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ABSTRACT 
This paper will present updated findings of software effort and 
duration growth factors (using estimated parameters at the 
beginning of the effort), effort estimating relationships (EERs), 
and schedule estimating relationships (SERs) with selected 
subsets of United States Department of Defense (DoD) Computer 
Software Configuration Item (CSCI) records. Focusing on early 
and initial estimating parameters such as requirement counts, staff 
hours, peak staff counts, duration in months, and source lines of 
code, data subsets are by software processes and tools. These 
subsets are process maturity as measured by Capability Maturity 
Model Integrated (CMMI), primary language, and, when 
applicable, cost-plus contract type. EERs and SERs will be 
displayed per goodness of fit criteria. Effort and duration 
distribution benchmarks are provided to guide cost analysts in 
normalizing and inspecting data for early and initial estimating 
parameters. These methods are applicable to all industry sectors. 

General Terms
Management, Measurement, Software cost estimation 

Keywords
Software effort estimation, software cost estimation, source lines 
of code, process maturity, CMMI, contract type, software 
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1. INTRODUCTION
1.1 Problem Statement 
While efforts to characterize software cost and schedule have 
been advanced by recent papers, variability in the human 
endeavor of creating or modifying software to meet specific (and 
evolving) requirements remains. Some of this may be able to be 
ameliorated by examining aspects of software processes and 
techniques. This paper explores CMMI, primary software 
language, and cost-plus contract types as mechanisms to 
accurately predict effort and schedule by using and comparing 
initial parameters. 

1.2 Deficiencies in Past Studies 
Prior studies pairing initial and final records are extremely limited 
to identify main cost drivers for process oriented categories. A 
small set of studies [1, 2] have examined the impact of CMMI 
level 5 on software effort and schedule. One study found higher 
levels of process maturity increased productivity, decreased 
development time, and reduced dis-economies of scale [3] 
although empirical research into this issue, including that in this 
paper do not establish clear productivity gains or decreased 

development times with higher CMMI levels. A recent paper and 
presentation focused on paired initial and final records at an 
aggregated level with 40 records [6], categorized by government 
and information technology (IT), not by process orientation. 

Another examined paired initial and final records by CSCI level 
[5] as a whole dataset, only focusing on percentage change
between initial and final effort hours categorized by contract type.
No studies found in the literature have specially examined the cost
impact of government contract types on software effort and
schedule.

While degree of software language familiarity is a tunable input 
parameter in software tools such as COCOMO and SEER-SEM, 
recent literature searches did not uncover peer-reviewed papers 
showing direct impacts of specific primary software programming 
languages on software effort or schedule. 

1.3 Purpose of the Study 
This study attempts to contribute to the knowledge base by 
exploring whether process oriented categories accurately estimate 
effort and duration and if using productivity benchmarks by these 
categories would be helpful to assess the validity of future DoD 
data submissions. This study examines the effect of process types 
on software cost and schedule. It provides statistics and regression 
models for process-oriented EERs and SERs. 

1.4 Significance of the Study 
This study will address deficiencies in past studies by: 

• Developing simple estimation models by process type
instead of complex models with many parameters.

• Using a large and recent dataset to reduce sampling
error.

• Normalizing the dataset to improve consistency, and to
enable valid comparisons and projections.

1.5 Paper Organization 
This research paper is organized into nine sections: 

• Section 1 discusses deficiencies in past studies and a
proposed solution.

• Section 2 summarizes the scholarly literature of related
studies.  It highlights previous process-driven analyses
and discusses the taxonomy used in this study.

• Section 3 reviews the research method step by step. It
briefly explains the survey method, instrumentation,
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data normalization framework, and criteria for selecting 
the best fit models. 

• Section 4 describes the data demographics, including 
segmentation, age of data, size, effort distribution 
percentages, and productivity benchmarks. 

• Section 5 discusses the data analysis results. 

• Section 6 presents the effort estimating models. 

• Section 7 presents the schedule estimating models. 

• Section 8 provides the research conclusions on the basis 
of the hypotheses. It also highlights the contributions 
and limitations, and outlines areas for further research. 

• Section 9 cites the sources used in the paper. 

 

2. RELATED WORK 
 

Agrawal and Chari [1] studied 37 projects in four CMMI 
level 5 organizations and found high levels of process maturity 
reduce the effect of a number of factors expected to impact 
software development effort, quality, and cycle time. Software 
size influenced development effort, quality, and cycle time. 
Models with software size, transformed by natural logarithms, on 
average, predicted transformed effort and cycle time around 12 
percent of the actuals across organizations. The authors posited 
reduced variance of software development outcomes due to 
factors other than software size. 

 
      Wallshein and Loerch [2] studied thirty CSCI records from 
software projects completed from 2003 to 2008 certified from 
CMMI level 5 organizations. Initially estimated software size in 
either thousands of new lines of code (KNEW) or thousands of 
total source lines of code (KSLOC), after being transformed by 
natural logarithms, were found to be reasonable predictors of 
transformed final, actual software effort. Another variable, 
untransformed, found to be statistically valid to predict final, 
actual effort was initially estimated Peak Staff (PS). 
 
 
      Alyahya, Ahmad, and Lee [3] studied the impact of the 
staged representation of CMMI-based process maturity levels 
using the Constructive Cost Model (COCOMO) to compute 
software development effort. They found each higher CMMI 
maturity level decreased development effort, increased the 
productivity rate, and reduced the diseconomy of scale. They 
recommended collecting historical data for each process area to 
examine the impacts and documenting CMMI representations as 
staged or continuous. 
 

       Rosa, Madachy, Boehm, Clark, and Dean [4] studied the 
predictor PMAT for software process maturity and determined it 
should be considered in a schedule model as there was sufficient 
evidence at α = 0.05 that correlations were significant. They also 
found the predictors thousands of lines of effective source lines of 
code (KESLOC) and full time equivalent (FTE) personnel as 

measured by PS to be significant as well. KESLOC and FTE were 
the two variables documented in the schedule models for 
application types. 

