paired CSCI Records
204 Completed Paired CSCI Records After Removing Outliers

0
5

10
15
20
25
30
35
40

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

C
ou

nt

5
12

24 26

59

78

0

20

40

60

80

100

Other C# Java Ada C/C++ C++

C
ou

nt

5
16 20

84
99

0
20
40
60
80

100
120

CMMI 2 CMMI 4 Not
Specified

CMMI 3 CMMI 5

C
ou

nt

2 6 8
17

43 44

84

0

20

40

60

80

100

FFP IDIQ FPIF Not
Specified

CPIF CPFF CPAF

C
ou

nt

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016

Figure 5 Contract Type Risk

The process-oriented categories with a preponderance of data are
C/C++ languages, cost-plus contracts, and CMMI levels 3 and 5.

5. Data Analysis
This section is divided into three parts. The first displays the
correlation analysis for selecting the most significant variables.
The second shows the ranges in the data using box plots. The third
identifies the best fit model using CO$TAT Log Linear regression
[19]. Log linear regression was determined to be the best fit after
exploring and evaluating linear and non-linear models with the
most significant variables.

5.1 Correlation Analysis
Figure 6 is the Pearson correlation for actual effort hours where
all the subsets are combined.
.

Figure 6 Pearson Correlation to Actual Effort Hours

Figure 7 is the Spearman Rho correlation for actual effort hours.

Figure 7 Spearman Rho Correlation for Actual Effort Hours

Figure 8 is the Pearson correlation for actual duration where all
the subsets are combined.

Figure 8 Pearson Correlation to Actual Duration

Figure 9 is the Spearman Rho correlation for actual effort hours.

Figure 9 Spearman Rho Correlation for Actual Duration

Correlation values are color-coded where the darker colors
indicate higher levels and lighter colors indicate lower levels.

Actual effort hours are correlated to estimated effort hours. For
the C# aggregated primary programming language, actual effort
hours are correlated to estimated new code, estimated SLOC, and
estimated PS. For Java, actual effort hours are correlated to PS
and SLOC. For Ada, C/C++, and C++ as the primary aggregated
language, actual effort hours are correlated to PS and new code in
logical statements. CMMI 3’s actual effort hours are correlated to
PS, SLOC, and new code in logical statements. CMMI 4’s actual
effort hours are correlated to SLOC and new code whereas CMMI
5’ actual effort hours are correlated to PS and new code. CPAF
actual effort hours are correlated to PS, new code, and SLOC;
CPFF’s are correlated to new code; and CPIF’s are correlated to
PS. Estimated effort hours are positively correlated to PS at 62%
or greater with Pearson correlation, Spearman Rho correlation, or
both, except for CMMI level 4.

Actual duration is correlated to estimated duration (in months).
For the C# aggregated primary language, actual duration is
correlated to SLOC. For the C++ language, actual duration is
correlated to estimated requirements [eREQ]. CMMI 4 actual
duration is correlated to eREQ and SLOC. CPAF actual duration
is correlated to eREQ and CPIF’s is correlated to new code and
SLOC in logical statements.

The following conclusions can be drawn from the correlation
analysis:
• The predictors, eEH and estimated new/SLOC in logical

statements, should be considered in the effort model.

COST RISK AND CONTRACT TYPE
Cost Risk High __________________________________ Low

Requirement
Definition

Vague __________________________________ Well-
defined

Production
Stages

Concept
Studies &
Basic
Research

Exploratory
Development

Test/
Demonstration

Full-scale
Development

Full
Production

Follow-on
Production

Contract
Type

Varied CPFF CPIF,
FPIF

CPIF,
FPIF,
FFP

FFP,
FPIF,
FPEPA

FFP,
FPIF,
FPEPA

Pearson
Correlation for
Actual Effort Hours

Actual
Duration

Estimated
Effort
Hours

Estimated
Requirements

Estimated
Duration

Estimated
Peak Staff

Estimated New
SLOC in LS

Estimated
SLOC in LS

C# 0.38 0.92 -0.02 0.46 0.79 0.84 0.74
Java 0.00 0.79 0.61 -0.09 0.56 0.34 0.19
Ada 0.26 0.92 0.35 0.27 0.50 0.71 0.27
C/C++ -0.07 0.82 0.48 -0.05 0.71 0.57 0.36
C++ 0.12 0.93 0.35 0.11 0.62 0.57 0.39
CMMI 3 0.28 0.88 0.42 0.23 0.74 0.50 0.48
CMMI 4 0.31 0.95 0.21 0.18 0.04 0.59 0.74
CMMI 5 -0.12 0.85 0.33 -0.11 0.67 0.57 0.17
CPAF 0.10 0.81 0.55 0.22 0.77 0.56 0.47
CPFF 0.16 0.90 0.60 0.21 0.59 0.76 0.28
CPIF 0.08 0.88 0.58 -0.06 0.57 0.45 0.51

