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ABSTRACT 

 

This paper presents a methodology for selecting cost uncertainty distributions and their 

bounds via a sliding complexity scale.  The methodology is inspired by the Zone System 

for photography and is characterized by five gradations of uncertainty.  The distribution 

shapes and their bounds are drawn from interesting macro patterns present in the AFCAA 

Cost Risk and Uncertainly Analysis Metrics Manual (CRUAMM) body of work. 

 
 

 

A ZONE METHOD FOR PHOTOGRAPHY 

 

Utilizing gradations of uncertainty for cost analysis parallels the use of light gradations in 

photography.  Pioneering photographers such Ansel Adams developed this technique to 

attain predicable and repeatable results in image capture and printing. Figure 1 presents 

key concepts in the Zone System which centers on evaluating a scene in terms of five 

shades of gray and then setting exposure by sliding camera settings darker or lighter. This 

is exemplified in the top of Figure 2 by evaluating five gray tones in a scene. This is the 

photographer’s judgment performed by “stepping back’ from the detail and making an 

overall assessment of amount of light in the scene. The bottom of the figure illustrates how 

the camera settings may be used to affect the final image captured. 
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The Zone System’s Key Concepts 

“The zone system divides a scene into 10 zones on the tonal scale (though there are variations 
of 9 and 11 zones). Every tonal range is assigned a zone. Every zone differs from the one 
before it by 1 stop, and from the one following it by 1 stop. So every zone change equals 1 stop 
difference. Zones are identified by roman numbers, with the middle tone (with 18% 
reflectance) being a zone V which is zone 5. 

For us digital photographers, we are only concerned with zones III through VII (zones 3 
through 7). The darkest part of a scene would fall into zone III, while the brightest part of a 
scene would fall into zone VII. Anything darker than zone III would render as pure black with 
no detail (under-exposed), while anything brighter than zone VII would render as pure white 
with no detail (over-exposed). 

If you point your camera at an area with average reflectance and obtain the correct meter 
readings (a zero on the light meter), that area would be rendered as average. If you open up 
your lens or slow down your shutter speed by one stop, that area will become over-exposed by 
one stop. If you close down your lens or increase your shutter speed by one stop, that area will 
become under-exposed by one stop. 

Now, we’ve agreed that an average tone is naturally placed into zone V. If you over-expose it 
by one stop, you’ll be placing it in zone VI (zone 6), causing it to render brighter than it 
actually is. If you under-expose it by one stop, you’ll be placing it in zone IV (zone 4) causing 
it to render darker than it actually is.” 

 
Source: Understanding & Using Ansel Adam's Zone System, Diana Eftaiha, 20 Mar 2013 

 

Figure 1: Photography Zone System  
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Figure 2: Photography Zone System Example 
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A METHODOLOGY FRAMEWORK 

 

The preceding discussed utilizing five gradations of light in a system for photography.  The 

topic of this paper is utilizing five gradations of uncertainty for use in cost uncertainty 

modeling.  An analyst familiar with a program and its life-cycle cost model could “step 

back” from their detailed knowledge of the program and the cost model’s inner workings 

and consider from a bird’s eye view the relative uncertainty of each model element as 

depicted in Figure 3 and summarized in steps:   

1. A few elements could be deemed much more uncertain than the other elements.   

2. Likewise relative judgment made on a few elements could deem them much more 

certain than the other elements.   

3. An even greater number of elements could be deemed as having medium 

uncertainty.   

4. Inevitably some elements would be deemed to have a degree-of-uncertainty that is 

not medium nor at either extreme: medium-high or low-medium.   

 
Figure 3: Relative Uncertainty in a Cost Model  
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Thus five gradations are possible for each cost element as depicted in Figure 4 as five 

shades of gray. Conceptually these five, reading left-to-right, would have increasingly wide 

dispersions. 