 

      Lanham, Wallshein, Rosa, and Popp [5] examined initial 
and final effort hours at the CSCI level and determined initial 
hours, requirements count, and PS represented statistically 
significant independent variables. In one of the first published 
papers on software development segregated by contract type, cost-
plus contract types were examined for percent change between 
initial and final effort hours. Cost-Plus Award Fee (CPAF) 
contracts and Cost-Plus Fixed Fee (CPFF) contracts demonstrated 
significantly different average values. CPAF, typically granted for 
large research and development projects with an award fee to 
motivate the contractor to meet government’s desired 
performance objectives, had the highest mean growth value 
between initial and final effort hours. 

 

      Rosa, Boehm, Clark, Madachy, Jones, McGarry, Lanham, 
and Wallshein [6] studied initially estimated PS and requirements 
as predictors of the actual effort for 40 development projects, with 
rolled-up CSCIs, at the early elaboration phase. Actual effort was 
measured by person month (PM) using the COCOMO factor of 
152 hours per PM. Initially estimated effort in PM was found to 
highly significant to predict actual software development duration.  

 

 

3. RESEARCH METHOD 
3.1 Research Question 
This study will address the following questions: 
Is CMMI, primary software language, and contract type a 
good predictor of software engineering labor? 
Does software development duration relate to size and staffing 
levels, when grouped by CMMI, primary software language, 
and contract type? 
 

3.2 Quantitative Method 
Second order data was used in the methods in this study to 
analyze effort and cost drivers of software development projects.  
A non-random sample was used since the researchers had access 
to records showing effort in all the areas described by IEEE 
12207, Systems and software engineering -- Software life cycle 
processes, for software development. 
 

3.3 Population and Sample 
The sample was 204 paired software projects implemented for the 
United States Department of Defense (DoD) based on Mr. Nick 
Lanham’s pairing algorithm. These projects were completed 
during the time period from 2002 to 2013. The number of projects 
considered for effort analysis was 219.  After extensive analysis 
over the course of this year, fifteen records were determined to be 
outside the scope of analysis. Reasons included being initially 
recorded as a single CSCI when the paired submission was for 
multiple CSCIs. For benchmarking, box plots of actual effort 
hours to initial requirements are shown for the analyzed process 
orientation types. 
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3.4 Instrumentation 
Data were compiled from a questionnaire containing over 20 
items. The data collection questionnaire used in the study was 
obtained from the Software Resource Data Report (SRDR) 
questionnaire [16]. The source questionnaire entitled “SRDR 
Sample Formats” can be downloaded from the Defense Cost 
Analysis Resource Center (DCARC) website: 
 
http://dcarc.cape.osd.mil/Files/Policy/2011-SRDRInitial.pdf 

http://dcarc.cape.osd.mil/Files/Policy/2011-SRDRFinal.pdf 

http://dcarc.cape.osd.mil/Files/Policy/Initial_Developer_Report.xlsx 

http://dcarc.cape.osd.mil/Files/Policy/Final_Developer_Report.xlsx  

Data on product size, effort, schedule and product attributes like 
required reliability, software process maturity, were recorded and 
new fields were added. Multiple personnel within the Naval 
Center for Cost Analysis researched and collected data on contract 
type. Lists of contract types were obtained from multiple 
government sources [7 8]. 
 

3.5 Data Normalization 
An objective of data normalization is to improve data consistency, 
so that comparisons and projections are more valid. The software 
data set in this study was normalized using two steps: 
 

3.5.1 Converting to Logical SLOC Count 
It is considered best practice [8] to use logical SLOC as the 
standard counting rule for software cost estimation. Several 
projects were reported in either Physical or Non‐Commented 
Source Statements (NCSS).  Those projects were converted into 
Logical SLOC using empirical factors from recent studies [9]: 
 

Conversion Factor 
Logical SLOC  = 0.66 x NCSS SLOC 
Logical SLOC = 0.33 x Physical SLOC 

 

3.5.2 Data Grouping 
According to the United States Government Accountability Office 
[15], it is considered best practice to normalize data by similar 
characteristics. Products created within organizations having 
similar CMMI levels use similar processes certified by an outside 
expert. Products developed with similar primary programming 
languages adhere to certain rulesets and processes for the software 
to be compiled and execute. Furthermore, products developed 
under cost-plus contract types transfer the risk to the government, 
allowing for the development to be sanctioned by the servicing 
organization since the government is financially responsible. Data 
for contract types not explicitly labeled as cost-plus were scarce 
(i.e., having less than 12 records per subset) or unknown and were 
excluded from further analysis within the scope of this study. 
 
To reduce variation and ensure valid comparisons, the process 
oriented categories are shown in the tables below. 
 
 
The first table discusses the CMMI levels. 
 

Table 1 Taxonomy for Process Maturity [10] 

Process 
Maturity Symbol Definition 

Defined CMMI 3 A standard software process meets the 
organizations specific needs. Attention 
is paid to documentation, 
standardization, and integration. 
Projects follow defined process even 
under schedule pressure. Management 
recognizes these processes are the 
quickest route to completion. 

Managed CMMI 4 Processes are predictable. Detailed, 
quantitative measurements of process 
and product quality are collected. 
Management can adjust and adapt the 
process to specific projects without 
losing quality or deviating from 
specifications. 

Optimizing CMMI 5 Processes are continuously improving. 
Processes are improved through 
quantitative feedback and shared ideas. 
Mangers introduce innovative 
processes to better serve the 
organizations particular needs. Pilot 
projects are common. 

 
 
The next table discusses the primary software language types. 
 