Spearman
Correlation for
Actual Effort Hours

Actual
Duration

Estimated
Effort
Hours

Estimated
Requirements

Estimated
Duration

Estimated
Peak Staff

Estimated New
SLOC in LS

Estimated
SLOC in LS

C# 0.49 0.84 0.54 0.50 0.69 0.90 0.78
Java -0.20 0.77 -0.18 -0.18 0.68 0.60 0.62
Ada 0.12 0.92 0.02 0.22 0.78 0.81 0.43
C/C++ -0.12 0.89 -0.05 -0.12 0.75 0.76 0.49
C++ 0.20 0.95 0.23 0.15 0.74 0.78 0.65
CMMI 3 0.29 0.92 0.38 0.28 0.77 0.73 0.71
CMMI 4 0.39 0.88 0.06 0.22 0.24 0.78 0.65
CMMI 5 -0.03 0.86 -0.03 -0.02 0.71 0.72 0.48
CPAF 0.16 0.90 0.16 0.24 0.79 0.78 0.72
CPFF 0.22 0.86 0.33 0.28 0.62 0.73 0.70
CPIF 0.14 0.88 0.25 0.04 0.66 0.61 0.55

Pearson
Correlation for
Actual Duration

Estimated
Effort Hours

Estimated
Requirements

Estimated
Duration

Estimated
Peak Staff

Estimated New
SLOC in LS

Estimated
SLOC in LS

C# 0.45 0.35 0.91 0.34 0.54 0.54
Java 0.01 -0.19 0.94 -0.16 -0.15 0.05
Ada -0.04 0.11 0.87 -0.37 0.41 0.16
C/C++ -0.10 0.31 0.69 0.10 0.12 0.03
C++ 0.15 -0.11 0.69 -0.05 0.02 0.22
CMMI 3 0.35 -0.09 0.83 0.03 0.27 0.24
CMMI 4 0.09 0.83 0.91 0.57 0.40 0.59
CMMI 5 -0.13 0.17 0.61 -0.16 -0.02 0.06
CPAF 0.10 -0.16 0.58 -0.09 0.23 0.17
CPFF 0.17 0.13 0.90 -0.06 0.14 0.33
CPIF 0.03 0.29 0.88 -0.01 0.12 0.20

Spearman
Correlation for
Actual Duration

Estimated
Effort Hours

Estimated
Requirements

Estimated
Duration

Estimated
Peak Staff

Estimated New
SLOC in LS

Estimated
SLOC in LS

C# 0.54 0.67 0.78 0.40 0.62 0.73
Java -0.18 0.60 0.90 -0.38 -0.12 -0.03
Ada 0.02 0.49 0.81 -0.24 0.21 0.11
C/C++ -0.05 0.45 0.78 0.06 0.02 0.11
C++ 0.23 0.71 0.79 0.03 0.10 0.27
CMMI 3 0.38 0.61 0.86 0.14 0.32 0.31
CMMI 4 0.06 0.47 0.96 0.57 0.45 0.66
CMMI 5 -0.03 0.56 0.75 -0.13 -0.01 0.03
CPAF 0.16 0.67 0.71 -0.04 0.22 0.11
CPFF 0.33 0.69 0.88 -0.03 0.08 0.26
CPIF 0.25 0.65 0.85 0.08 0.24 0.22

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016

• The predictors, eSCHED and eREQ, should be considered in
the schedule model.

5.2 Data Ranges
Actual effort hours have the following ranges for the subsets.

Figure 10 Actual Effort Hour Ranges

The data ranges in the subsets showed the most variation in actual
effort hours for the C++ primary programming language and CPIF
contract type. Box plots for actual effort hours with process
maturity categories showed the maximum number of effort hours
increasing with increasing maturity. Median values, represented
by the vertical bars, were similar between CMMI levels 3 and 5
although the range for CMMI level 3 was much wider. CMMI
level 4 had a much higher median than either CMMI level 3 or
CMMI level 5. The percent change in effort hours is shown in
Figure 11.

