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Overview

n Background – error models and regressions (LOLS,MUPE,ZMPE)

n Comparison of LOLS, MUPE, and ZMPE  regressions
· Their strengths and weaknesses
· Concerns about LOLS and the response to criticism

n Regressions and Uncertainty
· LOLS uncertainty can be sound and justified
· ZMPE does not have established uncertainty assignment process
· Suggest a systematic approach to assign uncertainty to ZMPE CERs

n Examples and observations
· The three regressions on the same data set
· Similar point estimates but different uncertainty results
· Which regression provides reliable uncertainty results?
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Background
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n Common notation and 
definitions

n Additive vs Multiplicative Error 
Models

n LOLS, MUPE, and ZMPE 
regressions
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Notation &  Definitions

n Given data set 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝑖𝑖=1
𝑛𝑛

· 𝑥𝑥𝑖𝑖 - cost drivers, 𝑦𝑦𝑖𝑖 - value of dependent variable (cost)

n Hypothetical equation 𝑦𝑦 = 𝑓𝑓 𝑥𝑥,𝛽𝛽
· 𝛽𝛽 = (𝛽𝛽1, … ,𝛽𝛽𝑝𝑝)- unknown parameters 

n Regression Results
· �̂�𝛽 = �̂�𝛽1, … , �̂�𝛽𝑝𝑝 - regression estimates of the parameters
· �𝑦𝑦 = 𝑓𝑓 𝑥𝑥, �̂�𝛽 - predicted cost

n Goodness of fit measures (additive and multiplicative error 
models)

· 𝑆𝑆𝑆𝑆𝑆𝑆 = ∑𝑖𝑖=1𝑛𝑛 1
𝑛𝑛−𝑝𝑝

𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2 and 𝑆𝑆𝑆𝑆𝑆𝑆 = ∑𝑖𝑖=1𝑛𝑛 1
𝑛𝑛−𝑝𝑝

𝑦𝑦𝑖𝑖− �𝑦𝑦𝑖𝑖
�𝑦𝑦𝑖𝑖

2
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Additive Error Model 𝑦𝑦𝑖𝑖 = 𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝛽𝛽 + 𝜀𝜀𝑖𝑖

PRT-210 521 June 2016

n 𝜀𝜀𝑖𝑖 is the error of the cost at the
𝑖𝑖𝑡𝑡ℎ data point

n Error assumptions:  mean 0 and
variance 𝜎𝜎2

n Error is constant throughout the
entire data range

n Minimize sum of squared errors

�
𝑖𝑖=1

𝑛𝑛

𝜀𝜀𝑖𝑖2 = �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 − 𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝛽𝛽
2
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Multiplicative Error Model 𝑦𝑦𝑖𝑖 = 𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝛽𝛽 ∗ 𝜀𝜀𝑖𝑖

PRT-210 621 June 2016

n 𝜀𝜀𝑖𝑖 is the error of the cost at the 
𝑖𝑖𝑡𝑡ℎ data point

n Error assumptions:  mean 1 and 
variance 𝜎𝜎2 (MUPE & ZMPE)

n Error is proportional to 
magnitude of the equation

n Minimize sum of squared percent 
errors

�
𝑖𝑖=1

𝑛𝑛

𝑒𝑒𝑖𝑖2 = �
𝑖𝑖=1

𝑛𝑛
𝑦𝑦𝑖𝑖 − 𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝛽𝛽
𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝛽𝛽

2
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LOLS Regression

n Log-linear multiplicative error model:

𝑦𝑦𝑖𝑖 = 𝑎𝑎𝑥𝑥𝑖𝑖𝑏𝑏 ∗ 𝜀𝜀𝑖𝑖 with 𝜀𝜀𝑖𝑖 ~ 𝐿𝐿𝐿𝐿(0,𝜎𝜎2)

n Take the natural  log: ln 𝑦𝑦𝑖𝑖 = ln 𝑎𝑎 + 𝑏𝑏 ln 𝑥𝑥𝑖𝑖 + ln 𝜀𝜀𝑖𝑖

n This is now a linear additive model… 𝑌𝑌 = 𝐴𝐴 + 𝐵𝐵 ∗ 𝑋𝑋 + 𝑆𝑆

n Can use OLS regression to minimize ∑ ln 𝜀𝜀𝑖𝑖 2

n Transform result back to unit space by taking exponents

PRT-210 721 June 2016

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016



MUPE Regression

n MUPE is iterative regression technique

n At 𝑘𝑘𝑡𝑡ℎ iteration, solve for 𝛽𝛽𝑘𝑘 that minimizes :