 

 
Figure 4: Five Gradations of Uncertainty  

 

The dispersion metric used throughout this paper is the Coefficient of Variation (CV).  CV 

is a normalized relative measure of overall dispersion expressed as standard deviation 

divided by the mean.  A low CV is associated with a narrow distribution (low uncertainty) 

and a high CV is associated with a wide distribution (high uncertainty) as depicted in Figure 

5.  

 
Figure 5: Low and High CVs 

For the sake of illustrating the framework shown in Figure 4 further, let’s assign a CV of 

0.5 to medium uncertainty and increment or decrement the adjacent gradation’s CV with 

0.1 so the five shades of gray have CVs ranging from 0.3 to 0.7.  With this construct, shown 

in Figure 6, the analyst could choose their preferred distribution, determine the parameters 

for each of the five CVs and readily assign them to each model element based on their 

bird’s eye assessment, and rapidly assemble a functioning Monte Carlo simulation. 
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Uncertainty
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Low CV
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Figure 6: Five Gradations with Notional CVs  

 

Now consider these values as representative of a typical, ordinary program and how these 

values may differ depending on program complexity.  For example, the analyst applying 

this technique to a simple, less complex program that: 

• Is very routine,  

• has a higher technology readiness level (TRL),  

• is not pushing the state-of-the-art,  

• has a narrow mission,  

• has a narrow user base, and  

• is executing a simple acquisition strategy.  

The analyst could again readily identify five gradations of uncertainty in their model.  

However, given the simplicity of the program, the analyst may judge that the dispersion 

of medium uncertainty in this simple program is equivalent to the dispersion of low 

uncertainty on the typical program (CV=0.3).  And the most uncertain elements of the 

simple program are no more uncertain than the medium ones in the typical program 

(CV=0.5).   

 

Alternatively, consider the analyst applying the same techniques to a complex challenging 

program.  This program: 

• has low TRLs,  

• is utilizing exotic materials,  

• is pursuing an ambitious schedule,  

• has a nebulous mission,  

• has a multi-Service user base, and  

• is engaged in a complex acquisition approach.   

Low 
Uncertainty

Low-Medium 
Uncertainty

Medium 
Uncertainty

Medium-High 
Uncertainty

High 
Uncertainty

Dispersion (Notional CV) 0.3 0.4 0.5 0.6 0.7
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Again five gradations of uncertainty could be identified, but the medium uncertain items 

on this complex program may be judged to be as widely dispersed as the most highly 

dispersed items in the typical program (CV=0.7). 

 

To illustrate this expanded framework to accommodate varying program complexities, 

visualize the five core gradations shifting to the right or to the left as depicted in Figure 7. 

 

 
Figure 7: Offsetting Gradations for Program Complexity Yields Nine Gradations 

 

With five gradations of uncertainty shifted across five gradations of program challenges, 

our framework consists of a total of nine gradations.  If we continue our assignment of 

notional CV values anchored with 0.5 in the center and separating each increment with 0.1, 

our resulting range of notional CVs would be 0.1 – 0.9 as shown at the bottom of Figure 7. 
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To summarize our framework thus far: We have reasoned ourselves into a framework of 

nine bins for which the using analyst would make three judgment calls and employ a set of 

default values.  To apply this to an estimate, the user would follow four steps.    

1. First, determine (via discernment) the degree of program challenge. 

2. Second, determine (via informed opinion) the relative uncertainty of each cost 

model element.   

3. Third, select a distribution for each of the model’s uncertain elements.   

4. And finally, use the set of default CVs to determine the parameters for each 

distribution.    

 

While the prior section may be insightful and interesting, it is not in the form of a readily 

usable methodology.  This four-step process is straightforward and orderly, but thus far we 

have offered only default CVs fabricated for illustration with no supporting data or 

analysis.  As such, each of the four steps need additional rigor to advance this framework 

into a viable methodology.  Fortunately the Air Force Cost Analysis Agency (AFCAA) 

Cost Risk and Uncertainly Analysis Metrics Manual (CRUAMM)1234 body of analysis can 

advance the last two steps by anchoring them in data.  The remainder of this paper exploits 

the macro-patterns that emerged from the CRUAMM descriptive analysis for distribution 

shape selection and CV selection.   