Figure 11 Effort Hours (Estimated to Actual) Percent Change

Percent change in effort hours from estimated to actual, for the
majority of the data, ranged from -100% to over 200% for all the
subsets except CPAF contract type and CMMI level 3. Median
values for all the subsets ranged between 5% and 40%.

Actual duration in months is shown in Figure 12.

Figure 12 Actual Duration in Months

Ada had the most variation among language types. CPAF contract
type had the most variation among contract types. CMMI level 5
had the most variation among process maturity types.
Figure 13 shows the percent change between estimated and actual
duration.

Figure 13 Duration (Estimated to Actual) Percent Change

Aggregated Primary Language Cost Plus
Contract Type Process Maturity Level

Actual Effort Hours

Where 15 rows are excluded

Aggregated Primary Language Cost Plus
Contract Type Process Maturity Level

Percent Change in Effort Hours
from Estimated to Actual

Where 15 rows are excluded

Aggregated Primary Language Cost Plus
Contract Type Process Maturity Level

Actual Duration in Months

Where 15 rows are excluded

Aggregated Primary Language Cost Plus
Contract Type Process Maturity Level

Percent Change in Duration
from Estimated to Actual

Where 15 rows are excluded

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016

C/C++ had the highest percent change in duration between
estimated and actual months among language types. CPAF had
the highest percent change in duration among contract types. And
CMMI level 3 had the highest percent change in duration among
process maturity types. All the subsets median values ranged
between 0% and 15% change in duration.

Figure 14 shows a box plot of the analyzed process oriented
categories of the actual effort hours divided by the initially
estimated requirements to use as a productivity benchmark.

Figure 14 Actual Effort Hours per Estimated Requirements

5.3 Regression
This study used regression in the JMP tool [18] and CO$TAT tool
[19] to determine which effort model fit the data best. Regressions
for actual effort hours began with estimated effort hours.
Regressions for actual duration began with estimated duration.

6. EFFORT MODEL RESULTS

6.1 Effort Model Functional Forms
The resulting models are shown in Table 9 below. Each model
predicts effort (in hours) for a particular process category type.
There are no models where the number of data points were lower
than 12. Where there were blanks or zeroes for initially estimated
parameters, those records were removed from the analysis. Using
initially estimated effort hours, all equations exhibit economies of
scale as the exponent for the independent variable is less than one.

Table 9 Effort Model Functional Forms

6.2 Effort Model Usage and Limitations
The following guidelines are for using the regression models
listed in Table 9:

• Model (1) predicts effort for the aggregated C# primary
programming language with the initial variable, estimated
new code. The model is applicable to project estimates
ranging between 3.5 and 192 thousands of lines of new code
in logical statements.

• Model (2) predicts effort for the aggregated Ada primary
programming language. The model is applicable to project
estimates ranging between 320 and 133,855 effort hours.

• Model (3) predicts effort for the aggregated C# primary

programming language. The model is applicable to project
estimates ranging between 4620 and 133,280 effort hours.

• Model (4) predicts effort for the aggregated C/C++ primary

programming language. The model is applicable to project
estimates ranging between 184 and 170,807 effort hours.

• Model (5) predicts effort for the aggregated C++ primary

programming language. The model is applicable to project
estimates ranging between 520 and 209,616 effort hours.

• Model (6) predicts effort for CPAF projects. The model is
applicable to project estimates ranging between 575 and
169,583 effort hours.

Aggregated Primary Language Cost Plus
Contract Type Process Maturity Level

Model Subset Records Equation

1 C# 12 aEH = 18.97 * eNEW ̂0.70

2 Ada 25 aEH = 52.91 * eEH ̂0.64
3 C# 12 aEH = 4.64 * eEH ̂0.84
4 C/C++ 55 aEH = 6.82 * eEH ̂0.85
5 C++ 69 aEH = 1.55 * eEH ̂0.98

6 CPAF 74 aEH = 8.53 * eEH ̂0.82
7 CPFF 40 aEH = 1.27 * eEH ̂0.99
8 CPIF 43 aEH =18.8 * eEH ̂0.75

9 CMMI 3 77 aEH = 4.46 * eEH ̂0.88
10 CMMI 4 16 aEH = 7.91 * eEH ̂0.84
11 CMMI 5 90 aEH = 9.08 * eEH ̂0.80

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016

• Model (7) predicts effort for CPFF projects. The model is
applicable to project estimates ranging between 1896 and
101,665 effort hours.