�
𝑖𝑖=1

𝑛𝑛
𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝛽𝛽𝑘𝑘)
𝑓𝑓(𝑥𝑥𝑖𝑖 , �̂�𝛽𝑘𝑘−1)

2

�̂�𝛽𝑘𝑘−1 is the coefficient solved in previous iterations

n Final solution �̂�𝛽 obtained when estimates change in successive 
iterations is within tolerance limit

PRT-210 821 June 2016
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ZMPE Regression

Minimize directly

�
𝑖𝑖=1

𝑛𝑛
𝑦𝑦𝑖𝑖 − 𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝛽𝛽
𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝛽𝛽

2

Subject to the constraint:

�
𝑖𝑖=1

𝑛𝑛
𝑦𝑦𝑖𝑖 − 𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝛽𝛽
𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝛽𝛽

= 0
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Comparison of 
Regression Methods

PRT-210 1021 June 2016

n LOLS pros and cons
o LOLS has been subject to criticism 

and academic concerns.
o We address those concerns and 

defend LOLS

n MUPE and ZMPEs pros and cons
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LOLS Pros

n LOLS regression provides analytical solution for the 
coefficients
o OLS can be applied in log-space for log-linear equations
o Bypasses MUPE and ZMPE issues such as consistency of estimates, 

dependence on input, method’s convergence and stability
o Linear optimization is less tedious and cumbersome than nonlinear

n Sound and justified uncertainty assignment
o Conditions: log-normally distributed error term
o PE is the median of log-normal distribution
v Neither PE location nor distribution shape are known for ZMPE

o Prediction intervals can be precisely generated

n Large spectrum of goodness of fit measures
o Significance of coefficients can be established
o Outliers can be detected
o Model flaws can be exposed
o ZMPE provides much limited goodness of fit measure.

PRT-210 1121 June 2016
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Response to concerns about LOLS

Concern #1:
Minimizing ∑ l𝑛𝑛 𝑦𝑦𝑖𝑖 − l𝑛𝑛 𝑎𝑎 − 𝑏𝑏 l𝑛𝑛 𝑥𝑥𝑖𝑖 2 = ∑ l𝑛𝑛 𝜀𝜀𝑖𝑖 2

is not the same as minimizing ∑ 𝑦𝑦𝑖𝑖 − 𝑎𝑎𝑥𝑥𝑖𝑖𝑏𝑏
2

= ∑𝑒𝑒𝑖𝑖2

Response to Concern #1:
· LOLS optimization was never intended to minimize ∑𝑒𝑒𝑖𝑖2

· LOLS optimizes squared percentage errors, not absolute error (unit space)
· Should not compare fit measures of models with different fit criteria 

(additive vs multiplicative model)

PRT-210 1221 June 2016
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Response to concerns about LOLS (Cont.)

Concern #2:
The log-space error term ln 𝜀𝜀𝑖𝑖 is expressed in meaningless units 
(log-dollars instead of dollars)

Response to Concern #2:
· even in unit space, 𝜀𝜀𝑖𝑖 is never measured in dollars for a multiplicative 

error model; 
· the error term 𝜀𝜀𝑖𝑖 represents the ratio of actual to hypothesized cost
· the error term ln 𝜀𝜀𝑖𝑖 does have a meaningful interpretation

ln 𝜀𝜀𝑖𝑖 ≈ 𝜀𝜀𝑖𝑖 − 1 =
𝑦𝑦𝑖𝑖 − 𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝛽𝛽
𝑓𝑓 𝑥𝑥𝑖𝑖 ,𝛽𝛽

This is the percentage error term in unit space

PRT-210 1321 June 2016
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Response to concerns about LOLS (Cont.)