 

   

  

1 AFCAA Cost Risk and Uncertainly Analysis Metrics Manual, ICEAA Workshop Presentation, Wilson 
Rosa AFCAA, Alfred Smith Tecolote Research, Dr Lew Fichter Tecolote Research, Jeff McDowell 
Tecolote Research, 08 June 2010. 
2 Real Data, Real Uncertainty, 45th Annual Department of Defense Cost Analysis Symposium on Cost 
Analysis and the Downturn February 14-17, 2012, Alfred Smith, Jeff McDowell, Dr. Lew Fichter Tecolote 
Research. 
3 Real Data, Real Uncertainty, Dr. Wilson Rosa AFCAA, Alfred Smith Tecolote Research, Jeff McDowell 
Tecolote Research, Dr. Lew Fichter Tecolote Research, 27 June 2012. 
4 CR-1501/1 Cost Risk and Uncertainty Analysis Metrics Manual (CRUAMM), Alf Smith, Jeff McDowell, 
Dr. Lew Fichter, Bryan Blevins, Nick DeTore. Tecolote Research Prepared for Air Force Cost Analysis 
Agency (AFCAA), November 2011. 
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CRUAMM BACKGROUND 

 

The purpose of CRUAMM was to provide the analyst with a source for locating, by weapon 

system commodity, distributions to use in modeling low-level cost element uncertainty. 

The CRUAMM document was completed in November 2011 and consists of a main 

volume and nine appendices for a total of 1737 pages. This comprehensive effort involved 

fitting over 1400 separate distributions to Cost Estimating Relationship (CER) residuals 

and other data for use as cost uncertainty distributions.  To convey the depth of the 

CRUAMM analysis, three excerpts of the CRUAMM final report are provided in three 

figures. Figure 8 summarizes a few key points from the main CRUAMM document as it 

relates to this paper. The process used in CRUAMM to develop the fitted distributions is 

summarized in Figure 9.  The main volume consists of tables whose usage is illustrated in 

Figure 10.  While successful as a wide-ranging catalog, its scale can be a daunting resource 

for a time-pressed analyst to use.  

 

Though the specific activities of the CRUAMM task were micro-focused on the individual 

WBS elements of specific commodities, it became apparent as the task progressed that 

many interesting macro patterns were also present. This paper further explores those macro 

patterns for the purposes of populating the Zone System of Uncertainty Analysis with 

usable distributions based on data.  

 

The remainder of the paper presents an examination and categorization of the CRUAMM 

results.  First, the analysis process is described in which estimating methodology residuals 

were fit to distributions.  Second, the principles of Orders of Dispersion are described. 

Third, cluster analysis is performed to divide the results into nine bins.  Finally, it 

assembles the analysis into the Zone System for Uncertainty Analysis.   
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First, CRUAMM provides guidance on commonly used distribution shapes. Often an analyst may have 
a low and a high value for a given element but no guidance on choosing a distribution shape.   For the 
analyst who can establish bounds but has no basis for selecting a shape, CRUAMM provides 
recommended shapes by commodity and cost element.  By locating the item that most closely 
represents their element in the tables, an analyst can locate a recommended distribution shape.   
 
Second, CRUAMM is a source of not only the distribution shapes but their parameters as well.  When 
the analyst has no basis for determining shape or bounds, this document provides guidance on both for 
specific WBS elements and their cost drivers by commodity.  By locating the element that most closely 
resembles their own, the analyst can obtain a recommend distribution shape and bounds to represent 
uncertainty.  
 
Third, CRUAMM’s distributions are all unitized.  Unitized means the parameters have been 
normalized and are designed to be modeled as multipliers of point estimates.  So, given a point estimate 
where: 
 

Cost Element Point Estimate = Your Methodology 
 
its uncertainty can then be modeled as follows (causing the uncertainty to scale with the point estimate): 
 

Cost Element Uncertainty = Your Methodology * Unitized Distribution 
 
Normalized cost data (recurring, non-recurring, T1, etc.), which was collected by commodity and by 
WBS element, were stratified consistent with typical cost estimate types (for instance new vs. 
modified, development vs. acquisition).  Additionally, key technical parameters commonly used to 
develop cost estimating relationships were also collected by WBS element.  Once collected, organized, 
normalized and stratified (new, modified, purpose, etc.), the data was then subjected to a distribution-
fitting process.  Results of this process yielded both descriptive statistics and the distribution fit results. 
 