• Model (8) predicts effort for CPIF projects. The model is
applicable to project estimates ranging between 2235 and
191,013 effort hours.

• Model (9) predicts effort for CMMI level 3 projects. The
model is applicable to project estimates ranging between 575
and 209,616 effort hours.

• Model (10) predicts effort for CMMI level 4 projects. The

model is applicable to project estimates ranging between
11702 and 207,968 effort hours.

• Model (11) predicts effort for CMMI level 5 projects. The

model is applicable to project estimates ranging between
1104 and 225,304 effort hours

6.3 Effort Model Validity
Table 10 below shows the model validity results. All regression
models’ independent variables are significant as the t-statistics
exceed the two-tailed critical values, given the coefficient alpha
(0.05) and degrees of freedom (DF). The DF were equal to the
number of records minus two: one for the equation intercept and
one for the independent variable.

Table 10 Effort Model Validity Results

6.4 Effort Model Reliability
Table 11 shows the accuracy test results. All effort models are
reliable as their CV are less than or equal 35%. MAD was only
less than or equal 45% for the aggregated primary programming
language effort models (Models 1 through 5) and for the CMMI
level 4 effort model (Model 10). MAD was below 60% for all
models. A published standard for MMRE is less than or equal to
25% and for PRED (30) is 75% or more [17]. All effort models
except for the CMMI level 4 effort model fall below this
relatively high published standard.

Table 11 Effort Model Reliability Results

R2 = coefficient of determination; SE = standard error of estimate;
RMS = Root Mean Square of the percentages of error;
MAD = mean absolute deviation; CV = coefficient of variation;
MMRE = Mean Magnitude of Relative Error (MRE);
PRED(30) = Predictive accuracy is the percent of the number of
records at or above a value of 30% magnitude of relative error

7. SCHEDULE MODEL RESULTS

7.1 Schedule Model Functional Forms
The resulting models are shown in Table 12. Each model predicts
schedule (in months) for a particular process oriented type.

Model Subset Records

Independent
Variable

T-Statistic
(Coef/SD)

P-Value

1 C# 12 4.8554 0.0007

2 Ada 25 9.0249 0.0000
3 C# 12 6.3417 0.0000
4 C/C++ 55 14.5753 0.0000
5 C++ 69 23.5838 0.0000

6 CPAF 74 16.2532 0.0000
7 CPFF 40 9.7535 0.0000
8 CPIF 43 8.9502 0.0000

9 CMMI 3 77 18.7147 0.0000
10 CMMI 4 16 8.2148 0.0000
11 CMMI 5 90 14.8412 0.0000

Model
R2 in
Unit
Space

SE
RMS
of %
Errors

MAD

CV
(MAD

Res/Avg
 Act)

MMRE PRED(30)

1 0.69 19557 0.39 0.29 0.29 0.29 0.67

2 0.78 16825 0.55 0.40 0.29 0.40 0.48
3 0.81 15391 0.64 0.38 0.25 0.38 0.58
4 0.66 32218 0.67 0.45 0.32 0.45 0.45
5 0.85 26023 0.52 0.36 0.24 0.36 0.52

6 0.64 28742 0.78 0.51 0.35 0.51 0.46
7 0.78 15281 1.11 0.58 0.31 0.58 0.50
8 0.70 35749 0.84 0.49 0.28 0.49 0.60

9 0.76 29210 0.75 0.49 0.29 0.49 0.42
10 0.88 22811 0.27 0.22 0.17 0.22 0.75
11 0.69 28265 1.03 0.55 0.34 0.55 0.47

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016

Table 102 Schedule Model Functional Forms

7.2 Schedule Model Usage and Limitations
The following guidelines are for using the schedule models listed
in Table 12:
• Model (12) predicts schedule for the aggregated Ada primary

programming language. The model is applicable to project
estimates ranging between 0.2 and 100.1 months.

• Model (13) predicts schedule for the C# primary
programming language. The model is applicable to project
estimates ranging between 0.5 and 52 months.

• Model (14) predicts schedule for the C++ primary

programming language. The model is applicable to project
estimates ranging between 0.2 and 83 months.

• Model (15) predicts schedule for the Java primary

programming language. The model is applicable to project
estimates ranging between 0.4 and 47.2 months.