Table 2 Taxonomy for Primary Software Language Types 

Aggregated 
Primary 
Software 
Language Symbol Definition 

Ada, 
Ada-83, 
Ada-95 

Ada Named after Ada Lovelace, a 
nineteenth century mathematician, and 
commissioned by the US DoD to 
defense contractor CII Honeywell Bull, 
Ada is a structured, object-oriented, 
high-level language unique in providing 
support for real-time embedded 
software with tasks and synchronous 
messages.[11] 

C# C# Per http://searchwindevelopment.techtarget.com/definition/C, C# 
(pronounced "C-sharp") is an object-
oriented programming language from 
Microsoft based on C++ with features 
similar to Java. C# is designed to work 
with Microsoft's .Net platform to 
facilitate exchange of information and 
services over the Web, and to enable 
developers to build highly portable 
applications. [12] 

C/C++ C/C++ This hybrid of C and C++ has the least 
precise definition in the dataset. C was 
created in conjunction with the UNIX 
operating system and is the forerunner 
of C++ although not an object-oriented 
language itself. Both C and C++ are 
designed for use by systems 
programmers, with C++ having an 
object-oriented style.[11] 
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Aggregated 
Primary 
Software 
Language Symbol Definition 

C++ C++ Per http://www.cplusplus.com/info/description/,  C++ 
is an open ISO-standardized language, 
since 1998. C++ compiles directly to a 
machine's native code, allowing it to 
run fast, if optimized.  C++ allows type 
conversions to be checked either at 
compile-time or at run-time. Most C++ 
type checking is static.  C++ supports 
procedural, generic, and object-oriented 
programming paradigms. Code that 
exclusively uses C++'s standard library 
will run on many platforms with few to 
no changes. C++, as a language directly 
built off C, is compatible with almost 
all C code. [13] 

Java Java Per http://searchsoa.techtarget.com/definition/Java, 
Java is a programming language for use 
in the distributed environment of the 
Internet. It was designed to have the 
"look and feel" of the C++ language, 
but it is simpler to use than C++ and 
enforces an object-oriented 
programming model. Java can be used 
to create complete applications that 
may run on a single computer or be 
distributed among servers and clients in 
a network. It can also be used to build a 
small application module or applet for 
use as part of a Web page. [14] 

 
Contract types are described below. [7 8] 
 

Table 3 Taxonomy for Cost-Plus Contract Types 

Contract 
Types Symbol Definition 

Cost Plus 
Award  
Fee 

CPAF The contract level of effort is uncertain 
and it is not feasible or effective to 
negotiate an adjustment formula. The 
likelihood of meeting objectives can be 
enhanced by a clear subjective fee plan 
established by the government. 

Cost Plus 
Fixed 
Fee 

CPFF Cost uncertainty is extremely high. 
Establishment of predetermined targets 
and incentive sharing arrangements could 
result in a final fee out of alignment with 
the actual work. 

Cost Plus 
Incentive 
Fee 

CPIF The cost uncertainties are so great that any 
fixed-price contract would force the 
contractor to accept an unreasonable risk, 
but reasonable targets and formulas for 
sharing costs may be negotiated. 

 
 

3.6 Variables in the Study 
The variables considered in the study are identified in Table 2. 
The variable selection procedure is described in Section 5. 

 

Table 4 Variables in the Study 
Variable  Symbol Definition 

Effort Hours EH Software engineering effort (in 
Effort Hours). Includes: 
• software requirements 

analysis,  
• architecture/detailed design 
• code and unit testing,  
• systems/software integration,  
• qualification test,  
• development test & 

evaluation,  
• Other direct support: 

documentation and 
configuration management, 
quality assurance, software 
verification & validation, 
software review and audit, 
and software problem 
resolution. 

Software 
Development 
Duration 

SCHED The time required to complete all 
activities up to the point of 
development test & evaluation 
(DT&E) by the vendor’s 
implementation team. 

Initially 
Estimated Peak 
Staffing Level  

PS This is the peak staffing number of 
full time equivalent (FTE) people 
employed by the vendor’s 
implementation team involved in 
the software development. 

Initially 
Estimated New 
Logical 
Statements (LS) 
of Code 

NEW Amount of new code developed by 
the vendor for the software 
configuration item, converted to 
logical statements. 

Initially 
Estimated 
Source Lines of 
Code (SLOC) in 
LS 

SLOC Amount of total source lines of 
code (SLOC) developed by the 
vendor for the software 
configuration item, converted to 
logical statements. 

Initially 
Estimated 
Requirements 

REQ Total number of requirements for 
the configuration item, combining 
software requirements with 
external, interface requirements. 
These requirements are at various 
stages of maturity and elaboration, 
with lower levels expected for 
cost-plus contract types.  

 
 

3.7 Effort Model Forms 
Although several model forms were examined for each 
specified process type containing 12 or more observations, the 
predominant equation displaying consistently better goodness 
of fit was the following:   
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                   aEHi = A x (eEHi
B)            Equation (1) 

                  aEHi = A x (eNEWiB)          Equation (2) 
 
Where: 

aEH = Actual Engineering labor in effort hours 

eEH = Estimated Engineering labor in effort 
hours 

i = Process-orientation type (Tables 1 – 3) 

eNEW = Estimated amount of new code in 
logical statements 

A = Productivity constant (a.k.a. coefficient) 

B = Scaling factor expressing degree of the 
diseconomy of scale (a.k.a. exponent) 

 
The scaling influence is found in the exponent, B. An estimated 
value for B < 1.0 indicates an economy of scale. An estimated 
value of B > 1.0 indicates a diseconomy of scale.  
 

3.8 Schedule Model Form 
A non-linear model form was used for each application type 
containing 12 or more observations.  
 

            aSCHEDi = A x (eSCHEDi
B)       Equation (3) 

             aSCHEDi = A x (eREQiB)            Equation (4) 
Where: 

aSCHED = Actual Time (in months) to develop the 
Software Product 

i = Process orientation type 
A = Duration constant 

eSCHED = Estimated Time (in months) to develop 
the Software Product 

eREQ = Estimated requirements 

B = Scaling factor to account for changing 
productivity 

 
The primary schedule equation predicts the duration of software 
development phase as a function of estimated duration. The 
schedule begins with software requirements analysis, ends at the 
completion of qualification test, and precedes development test & 
evaluation phase.   
 

3.9 Model Validity, Accuracy, and Selection 
The measures for assessing the validity and accuracy of the effort 
and schedule model forms are described in Table 3 and Table 4 
respectively. The best model form for a given application type, is 
the one that surpasses the criterion shown in Table 5. 
 