Concern #3:
The LOLS process restricts the CER choice to log-linear forms such 
as 𝑦𝑦 = 𝑎𝑎𝑥𝑥𝑏𝑏

Response to Concern #3:
· True that OLS can not be applied to fixed cost equations 𝑦𝑦 = 𝑎𝑎𝑥𝑥𝑏𝑏 + 𝑐𝑐 in 

log-space
· However, the model 𝑦𝑦 = 𝑎𝑎𝑥𝑥𝑏𝑏 + 𝑐𝑐 ∗ 𝜀𝜀 is still solvable in log-

space…can use non-linear regression instead of OLS.
· The choice of CER and error model should be driven by technical 

grounds and logic, not by regression technique preference

PRT-210 1421 June 2016
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Response to concerns about LOLS (Cont.)

Concern #4:
In unit space, the LOLS CER has a non-zero bias:

1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛 𝑦𝑦𝑖𝑖 − �𝑎𝑎 𝑥𝑥𝑖𝑖
�𝑏𝑏

�𝑎𝑎 𝑥𝑥𝑖𝑖
�𝑏𝑏

≠ 0

Response to Concern #4:
· The statement is true, but it is not a concern. 
· A typical WBS is populated with a mix of point estimate types anyway 

(mode, mean, median, percentile). There is no compelling reason to 
convert all point estimates to the mean.

· Multiplicative correction factors (see PING or Goldberg factor) have 
been developed to remove the bias if necessary

· However, uncertainty assignment does not require adjusted CER 
results. Recognizing the PE is the median and defining one other PI 
point is enough to uniquely define the correct uncertainty distribution.

PRT-210 1521 June 2016
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MUPE’s Pros

n MUPE’s estimator has zero percent bias 
(no transformations or corrections are 
applied to the CER result)

n For linear CERs, MUPE provides the best 
linear unbiased estimates solutions for 
the parameters

n For nonlinear CERs, MUPE gives 
consistent estimates for the parameters 
and mean of the equation 

n The parameter estimates are the 
maximum likelihood estimators (MLE)

n A wider variety of goodness of fit 
measures than ZMPE (under the 
normality assumption)

n Statistical tools are available to provide 
prediction intervals

MUPE’s Cons

n The MUPE regression relies on non-
linear optimization ( can be tedious 
and cumbersome)

n MUPE’s iterative process does not 
always converge

PRT-210 1621 June 2016

MUPE Pros & Cons
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ZMPE’s Pros

n Unbiased CER result is provided 
without the need of transformation 
or adjustment factors

n ZMPE’s standard percent error is 
reported to be smaller than MUPE’s 
SPE 
· May be overstated when considering 

ZMPE’s impact on degrees of freedom
· See S. Hu, 2015 “Generalized Degrees of 

Freedom(GDF),” for a discussion on how 
accounting for degrees of freedom will 
influence the ZMPE SPE

ZMPE’s Cons
n Less reliable solution finding process

· ZMPE’s optimization fails to 
converge more often (trapped in 
local minima)

· Less stable solutions because of 
sensitivity to starting point input

n Limited goodness of fit measure
· Only SPE and R2 are available
· Insufficient to analyze coefficient 

significance levels and to detect 
model flaws ( see Anderson, 
2009, for heuristic approach).

n No established uncertainty 
assignment procedure
· PE location is unknown
· Distribution shape unknown

n Non-linear regression (tedious)

PRT-210 1721 June 2016

ZMPE Pros & Cons
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LOLS, MUPE and 
ZMPE Uncertainty

PRT-210 1821 June 2016
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LOLS Uncertainty