• Model (16) predicts schedule for CPFF projects. The model

is applicable to project estimates ranging between 0.4 and 41
months.

• Model (17) predicts schedule for CPIF projects. The model is

applicable to project estimates ranging between 0.2 and
100.1 months.

• Model (18) predicts schedule for CMMI level 3 projects. The

model is applicable to project estimates ranging between 0.3
and 100.1 months.

• Model (19) predicts schedule for CMMI level 4 projects. The
model is applicable to project estimates ranging between 0.3
and 46.8 months.

• Model (20) predicts schedule for CMMI level 5 projects.

The model is applicable to project estimates ranging between
0.2 and 57 months.

• Model (21) predicts schedule for CMMI level 4 projects. The

model is applicable to projected requirement counts ranging
between 97 and 3,685.

7.3 Schedule Model Validity
Table 13 shows the schedule model validity results. All
regression models are significant as the t-statistics for the
independent variables exceed the two-tailed critical values.

Table 11 Schedule Model Validity Results

7.4 Schedule Model Reliability
Table 14 shows the accuracy test results. All but one of the
schedule models are reliable as their CV are within the threshold
of less than or equal to 45%. CPIF projects’ schedule model is
over 45%. It is 3% over at 48%. MAD values are larger for the
schedule models ranging from a low of 15% to a high over 100%
at 139%. Only half of the schedule models are within the range of
the MAD threshold. These five models were Model (13) for C#,
Model (14) for C++, Model (15) for Java, Model (16) for CPFF,
and Model (17) for CMMI level 4.

Model Subset Records Equation

12 Ada 24 aSCHED = 2.14 * eSCHED ̂0.76
13 C# 12 aSCHED = 1.55 * eSCHED ̂0.87
14 C++ 69 aSCHED = 1.44 * eSCHED ̂0.92
15 Java 24 aSCHED = 2.4 * eSCHED ̂0.75

16 CPFF 40 aSCHED = 1.04 * eSCHED ̂1.07
17 CPIF 43 aSCHED = 1.40 * eSCHED ̂0.80

18 CMMI 3 77 aSCHED = 2.23 * eSCHED ̂0.76
19 CMMI 4 16 aSCHED = 1.05 * eSCHED ̂1.02
20 CMMI 5 90 aSCHED = 1.44 * eSCHED ̂0.86

21 CMMI 4 16 aSCHED = 0.01 * eREQ ̂0.99

Model Subset Records

Independent
Variable

T-Statistic
(Coef/SD)

P-Value

12 Ada 24 6.3190 0.0000
13 C# 12 14.3584 0.0000
14 C++ 69 20.0534 0.0000
15 Java 24 9.7523 0.0000

16 CPFF 40 26.9108 0.0000
17 CPIF 43 11.5055 0.0000

18 CMMI 3 77 11.8238 0.0000
19 CMMI 4 16 23.6736 0.0000
20 CMMI 5 90 17.6696 0.0000

21 CMMI 4 16 5.9674 0.0000

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016

Table 14 Schedule Model Reliability Results

R2 = coefficient of determination; SE = standard error of estimate;
RMS = Root Mean Square of the percentages of error;
MAD = mean absolute deviation; CV = coefficient of variation;
MMRE = Mean Magnitude of Relative Error (MRE);
PRED(30) = Predictive accuracy is the percent of the number of
records at or above a value of 30% magnitude of relative error

8. CONCLUSION
8.1 Primary Findings
This study resulted in the following findings:
1. Pearson and Spearman Rho correlation analysis revealed that

the most significant factor influencing software development
effort in the process oriented categories was estimated effort
except for the C# primary language. For C#, new code in
logical statements was a significant and stand-alone factor.

2. Pearson and Spearman Rho correlation analysis also revealed
that the significant factor influencing software development
schedule was estimated duration across the process oriented
categories. For CMMI level 4 projects, estimated
requirements were a significant and stand-alone factor.

3. The median values for percent change in effort hours ranged
between 5 to 40% whereas the median values for percent
change in duration ranged from 0 to 15%. For effort hour and
duration percent change, CPAF and CMMI level 3 had the
highest rate of variation among all the other process oriented
category subsets.