Table 5 Model Validity Measures 
Measure Symbol Description 
T-test T-stat Provides a measure of the significance 

of the predictor variables in the 

regression model.  The variable is 
significant when the t-stat is greater than 
the two-tailed value, given the degrees 
of freedom and coefficient alpha (α = 
0.05) 

 
 

Table 6 Model Accuracy Measures 
Measure Symbol Description 
Standard 
Error of the 
Estimate 

SE Measures the average amount of 
variability remaining after the 
regression. Standard Error of the 
Estimate is a measure of the 
difference between the observed 
and model estimated effort.  

Coefficient of 
Determination 

R2 Shows how much variation in 
dependent variable is explained by 
the regression equation.   

Coefficient of 
Variation 

CV Percentage expression of the 
standard error compared to the 
mean of the dependent variable.  A 
relative measure allowing direct 
comparison among models.  

Mean 
Absolute 
Deviation 

MAD  Measures the average percentage by 
which the regression overestimates 
or underestimates the observed 
actual value.   

Mean 
Magnitude of 
Relative Error 

MMRE Nearly identical to MAD, this 
measures the average magnitude of 
relative error (the absolute value of 
the actual value subtracted from the 
predicted value is divided by the 
actual value). 

Predictive 
Accuracy 

PRED(X) X is found in the literature at 25 or 
30 percent with the predictive 
accuracy computed from the 
number of records having a 
magnitude of relative error less than 
or equal to X. A higher PRED value 
is better. 

 
Table 7 Model Selection Criterion 

Measure Criterion 
MAD ≤ 45% 
CV ≤ 45% 
R2 ≥ 55% 
t-test > Two tailed critical value (DF, α = 0.05) 
 
 

4. Data Demographics 
The dataset began with 204 records selected from 2015 after 
determining which of the 219 paired records used in [5] should 
continue to be analyzed, given the effort hour distribution 
verifications per Table 4, of the software engineering activities in 
IEEE 12207, prior to record pairing. As these records were 
analyzed from 2015 to 2016, outliers were scrubbed from the 
dataset. Outliers were compared against data subset populations, 
double checked with original entries and programs’ 
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documentation. The table below lays out the 2624 total CSCI 
records processed down into the 204 total CSCI records analyzed. 
 
 

Table 8 Software Dataset 

 
 
Figure 1shows the age of the software projects by delivery year. 
The age of data does not pose a challenge to validity as these are 
recent projects completed between 2002 and 2013. 
 

 
Figure 1 Age of Data 

 
Figure 2 shows the break-out of aggregated primary software 
programming languages for the 204 CSCI records. Each CSCI 
recorded which programming language was considered to be the 
primary, principal, or majority language. These languages were 
grouped according to categories shown below. The C language 
represented by the aggregated categories C/C++ and C++ alone 
account for sixty-seven percent of the 204 CSCI records in the 
analyzed dataset. 

 
Figure 2 Aggregated Primary Language 

 
Figure 3 shows the break-out of CMMI levels for the CSCI 
records. Although 20 records were not specified as to their CSCI 

level, there were five records specifying CMMI level 2, where 
processes become defined, documented, and repetitive. Ninety 
percent of the 204 paired CSCI records analyzed were CMMI 
level 3 or CMMI level 5. 
 

 
Figure 3 Capability Maturity Model Integrated (CMMI) 

Levels 
 
Figure 4 shows the break-out of data by contract type. FFP, IDIQ, 
and FPIF stand for Firm Fixed Price, Indefinite Delivery 
Indefinite Quantity, and Fixed Price Incentive Fee contracts, 
respectively. Seventeen records were unable to be categorized as 
to contract vehicle type. Eighty-four percent of the CSCI records 
had cost-plus contracts where the government assumed the risk of 
the contract. 
 

 
Figure 4 Contract Type 

 
Figure 5 shows contract types from www.acq.osd.mil/dpap/ [7] 
where FPEPA stands for Fixed Price Economic Price Adjustment. 
Cost-plus contracts figure predominately when systems are in 
early acquisition phases. 
 

Dataset Records
2624 Total CSCI Records

911 Completed Program / Build CSCI Records
403 Completed CSCIs with Software Engineering Activity Break-Outs

219 Completed Paired CSCI Records
204 Completed Paired CSCI Records After Removing Outliers
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Figure 5 Contract Type Risk 

 
The process-oriented categories with a preponderance of data are 
C/C++ languages, cost-plus contracts, and CMMI levels 3 and 5. 
 

5. Data Analysis 
This section is divided into three parts. The first displays the 
correlation analysis for selecting the most significant variables. 
The second shows the ranges in the data using box plots. The third 
identifies the best fit model using CO$TAT Log Linear regression 
[19]. Log linear regression was determined to be the best fit after 
exploring and evaluating linear and non-linear models with the 
most significant variables. 
 

5.1 Correlation Analysis 
Figure 6 is the Pearson correlation for actual effort hours where 
all the subsets are combined. 
. 

 
Figure 6 Pearson Correlation to Actual Effort Hours 

 
Figure 7 is the Spearman Rho correlation for actual effort hours. 
 

 
Figure 7 Spearman Rho Correlation for Actual Effort Hours 

 

Figure 8 is the Pearson correlation for actual duration where all 
the subsets are combined. 

 
Figure 8 Pearson Correlation to Actual Duration 

 
Figure 9 is the Spearman Rho correlation for actual effort hours. 

 
 

Figure 9 Spearman Rho Correlation for Actual Duration 
 
Correlation values are color-coded where the darker colors 
indicate higher levels and lighter colors indicate lower levels. 
 