LOLS CER Uncertainty is given by:

n �𝑦𝑦0 is the LOLS predictor at 𝑥𝑥 = 𝑥𝑥0

n 𝛾𝛾2 𝑋𝑋, 𝑥𝑥0 = 1
𝑛𝑛

+
ln 𝑥𝑥0 −ln 𝑥𝑥

2

∑𝑖𝑖=1
𝑛𝑛 ln 𝑥𝑥𝑖𝑖 −ln 𝑥𝑥

2

· Location of ln 𝑥𝑥0 relative to the mean ln 𝑥𝑥 of the cost drivers

n 𝜎𝜎 is approximated by LOLS’ SEE in log-space

PRT-210 1921 June 2016

�𝒚𝒚𝟎𝟎 ∗ �𝜺𝜺𝟎𝟎 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 �𝜺𝜺𝟎𝟎 ~ 𝑳𝑳𝑳𝑳 𝟎𝟎,𝝈𝝈𝟐𝟐 𝟏𝟏 + 𝜸𝜸𝟐𝟐 𝑿𝑿,𝒙𝒙𝟎𝟎
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LOLS Uncertainty (Cont.)

To derive the uncertainty formula…

n Write the error model in log-space “friendly” format:

𝑦𝑦𝑖𝑖 = 𝑒𝑒𝛽𝛽0 𝑥𝑥𝑖𝑖
𝛽𝛽1 𝜀𝜀𝑖𝑖

n Take ln() of each side

ln 𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1 ln 𝑥𝑥𝑖𝑖 + ln( 𝜀𝜀𝑖𝑖)

n Now we have a linear additive error model and can apply OLS

PRT-210 2021 June 2016
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LOLS Uncertainty (Cont.)

Key ingredients in deriving LOLS CER uncertainty…

n The log-normal assumption of the error term in the model:
𝑦𝑦𝑖𝑖 = 𝑒𝑒𝛽𝛽0 𝑥𝑥𝑖𝑖

𝛽𝛽1 𝜀𝜀𝑖𝑖 with 𝜀𝜀𝑖𝑖 ~ 𝐿𝐿𝐿𝐿 0,𝜎𝜎2

n The coefficient estimates by OLS in log-space

�̂�𝛽 = 𝑋𝑋𝑇𝑇 𝑋𝑋 −1 𝑋𝑋𝑇𝑇 ln 𝑌𝑌
where

𝛽𝛽 = 𝛽𝛽0
𝛽𝛽1

, 𝑋𝑋 =
1 ln 𝑥𝑥1
⋮ ⋮
1 ln 𝑥𝑥𝑛𝑛

, ln 𝑌𝑌 =
ln 𝑦𝑦1

⋮
ln 𝑦𝑦𝑛𝑛

PRT-210 2121 June 2016
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MUPE & ZMPE Uncertainty 

n MUPE CER uncertainty 
· It is analytical in nature
· But it is an approximation process…relies on Taylor series linearization
· Not a closed-form formula like LOLS uncertainty
· Need statistical tools to obtain prediction intervals

n ZMPE CER Uncertainty
· No established uncertainty assignment process
· Shape of the uncertainty distribution is unknown
· Location if the CER in the distribution is unknown

PRT-210 2221 June 2016
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MUPE & ZMPE Uncertainty (Cont.) 

Proposed method to assign CER Uncertainty

n �𝑦𝑦0 - CER result at 𝑥𝑥 = 𝑥𝑥0
n Fitted curve that accounts for the location factor of 𝑥𝑥0
n Informal but consistent and systematic process 
n See S. Hu, 2013 “Fit, Rather Than Assume, a CER Error 

Distribution” for guidance on how to estimate a prediction 
interval from a distribution fitted on actual/predicted ratios

PRT-210 2321 June 2016

�𝑦𝑦0 ∗ Fitted Distribution Curve of
𝑦𝑦1
�𝑦𝑦1

, … ,
𝑦𝑦𝑛𝑛
�𝑦𝑦𝑛𝑛

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016



Examples

PRT-210 2421 June 2016
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Examples

n Run the three regression methods on the same data sets
n Compare the corresponding point estimates
n Assign uncertainty to the CER result of each regression
n Compare the 80th percentiles of the uncertainty

PRT-210 2521 June 2016
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Example 1

n Generate data using

𝑦𝑦𝑖𝑖 = 0.07𝑥𝑥𝑖𝑖1.8𝜀𝜀𝑖𝑖 where 𝜀𝜀𝑖𝑖 ~ 𝐿𝐿𝐿𝐿 0,𝜎𝜎 = 0.34

n Generated dataset

Remark: The error of the cost is log-normally distributed by 
construction.