4. The regression results show the effect of estimated effort
hours on actual effort hours. All models passed the t-statistic
and p-value validity tests. Models 1 through 5 for aggregated
language types, including Model 1 with new code in logical
statements as the sole independent variable, along with

Model 10 for CMMI level 4 passed all reliability tests. R2 in
unit space for all models was above 60%.

5. The regression results show that the effect of estimated

duration on software development schedule is significant.
For CMMI level 4, estimated requirement counts were also
significant. Models 12 through 21 passed the model validity
test. Only Model 13 for C#, Model 14 for C++, Model 15 for
Java, Model 16 for CPFF, and Model 17 for CMMI level 4
passed the model reliability tests.

6. The productivity benchmark box plot by aggregated

language type, contract type, and CMMI level 3 through 5
may be used as a guide to evaluating whether actual effort
hours per initially estimated requirement counts are within
the ranges of historical data for government projects.

8.2 Challenges to Validity
Although some of the models were deemed reliable, they still
have a few limitations:
1. A larger dataset (>400 projects) is required to increase

model validity and accuracy. A future investigation should
attempt to control for the impact of external factors such as
operating environment, application domain, program phase,
and maturity of estimated requirements and code counts.

2. A non-random sample was used as the researchers had access
to names in the population and the selection process for
participants was based on the non-zero or non-blank valued
input parameters. This process limits the ability to generalize
to a population.

3. Pairwise correlation using Pearson correlation and Spearman
Rho correlation was used over Structured Equation Modeling
as the sponsor, US Navy, does not approve the use of “R” or
any other open source statistical package.

4. The cost-plus contract types represent areas of work made
possible with funding from government priorities which may
not translate to for-profit industry endeavors.

8.3 Future Research
The following topics may be considered for future research:
1. Continue to collect data on estimated effort and schedule to

compare to actual effort and schedule and publish
benchmarks by well-documented process oriented and
product oriented categories.

2. Instead of developing multiple models, use collected data to
create composite software effort and software schedule
estimating models using quantitative values for process and
product oriented categories.

3. Compare local data to government data using the process

oriented types: aggregated primary software programming
language, contract type, and process maturity type (and
comparing staged CMMI levels to continuous CMMI levels).

8.4 Summary
• Twenty-one software estimation models were developed

based on 204 paired programs implemented within the U.S.

Model
R2 in
Unit

Space
SE

RMS
of %

Errors
MAD

CV
(MAD
Res /

Avg Act)

MMRE PRED(30)

12 0.63 16.9 4.73 1.39 0.35 1.39 0.46
13 0.81 6.6 0.30 0.23 0.16 0.23 0.75
14 0.69 11.9 0.63 0.37 0.26 0.37 0.57
15 0.87 4.9 0.46 0.31 0.16 0.31 0.67

16 0.78 8.0 0.34 0.23 0.21 0.23 0.68
17 0.64 16.3 4.79 1.05 0.48 1.05 0.47

18 0.63 14.1 5.31 1.31 0.32 1.31 0.48
19 0.78 7.1 0.23 0.15 0.23 0.15 0.94
20 0.55 12.6 3.32 0.85 0.34 0.85 0.50

21 0.63 9.2 1.07 0.66 0.42 0.66 0.38

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016

Department of Defense. The source data provided valuable
insight into the costs and schedules associated with the
vendor’s implementation team in the course of developing
and implementing software.

• Methods are simpler and more viable to use for early
estimates than traditional parametric cost models.

9. REFERENCES
[1] Agrawal M. and Chari K., March 2007, Software Effort,

Quality, and Cycle Time: A Study of CMM Level 5 Projects,
IEEE Transactions on Software Engineering, Volume 33,
Number 3, pp. 145-156

[2] Wallshein C. and Loerch A., July 2015, Software Cost
Estimating for CMMI Level 5 Developers, Journal of
Systems and Software, Volume 105, pp. 72-78

[3] Alyahya M., Ahmad R., and Lee S., April 2010, Impact of
CMMI Based Software Process Maturity on COCOMO II’s
Effort Estimation, The International Arb Journal of
Information Technology, Volume 7, Number 2

[4] Rosa W., Madachy R., Boehm B., Clark B., and Dean, J.,
June 2014, Improved Method for Predicting Software Cost
and Schedule, http://www.iceaaonline.com/ready/wp-
content/uploads/2014/07/IT-3-Paper-Improved-Method-for-
Predicting-Software-Effort-and-Schedule.pdf