Actual effort hours are correlated to estimated effort hours. For 
the C# aggregated primary programming language, actual effort 
hours are correlated to estimated new code, estimated SLOC, and 
estimated PS. For Java, actual effort hours are correlated to PS 
and SLOC. For Ada, C/C++, and C++ as the primary aggregated 
language, actual effort hours are correlated to PS and new code in 
logical statements. CMMI 3’s actual effort hours are correlated to 
PS, SLOC, and new code in logical statements. CMMI 4’s actual 
effort hours are correlated to SLOC and new code whereas CMMI 
5’ actual effort hours are correlated to PS and new code. CPAF 
actual effort hours are correlated to PS, new code, and SLOC; 
CPFF’s are correlated to new code; and CPIF’s are correlated to 
PS. Estimated effort hours are positively correlated to PS at 62% 
or greater with  Pearson correlation, Spearman Rho correlation, or 
both, except for CMMI level 4. 
 
Actual duration is correlated to estimated duration (in months). 
For the C# aggregated primary language, actual duration is 
correlated to SLOC. For the C++ language, actual duration is 
correlated to estimated requirements [eREQ]. CMMI 4 actual 
duration is correlated to eREQ and SLOC. CPAF actual duration 
is correlated to eREQ and CPIF’s is correlated to new code and 
SLOC in logical statements. 
 
The following conclusions can be drawn from the correlation 
analysis: 
• The predictors, eEH and estimated new/SLOC in logical 

statements, should be considered in the effort model. 

COST RISK AND CONTRACT TYPE
Cost Risk High __________________________________ Low

Requirement 
Definition

Vague __________________________________ Well-
defined

Production 
Stages

Concept 
Studies & 
Basic 
Research

Exploratory 
Development

Test/ 
Demonstration

Full-scale 
Development

Full 
Production

Follow-on 
Production

Contract 
Type

Varied CPFF CPIF,
FPIF

CPIF, 
FPIF, 
FFP

FFP, 
FPIF, 
FPEPA

FFP, 
FPIF, 
FPEPA

Pearson 
Correlation for 
Actual Effort Hours

Actual 
Duration

Estimated 
Effort 
Hours

Estimated 
Requirements

Estimated 
Duration

Estimated 
Peak Staff

Estimated New 
SLOC in LS

Estimated 
SLOC in LS

C# 0.38 0.92 -0.02 0.46 0.79 0.84 0.74
Java 0.00 0.79 0.61 -0.09 0.56 0.34 0.19
Ada 0.26 0.92 0.35 0.27 0.50 0.71 0.27
C/C++ -0.07 0.82 0.48 -0.05 0.71 0.57 0.36
C++ 0.12 0.93 0.35 0.11 0.62 0.57 0.39
CMMI 3 0.28 0.88 0.42 0.23 0.74 0.50 0.48
CMMI 4 0.31 0.95 0.21 0.18 0.04 0.59 0.74
CMMI 5 -0.12 0.85 0.33 -0.11 0.67 0.57 0.17
CPAF 0.10 0.81 0.55 0.22 0.77 0.56 0.47
CPFF 0.16 0.90 0.60 0.21 0.59 0.76 0.28
CPIF 0.08 0.88 0.58 -0.06 0.57 0.45 0.51

Spearman 
Correlation for 
Actual Effort Hours

Actual 
Duration

Estimated 
Effort 
Hours

Estimated 
Requirements

Estimated 
Duration

Estimated 
Peak Staff

Estimated New 
SLOC in LS

Estimated 
SLOC in LS

C# 0.49 0.84 0.54 0.50 0.69 0.90 0.78
Java -0.20 0.77 -0.18 -0.18 0.68 0.60 0.62
Ada 0.12 0.92 0.02 0.22 0.78 0.81 0.43
C/C++ -0.12 0.89 -0.05 -0.12 0.75 0.76 0.49
C++ 0.20 0.95 0.23 0.15 0.74 0.78 0.65
CMMI 3 0.29 0.92 0.38 0.28 0.77 0.73 0.71
CMMI 4 0.39 0.88 0.06 0.22 0.24 0.78 0.65
CMMI 5 -0.03 0.86 -0.03 -0.02 0.71 0.72 0.48
CPAF 0.16 0.90 0.16 0.24 0.79 0.78 0.72
CPFF 0.22 0.86 0.33 0.28 0.62 0.73 0.70
CPIF 0.14 0.88 0.25 0.04 0.66 0.61 0.55

Pearson 
Correlation for 
Actual Duration

Estimated 
Effort Hours

Estimated 
Requirements

Estimated 
Duration

Estimated 
Peak Staff

Estimated New 
SLOC in LS

Estimated 
SLOC in LS

C# 0.45 0.35 0.91 0.34 0.54 0.54
Java 0.01 -0.19 0.94 -0.16 -0.15 0.05
Ada -0.04 0.11 0.87 -0.37 0.41 0.16
C/C++ -0.10 0.31 0.69 0.10 0.12 0.03
C++ 0.15 -0.11 0.69 -0.05 0.02 0.22
CMMI 3 0.35 -0.09 0.83 0.03 0.27 0.24
CMMI 4 0.09 0.83 0.91 0.57 0.40 0.59
CMMI 5 -0.13 0.17 0.61 -0.16 -0.02 0.06
CPAF 0.10 -0.16 0.58 -0.09 0.23 0.17
CPFF 0.17 0.13 0.90 -0.06 0.14 0.33
CPIF 0.03 0.29 0.88 -0.01 0.12 0.20

Spearman 
Correlation for 
Actual Duration

Estimated 
Effort Hours

Estimated 
Requirements

Estimated 
Duration

Estimated 
Peak Staff

Estimated New 
SLOC in LS

Estimated 
SLOC in LS

C# 0.54 0.67 0.78 0.40 0.62 0.73
Java -0.18 0.60 0.90 -0.38 -0.12 -0.03
Ada 0.02 0.49 0.81 -0.24 0.21 0.11
C/C++ -0.05 0.45 0.78 0.06 0.02 0.11
C++ 0.23 0.71 0.79 0.03 0.10 0.27
CMMI 3 0.38 0.61 0.86 0.14 0.32 0.31
CMMI 4 0.06 0.47 0.96 0.57 0.45 0.66
CMMI 5 -0.03 0.56 0.75 -0.13 -0.01 0.03
CPAF 0.16 0.67 0.71 -0.04 0.22 0.11
CPFF 0.33 0.69 0.88 -0.03 0.08 0.26
CPIF 0.25 0.65 0.85 0.08 0.24 0.22
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• The predictors, eSCHED and eREQ, should be considered in 
the schedule model. 