PRT-210 2621 June 2016

Observations 1 2 3 4 5 6 7

X – Cost Driver 7.9 8.2 9.8 11.5 16.4 19.7 23.6

Y – Observed Cost 1.6 3.2 2.3 5.1 7.5 16.3 14.5
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Example 1 (Cont.)

n Regression, point estimate, and uncertainty results

n Observations
· ZMPE and LOLS have identical point estimates
· ZMPE’s 80th percentile is substantially different (+18%) from LOLS’ 

PRT-210 2721 June 2016

LOLS MUPE ZMPE

𝑦𝑦 = 0.038𝑥𝑥1.936

SEE: 2.38

𝑦𝑦 = 0.041𝑥𝑥1.913

SEE: 2.386

𝑦𝑦 = 0.046𝑥𝑥1.869

SEE: 2.343

SPE: 0.316 SPE: 0.302 SPE: 0.302

CV: 0.329 CV: 0.33 CV: 0.324

LOLS MUPE ZMPE

PE 80th Ptile PE 80th Ptile PE 80th Ptile
𝑥𝑥0 = 21 13.8 18.4 14.1(2%) 18.6(1%) 13.8(0%) 21.8(18%)
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Example 2

n Given dataset

Remark: The cost is not assumed to be generated from any 
specific hypothetical equation and error term distribution

PRT-210 2821 June 2016

Obs. 1 2 3 4 5 6 7 8 9 10 11 12 13

X 40 50 75 75 75 100 100 240 250 300 550 670 780

Y 10 45 50 70 65 100 90 120 100 80 200 230 300
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Example 2 (Cont.)

n Regression, point estimate, and uncertainty results

n Observations
· MUPE and LOLS have identical point estimates.
· Both MUPE’s and ZMPE’s 80th percentiles differ significantly from LOLS’ 

percentile value(by 12% and 17% correspondingly). 

PRT-210 2921 June 2016

LOLS MUPE ZMPE

𝑦𝑦 = 2.059𝑥𝑥0.7333

SEE: 27.19

𝑦𝑦 = 3.047𝑥𝑥0.67

SEE: 27.278

𝑦𝑦 = 4.359𝑥𝑥0.6

SEE: 30.19

SPE: 0.392 SPE: 0.337 SPE: 0.329

CV: 0.242 CV: 0.243 CV: 0.269

LOLS MUPE ZMPE

PE 80th Ptile PE 80th Ptile PE 80th Ptile

𝑥𝑥0 = 500 196 297 196(-0%) 259(-12%) 181(-7%) 244(-17%)
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Example 2 (Cont.)

n If no evidence of log-normally distributed error, how to 
choose…
· CER results analytically sound: Winner LOLS

– LOLS CER results are analytical and stable
– MUPE and ZMPE CER results are sensitive to starting position

· Absence of Bias: Winner MUPE and ZMPE
– LOLS CER results are biased, MUPE and ZMPE CER results are not
– Uncertainty assignment, however, is not influenced by bias

· Uncertainty assignment: No clear winner
– LOLS, MUPE, and ZMPE uncertainty results are equally subjective

n Choose the regression method you prefer and use a tool like 
Distribution Finder to not only fit a distribution to the errors, 
but to calculate the prediction interval to be used in your 
uncertainty model

PRT-210 3021 June 2016
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Conclusion

n Uncertainty results can differ substantially even when point 
estimates are not far apart… choose carefully

n When error is log-normally distributed…use LOLS
· LOLS uncertainty results are sound and mathematically justified
· Regression methods such as ZMPE do not have established uncertainty 

assignment procedure

n If no evidence of log-normally distributed error…take your pick 
of regression methods
· Fit a distribution to the actual/predicted ratios
· Calculate the prediction interval (see S. Hu. 2013)
· This method can be used on LOLS as well if you are unsure of the 

uncertainty distribution shape
– generally assumed to be lognormal with the point estimate at the median

PRT-210 3121 June 2016
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