A distribution fitting utility was developed to fit a lognormal, normal, triangular and beta distribution 
to the selected data.  The process is depicted in Figure 9.   
 
Source: CR-1501/1 Cost Risk and Uncertainty Analysis Metrics Manual (CRUAMM), Alf Smith, Jeff 
McDowell, Dr. Lew Fichter, Bryan Blevins, Nick DeTore. Tecolote Research Prepared for Air Force 
Cost Analysis Agency (AFCAA), November 2011. 

Figure 8: CRUAMM Key Points 
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Figure 9: CRUAMM Analytical Process 
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Source: Real Data, Real Uncertainty, Dr. Wilson Rosa AFCAA, Alfred Smith Tecolote Research, Jeff 

McDowell Tecolote Research, Dr. Lew Fichter Tecolote Research, 27 June 2012. 

Figure 10: Use of CRUAMM Tables 

 
  

Parameter Mean Median Mode
T1 CER 1 Lognormal (1.0000, 0.4512) Lognormal (1.0971, 0.4950) Lognormal (1.3204, 0.5958)

NR CER 1

T1 CER 3 Triangular (0.1552, 0.7265, 2.1183) Triangular (0.1635, 0.7651, 2.2308) Triangular (0.2137, 1.0000, 2.9158)

NR CER 3 Triangular (0.5206, 0.7584, 1.7210) Triangular (0.5418, 0.7892, 1.7911) Triangular (0.6865, 1.0000, 2.2694)

Weight Growth 2 Triangular (0.5568, 0.6370, 1.8062) Triangular (0.5850, 0.6692, 1.8975) Triangular (0.8742, 1.0000, 2.8357)
Triangular (0.5853, 0.7180, 1.6967) Triangular (0.6092, 0.7474, 1.7662) Triangular (0.8151, 1.0000, 2.3631)
Triangular (0.5043, 0.6168, 1.8789) Triangular (0.5316, 0.6502, 1.9805) Triangular (0.8176, 1.0000, 3.0461)

T1 / Weight 3 Triangular (0.3442, 0.6256, 2.0302) Triangular (0.3649, 0.6631, 2.1520) Triangular (0.5503, 1.0000, 3.2454)

Lognormal (1.0000, 0.7077) Lognormal (1.2251, 0.8670) Lognormal (1.8387, 1.3013)

NRE / Weight 3 Triangular (0.0283, 0.1925, 2.7792) Triangular (0.0316, 0.2155, 3.1103) Triangular (0.1468, 1.0000, 14.4348)

Lognormal (1.0000, 0.9282) Lognormal (1.3644, 1.2663) Lognormal (2.5397, 2.3573)

NRE / T1 3 Triangular (0.0000, 0.1905, 2.8095) Triangular (0.0000, 0.2136, 3.1495) Triangular (0.0000, 1.0000, 14.7445)

Lognormal (1.0000, 1.3844) Lognormal (1.7078, 2.3642) Lognormal (4.9806, 6.8950)

WBS Description Unique ID CER Point 
Estimate

Forecast
(PE * Uncert) Distribution Uncert 

ainty Min Max or 
Std Dev

Satellite $298,647 $298,647
Payload RDPayload $168,462 $168,462

IR Sensor 356851 * PayloadDiam 0̂.562 $168,462 $168,462 Triangular 1 0.071 1.9640
Spacecraft Bus RDSpBus $15,096 $15,096