 

5.2 Data Ranges 
Actual effort hours have the following ranges for the subsets. 

 
Figure 10 Actual Effort Hour Ranges 

 
The data ranges in the subsets showed the most variation in actual 
effort hours for the C++ primary programming language and CPIF 
contract type. Box plots for actual effort hours with process 
maturity categories showed the maximum number of effort hours 
increasing with increasing maturity. Median values, represented 
by the vertical bars, were similar between CMMI levels 3 and 5 
although the range for CMMI level 3 was much wider. CMMI 
level 4 had a much higher median than either CMMI level 3 or 
CMMI level 5.  The percent change in effort hours is shown in 
Figure 11. 

 
Figure 11 Effort Hours (Estimated to Actual) Percent Change 

 
Percent change in effort hours from estimated to actual, for the 
majority of the data, ranged from -100% to over 200% for all the 
subsets except CPAF contract type and CMMI level 3. Median 
values for all the subsets ranged between 5% and 40%. 
 
Actual duration in months is shown in Figure 12. 

 
Figure 12 Actual Duration in Months 

 
Ada had the most variation among language types. CPAF contract 
type had the most variation among contract types. CMMI level 5 
had the most variation among process maturity types.  
Figure 13 shows the percent change between estimated and actual 
duration. 
 

 
Figure 13 Duration (Estimated to Actual) Percent Change 
 

Aggregated Primary Language Cost Plus
Contract Type Process Maturity Level

Actual  Effort  Hours

Where 15 rows are excluded

Aggregated Primary Language Cost Plus
Contract Type Process Maturity Level

Percent  Change  in  Effort  Hours
from  Estimated  to  Actual

Where 15 rows are excluded

Aggregated Primary Language Cost Plus
Contract Type Process Maturity Level

Actual  Duration  in  Months

Where 15 rows are excluded

Aggregated Primary Language Cost Plus
Contract Type Process Maturity Level

Percent  Change  in  Duration
from  Estimated  to  Actual

Where 15 rows are excluded
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C/C++ had the highest percent change in duration between 
estimated and actual months among language types. CPAF had 
the highest percent change in duration among contract types. And 
CMMI level 3 had the highest percent change in duration among 
process maturity types. All the subsets median values ranged 
between 0% and 15% change in duration. 
 
Figure 14 shows a box plot of the analyzed process oriented 
categories of the actual effort hours divided by the initially 
estimated requirements to use as a productivity benchmark. 
 

Figure 14 Actual Effort Hours per Estimated Requirements 
 
 

5.3 Regression 
This study used regression in the JMP tool [18] and CO$TAT tool 
[19] to determine which effort model fit the data best. Regressions 
for actual effort hours began with estimated effort hours. 
Regressions for actual duration began with estimated duration. 
 
 

6. EFFORT MODEL RESULTS 
 

6.1 Effort Model Functional Forms 
The resulting models are shown in Table 9 below.  Each model 
predicts effort (in hours) for a particular process category type. 
There are no models where the number of data points were lower 
than 12. Where there were blanks or zeroes for initially estimated 
parameters, those records were removed from the analysis. Using 
initially estimated effort hours, all equations exhibit economies of 
scale as the exponent for the independent variable is less than one. 
 

Table 9 Effort Model Functional Forms 

 
 

6.2 Effort Model Usage and Limitations 
The following guidelines are for using the regression models 
listed in Table 9: 

• Model (1) predicts effort for the aggregated C# primary 
programming language with the initial variable, estimated 
new code. The model is applicable to project estimates 
ranging between 3.5 and 192 thousands of lines of new code 
in logical statements. 
 

• Model (2) predicts effort for the aggregated Ada primary 
programming language. The model is applicable to project 
estimates ranging between 320 and 133,855 effort hours.  

 
• Model (3) predicts effort for the aggregated C# primary 

programming language. The model is applicable to project 
estimates ranging between 4620 and 133,280 effort hours.  

 
• Model (4) predicts effort for the aggregated C/C++ primary 

programming language. The model is applicable to project 
estimates ranging between 184 and 170,807 effort hours.  

 
• Model (5) predicts effort for the aggregated C++ primary 

programming language. The model is applicable to project 
estimates ranging between 520 and 209,616 effort hours.  

 

• Model (6) predicts effort for CPAF projects. The model is 
applicable to project estimates ranging between 575 and 
169,583 effort hours.  

 

Aggregated Primary Language Cost Plus
Contract Type Process Maturity Level

Model Subset Records Equation

1 C# 12 aEH = 18.97 * eNEW  ̂0.70

2 Ada 25 aEH = 52.91 * eEH  ̂0.64
3 C# 12 aEH = 4.64 * eEH  ̂0.84
4 C/C++ 55 aEH = 6.82 * eEH  ̂0.85
5 C++ 69 aEH = 1.55 * eEH  ̂0.98

6 CPAF 74 aEH = 8.53 * eEH  ̂0.82
7 CPFF 40 aEH = 1.27 * eEH  ̂0.99
8 CPIF 43 aEH =18.8 * eEH  ̂0.75

9 CMMI 3 77 aEH = 4.46 * eEH  ̂0.88
10 CMMI 4 16 aEH = 7.91 * eEH  ̂0.84
11 CMMI 5 90 aEH = 9.08 * eEH  ̂0.80
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• Model (7) predicts effort for CPFF projects. The model is 
applicable to project estimates ranging between 1896 and 
101,665 effort hours.  

 

• Model (8) predicts effort for CPIF projects. The model is 
applicable to project estimates ranging between 2235 and 
191,013 effort hours. 

 

• Model (9) predicts effort for CMMI level 3 projects. The 
model is applicable to project estimates ranging between 575 
and 209,616 effort hours. 

 
• Model (10) predicts effort for CMMI level 4 projects. The 

model is applicable to project estimates ranging between 
11702 and 207,968 effort hours.  