[5] Lanham N., Wallshein C., Rosa W., and Popp M., June 2015,
Exploring DoD Software Growth: A Better Way to Model
Future Software Uncertainty,
http://www.iceaaonline.com/ready/wp-
content/uploads/2015/06/SW09-Paper-Lanham-DoD-
Software-Growth.pdf

[6] Rosa W., Boehm B., Clark B., Madachy R., Jones C.,
McGarry J., Lanham N., and Wallshein C., June 2015, Early
Phase Software Effort and Schedule Estimation Models,
http://www.iceaaonline.com/ready/wp-
content/uploads/2015/06/SW12-Paper-Rosa-Early-Phase-
Software.pdf

[7] Contract Type, Online Brief by Air Force Materiel
Command, Module Lead: OO-ALC/PKCA, August 2007,
http://www.acq.osd.mil/dpap

[8] Multiple training materials on contract types at acc.dau.mil
[9] Software Cost Estimation Metrics Manual,

http://softwarecost.org/images/2/25/Software_Cost_Estimati
on_Metrics_Manual_v15f.pdf

[10] Russell, K., January 24, 2005, Quick-Study: CMMI,
Computerworld, Volume 39, Number 4, p. 28

[11] Brush, D., November 8, 2014, “Should I throw out these old
COBOL books?”, Library Hi Tech News, Emerald Group
Publishing Limited, 0741-9058, pp. 15-18

[12] C# definition found online at
http://searchwindevelopment.techtarget.com/definition/C,
site accessed March 24, 2016

[13] C++ definition found online at
http://www.cplusplus.com/info/description/, site accessed
March 24, 2016

[14] Java definition found online at
http://searchsoa.techtarget.com/definition/Java, site accessed
March 24, 2016

[15] Government Accountability Office, 2009, “GAO Cost
Estimating and Assessment Guide: Best Practices for
Developing and Managing Capital Program Costs”
http://www.gao.gov/products/GAO-09-3SP, site accessed on
March 24, 2016

[16] Software Resource Data Report, 2011,
http://dcarc.cape.osd.mil/Files/Policy/2011-SRDRFinal.pdf

[17] Conte S., Dunsmore H. and Shen V., 1986, Software
Engineering Metrics and Models, Benjamin/Cummings
Publishing Company, Inc., Menlo Park, CA, 396 pages

[18] JMP at
http://support.sas.com/documentation/onlinedoc/jmp/index.ht
ml, site accessed on March 29, 2016

[19] ACE CO$TAT at
https://www.aceit.com/aceit-suite-home/product-info/costat,
site accessed on March 29, 2016

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016

http://searchwindevelopment.techtarget.com/definition/C
http://www.cplusplus.com/info/description/
http://searchsoa.techtarget.com/definition/Java
http://dcarc.cape.osd.mil/Files/Policy/2011-SRDRFinal.pdf
http://support.sas.com/documentation/onlinedoc/jmp/index.html
http://support.sas.com/documentation/onlinedoc/jmp/index.html
https://www.aceit.com/aceit-suite-home/product-info/costat

	1. INTRODUCTION
	1.1 Problem Statement
	1.2 Deficiencies in Past Studies
	1.3 Purpose of the Study
	1.4 Significance of the Study
	1.5 Paper Organization

	2. RELATED WORK
	3. RESEARCH METHOD
	3.1 Research Question
	3.2 Quantitative Method
	3.3 Population and Sample
	3.4 Instrumentation
	3.5 Data Normalization
	3.5.1 Converting to Logical SLOC Count
	3.5.2 Data Grouping

	3.6 Variables in the Study
	3.7 Effort Model Forms
	3.8 Schedule Model Form
	3.9 Model Validity, Accuracy, and Selection

	4. Data Demographics
	5. Data Analysis
	5.1 Correlation Analysis
	5.2 Data Ranges
	5.3 Regression

	6. EFFORT MODEL RESULTS
	6.1 Effort Model Functional Forms
	6.2 Effort Model Usage and Limitations
	6.3 Effort Model Validity
	6.4 Effort Model Reliability

	7. SCHEDULE MODEL RESULTS
	7.1 Schedule Model Functional Forms
	7.2 Schedule Model Usage and Limitations
	7.3 Schedule Model Validity
	7.4 Schedule Model Reliability

	8. CONCLUSION
	8.1 Primary Findings
	8.2 Challenges to Validity
	8.3 Future Research
	8.4 Summary

	9. REFERENCES