Structure 157 * StrWgt 0̂.83 $2,787 $2,787 Triangular 1 0 1.9528
Thermal 394 * ThermWgt 0̂.635 $1,331 $1,331 Triangular 1 0 1.9528
Electrical Power System (EPS) 62.7 * EPSWgt $2,865 $2,865 Lognormal 1 0.4512
Telemetry Tracking & Command (TT&C) and 
Command & Data Handling (C&DH) 545 * TTCWgt 0̂.761 $2,344 $2,344 Lognormal 1 0.2941
Attitude Determination & Control Sys 464 * ADCSWgt 0̂.867 $5,769 $5,769 Lognormal 1 0.4231

Int & Assy 989 + 0.215 * (RDPayload$ + RDSpBus) $40,454 $40,454 Normal 1 0.3544
Program Level Costs 1.963 * (RDPayload$ + RDSpBus) 0̂.841 $52,451 $52,451 Lognormal 1 0.4609
Ground Support Equip (GSE) 9.262 * (RDPayload$ + RDSpBus) 0̂.642 $22,184 $22,184 Triangular 1 0 3.1204

Input Variable Unique ID CER Point 
Estimate Forecast Mean Std Dev

Payload Sensor diameter (m) PayloadDiam 0.263 0.263 Lognormal 1 0.3000
Structure weight (kg) StrWgt 32.000 32.000 Lognormal 1 0.5019
Thermal weight (kg) ThermWgt 6.800 6.800 Triangular 1 0.261 2.7028
EPS weight (kg) EPSWgt 45.700 45.700 Triangular 1 0.8742 2.8357
TT&D/DH weight (kg) TTCWgt 6.800 6.800 Normal 1 0.1893
ADCS weight (kg) ADCSWgt 18.300 18.300 Normal 1 0.3103
Spacecraft + Payload Weight (kg) SpPyWgt 140.000 140.000 Lognormal 1 0.2307
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CRUAMM DATA ANALYSIS 

 

CRUAMM data was organized into many categories representing differ estimating 

methodologies and type of WBS elements. One category (All CERs) is used here to 

exemplify the data analysis process. 

 

The four distribution types considered in the CRUAMM study were lognormal, beta, 

triangular, and normal.   Throughout this paper, the terms “tidy” and “untidy” are used to 

simply divide these four distributions into two categories.  The terms do not convey 

desirability or suitability.  Lognormal and beta are called untidy because lognormal 

distributions are skewed with an infinite right tail and beta distributions can adopt virtually 

any shape.  In contrast, normal and triangular distributions are called tidy because normal 

distributions are symmetric and triangular distributions are limited to a linear reduction in 

probability from the mode to the bound.  In many of the charts to follow, the tidy 

distributions are depicted in the color blue and the untidy distributions are depicted in the 

color red. 

 

Figure 11, Fit Results, describes the category in terms of number of distributions and range 

of fitted CVs.  The Fit Results panel also describes the fit results by distribution type.  The 

number of distributions is shown as a pie chart as well as in tabular format.  In this example 

153 fitted distributions comprise this category.  The fitted CVs range from a low of 0.048 

to a high of 1.149. The triangular distribution was the most common being selected 67 

times and representing 44% of the fits.  The average CV over those 67 triangular fits is 

0.341.   
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Figure 11: Fit Results Example 

 

Figure 12, Quartile Results, describes the results by CV quartile where the first quartile is 

the lowest dispersion and the fourth quartile is the highest dispersion. This example shows 

that in the lowest quartile (where CVs ranged from 0.048 – 0.160) the triangular was the 

most common distribution being selected 21 times.  In the highest quartile (where CVs 

ranged from 0.516 to 1.149) lognormal was the most common, being selected 23 times.  

The results are shown in tabular format and as a column chart, where height is the number 

of times selected.  The final chart in this panel presents the same data on an area chart 

depicting the relative occurrences of each distribution by quartile as proportions.  The fill 

colors have been selected to visually amplify the relative occurrence of tidy distributions 

to untidy ones.   