 
• Model (11) predicts effort for CMMI level 5 projects. The 

model is applicable to project estimates ranging between 
1104 and 225,304 effort hours 

 

 
6.3 Effort Model Validity 
Table 10 below shows the model validity results. All regression 
models’ independent variables are significant as the t-statistics 
exceed the two-tailed critical values, given the coefficient alpha 
(0.05) and degrees of freedom (DF). The DF were equal to the 
number of records minus two: one for the equation intercept and 
one for the independent variable. 
 

Table 10 Effort Model Validity Results 
                                               

 

 

6.4 Effort Model Reliability 
Table 11 shows the accuracy test results.  All effort models are 
reliable as their CV are less than or equal 35%. MAD was only 
less than or equal 45% for the aggregated primary programming 
language effort models (Models 1 through 5) and for the CMMI 
level 4 effort model (Model 10). MAD was below 60% for all 
models. A published standard for MMRE is less than or equal to 
25% and for PRED (30) is 75% or more [17]. All effort models 
except for the CMMI level 4 effort model fall below this 
relatively high published standard. 
 

Table 11 Effort Model Reliability Results 

 
R2 = coefficient of determination; SE = standard error of estimate; 
RMS = Root Mean Square of the percentages of error;  
MAD = mean absolute deviation; CV = coefficient of variation; 
MMRE = Mean Magnitude of Relative Error (MRE); 
PRED(30) = Predictive accuracy is the percent of the number of 
records at or above a value of 30% magnitude of relative error 
 
 

7. SCHEDULE MODEL RESULTS 
 

7.1 Schedule Model Functional Forms 
The resulting models are shown in Table 12.  Each model predicts 
schedule (in months) for a particular process oriented type. 
 

Model Subset Records

Independent 
Variable

T-Statistic 
(Coef/SD)

P-Value

1 C# 12 4.8554 0.0007

2 Ada 25 9.0249 0.0000
3 C# 12 6.3417 0.0000
4 C/C++ 55 14.5753 0.0000
5 C++ 69 23.5838 0.0000

6 CPAF 74 16.2532 0.0000
7 CPFF 40 9.7535 0.0000
8 CPIF 43 8.9502 0.0000

9 CMMI 3 77 18.7147 0.0000
10 CMMI 4 16 8.2148 0.0000
11 CMMI 5 90 14.8412 0.0000

Model
R2 in 
Unit 
Space

SE
RMS 
of % 
Errors

MAD 

CV 
(MAD 

Res/Avg 
 Act)

MMRE PRED(30)

1 0.69 19557 0.39 0.29 0.29 0.29 0.67

2 0.78 16825 0.55 0.40 0.29 0.40 0.48
3 0.81 15391 0.64 0.38 0.25 0.38 0.58
4 0.66 32218 0.67 0.45 0.32 0.45 0.45
5 0.85 26023 0.52 0.36 0.24 0.36 0.52

6 0.64 28742 0.78 0.51 0.35 0.51 0.46
7 0.78 15281 1.11 0.58 0.31 0.58 0.50
8 0.70 35749 0.84 0.49 0.28 0.49 0.60

9 0.76 29210 0.75 0.49 0.29 0.49 0.42
10 0.88 22811 0.27 0.22 0.17 0.22 0.75
11 0.69 28265 1.03 0.55 0.34 0.55 0.47
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Table 102 Schedule Model Functional Forms 

 
 

7.2 Schedule Model Usage and Limitations 
The following guidelines are for using the schedule models listed 
in Table 12: 
• Model (12) predicts schedule for the aggregated Ada primary 

programming language. The model is applicable to project 
estimates ranging between 0.2 and 100.1 months.  
 

• Model (13) predicts schedule for the C# primary 
programming language. The model is applicable to project 
estimates ranging between 0.5 and 52 months.  

 
• Model (14) predicts schedule for the C++ primary 

programming language. The model is applicable to project 
estimates ranging between 0.2 and 83 months.  

 
• Model (15) predicts schedule for the Java primary 

programming language. The model is applicable to project 
estimates ranging between 0.4 and 47.2 months.  

 
• Model (16) predicts schedule for CPFF projects. The model 

is applicable to project estimates ranging between 0.4 and 41 
months.  

 
• Model (17) predicts schedule for CPIF projects. The model is 

applicable to project estimates ranging between 0.2 and 
100.1 months.  

 
• Model (18) predicts schedule for CMMI level 3 projects. The 

model is applicable to project estimates ranging between 0.3 
and 100.1 months. 

 

• Model (19) predicts schedule for CMMI level 4 projects. The 
model is applicable to project estimates ranging between 0.3 
and 46.8 months.  

 
• Model (20) predicts schedule for CMMI level 5 projects.  

The model is applicable to project estimates ranging between 
0.2 and 57 months.  

 
• Model (21) predicts schedule for CMMI level 4 projects. The 

model is applicable to projected requirement counts ranging 
between 97 and 3,685. 

 
7.3 Schedule Model Validity 
Table 13 shows the schedule model validity results.  All 
regression models are significant as the t-statistics for the 
independent variables exceed the two-tailed critical values. 
 

Table 11 Schedule Model Validity Results 

 
 

7.4 Schedule Model Reliability 
Table 14 shows the accuracy test results.  All but one of the 
schedule models are reliable as their CV are within the threshold 
of less than or equal to 45%. CPIF projects’ schedule model is 
over 45%. It is 3% over at 48%. MAD values are larger for the 
schedule models ranging from a low of 15% to a high over 100% 
at 139%. Only half of the schedule models are within the range of 
the MAD threshold. These five models were Model (13) for C#, 
Model (14) for C++, Model (15) for Java, Model (16) for CPFF, 
and Model (17) for CMMI level 4. 
 

Model Subset Records Equation

12 Ada 24 aSCHED = 2.14 * eSCHED  ̂0.76
13 C# 12 aSCHED = 1.55 * eSCHED  ̂0.87
14 C++ 69 aSCHED = 1.44 * eSCHED  ̂0.92
15 Java 24 aSCHED = 2.4 * eSCHED  ̂0.75

16 CPFF 40 aSCHED = 1.04 * eSCHED  ̂1.07
17 CPIF 43 aSCHED = 1.40 * eSCHED  ̂0.80

18 CMMI 3 77 aSCHED = 2.23 * eSCHED  ̂0.76
19 CMMI 4 16 aSCHED = 1.05 * eSCHED  ̂1.02
20 CMMI 5 90 aSCHED = 1.44 * eSCHED  ̂0.86

21 CMMI 4 16 aSCHED = 0.01 * eREQ  ̂0.99

Model Subset Records

Independent 
Variable

T-Statistic 
(Coef/SD)

P-Value

12 Ada 24 6.3190 0.0000
13 C# 12 14.3584 0.0000
14 C++ 69 20.0534 0.0000
15 Java 24 9.7523 0.0000

16 CPFF 40 26.9108 0.0000
17 CPIF 43 11.5055 0.0000

18 CMMI 3 77 11.8238 0.0000
19 CMMI 4 16 23.6736 0.0000
20 CMMI 5 90 17.6696 0.0000

21 CMMI 4 16 5.9674 0.0000
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Table 14 Schedule Model Reliability Results 

 
R2 = coefficient of determination; SE = standard error of estimate; 
RMS = Root Mean Square of the percentages of error;  
MAD = mean absolute deviation; CV = coefficient of variation; 
MMRE = Mean Magnitude of Relative Error (MRE); 
PRED(30) = Predictive accuracy is the percent of the number of 
records at or above a value of 30% magnitude of relative error 
 

8. CONCLUSION 
8.1 Primary Findings 
This study resulted in the following findings: 
1. Pearson and Spearman Rho correlation analysis revealed that 

the most significant factor influencing software development 
effort in the process oriented categories was estimated effort 
except for the C# primary language. For C#, new code in 
logical statements was a significant and stand-alone factor. 
 

2. Pearson and Spearman Rho correlation analysis also revealed 
that the significant factor influencing software development 
schedule was estimated duration across the process oriented 
categories. For CMMI level 4 projects, estimated 
requirements were a significant and stand-alone factor. 
 

3. The median values for percent change in effort hours ranged 
between 5 to 40% whereas the median values for percent 
change in duration ranged from 0 to 15%. For effort hour and 
duration percent change, CPAF and CMMI level 3 had the 
highest rate of variation among all the other process oriented 
category subsets.   
 

4. The regression results show the effect of estimated effort 
hours on actual effort hours. All models passed the t-statistic 
and p-value validity tests. Models 1 through 5 for aggregated 
language types, including Model 1 with new code in logical 
statements as the sole independent variable, along with 

Model 10 for CMMI level 4 passed all reliability tests. R2 in 
unit space for all models was above 60%.  

 
5. The regression results show that the effect of estimated 

duration on software development schedule is significant. 
For CMMI level 4, estimated requirement counts were also 
significant. Models 12 through 21 passed the model validity 
test. Only Model 13 for C#, Model 14 for C++, Model 15 for 
Java, Model 16 for CPFF, and Model 17 for CMMI level 4 
passed the model reliability tests. 

 
6. The productivity benchmark box plot by aggregated 

language type, contract type, and CMMI level 3 through 5 
may be used as a guide to evaluating whether actual effort 
hours per initially estimated requirement counts are within 
the ranges of historical data for government projects. 

 

8.2 Challenges to Validity 
Although some of the models were deemed reliable, they still 
have a few limitations: 
1.  A larger dataset (>400 projects) is required to increase 

model validity and accuracy. A future investigation should 
attempt to control for the impact of external factors such as 
operating environment, application domain, program phase, 
and maturity of estimated requirements and code counts.  

2. A non-random sample was used as the researchers had access 
to names in the population and the selection process for 
participants was based on the non-zero or non-blank valued 
input parameters.  This process limits the ability to generalize 
to a population.  

3. Pairwise correlation using Pearson correlation and Spearman 
Rho correlation was used over Structured Equation Modeling 
as the sponsor, US Navy, does not approve the use of “R” or 
any other open source statistical package. 

4. The cost-plus contract types represent areas of work made 
possible with funding from government priorities which may 
not translate to for-profit industry endeavors. 

8.3 Future Research 
The following topics may be considered for future research: 
1. Continue to collect data on estimated effort and schedule to 

compare to actual effort and schedule and publish 
benchmarks by well-documented process oriented and 
product oriented categories. 
 

2. Instead of developing multiple models, use collected data to 
create composite software effort and software schedule 
estimating models using quantitative values for process and 
product oriented categories. 

 
3. Compare local data to government data using the process 

oriented types: aggregated primary software programming 
language, contract type, and process maturity type (and 
comparing staged CMMI levels to continuous CMMI levels). 

 

8.4 Summary 
• Twenty-one software estimation models were developed 

based on 204 paired programs implemented within the U.S. 

Model
R2 in 
Unit 

Space
SE

RMS 
of % 

Errors
MAD 

CV 
(MAD 
Res / 

Avg Act)

MMRE PRED(30)

12 0.63 16.9 4.73 1.39 0.35 1.39 0.46
13 0.81 6.6 0.30 0.23 0.16 0.23 0.75
14 0.69 11.9 0.63 0.37 0.26 0.37 0.57
15 0.87 4.9 0.46 0.31 0.16 0.31 0.67

16 0.78 8.0 0.34 0.23 0.21 0.23 0.68
17 0.64 16.3 4.79 1.05 0.48 1.05 0.47

18 0.63 14.1 5.31 1.31 0.32 1.31 0.48
19 0.78 7.1 0.23 0.15 0.23 0.15 0.94
20 0.55 12.6 3.32 0.85 0.34 0.85 0.50

21 0.63 9.2 1.07 0.66 0.42 0.66 0.38
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Department of Defense.  The source data provided valuable 
insight into the costs and schedules associated with the 
vendor’s implementation team in the course of developing 
and implementing software.  
 

• Methods are simpler and more viable to use for early 
estimates than traditional parametric cost models.  
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