  

 
Figure 12: Quartile Results Example  

Fit Results

Number of Fitted Distributions 153
Range of Fitted CVs 0.048 - 1.149

Selection 
Count

Average 
Fitted CV

Triangular 67 0.341
Normal 19 0.270

Beta 6 0.687
Lognormal 61 0.488
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3rd 
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4th 
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CV Min 0.048 0.163 0.390 0.516
CV Max 0.160 0.390 0.512 1.149

Triangular 21 20 15 11
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Lognormal 9 11 18 23
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ORDERS OF DISPERSION 

 

A taxonomy for organizing the collection of CRUAMM residuals and their fitted 

distributions is based on the estimating methodology each fitted distribution represents.  In 

the case of a CER, cost has been regressed against one or more cost drivers resulting in a 

fitted line as shown in Figure 13. Each data point in the regression data set is an actual 

observed value; each data point has an associated predicted value5 which is the value of 

the CER at that point’s cost driver value.  The difference between the two is the error or 

residual value.  (In fact the regression line was determined by some minimizing process on 

some form of those errors.)  The residual may be expressed as multiplicative errors by 

dividing the actual by predicted so that actuals below the regression line have residual 

values less than one and actuals above the regression line have residual values greater than 

one.  The full set of residuals will have a mean and will have a standard deviation. The 

standard deviation divided by the mean is a measure of the residuals’ dispersion called the 

CV.  When the residuals are binned for the purposes of distribution fitting the resulting 

histogram exhibits a mode near one.  In CRUAMM, the residuals were placed in ascending 

order and CDF determined.  Candidate distributions were then fitted to the residuals and 

the distribution with the lowest Sum of Squared Error (SSE) is the number one ranked 

distribution.  In summary, the CER has three characteristics: It is based on a collection of 

like items (homogeneity), it has a cost driver (independent variable), and its form has been 

determined via some error minimization process (fit).  It follows then the fitted distribution 

of the CER’s residuals is also a function of those same three characteristics.  

 

 

5 Regression was performed using ordinary least squares yielding the familiar predictive statistics. 
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Figure 13: Fitting Distributions to CERs  

 

Now consider the case of fitting distributions to factors.  In the case of a factor relationship, 

each data point’s cost is divided by its cost driver.  The average (or median) of these 

become the methodology.  The relationship can be drawn on a scatterplot, as was done for 

the CER, as depicted in Figure 14.  And, as was done with the CER, each datapoint is an 

actual and has an associated predicted value and an associated residual.  From here the rest 

of the process proceeds as before.  In summary, the factor has two characteristics: It is 

based on a collection of like items (homogeneity) and it has a cost driver (independent 

variable).  However its form is not determined via some error minimization process (it 

lacks the characteristic of fit).  It follows that the fitted distribution of the factor’s residuals 

is also a function of those same two characteristics.  

 

Residual

Actual

Predicted
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Figure 14: Fitting Distributions to Factors  

 

Now consider the case of fitting distributions to unstructured data.  In the case of a simple 

value relationship such as average price of an item, the central tendency of the data (the 

average or the median) becomes the methodology.  This relationship, like the two 

preceding types of relationships, may be depicted on a scatterplot as depicted in Figure 15.  

Once again, each data point is an actual with an associated predicted value and a residual 

value.  As before, the residuals were processed into fitted distributions.  In summary, the 

simple value methodology has one characteristic: It is based on a collection of like items 

(homogeneity).  It lacks a cost driver (independent variable).  Its form was not determined 

via some error minimization process (it lacks the characteristic of fit).  It follows then the 

fitted distribution of the simple value methodology’s residuals is also a function of this 

single characteristic. 

Predicted

Actual

Residual
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Figure 15: Fitting Distributions to Data  

In summary: 

CER Distributions = f(data homogeneity, use of a cost driver, error minimization) 
Factor Distributions = f(data homogeneity, use of a cost driver) 
Data-only Distributions = f(data homogeneity) 

 

Given the relative amount of information in each of these three settings, it is reasonable to 

expect tighter dispersions would emanate from the settings utilizing the greatest 

information.  Therefore, one would expect. 

CER Dispersion < Factor Dispersion < Data-only Dispersion 

 

The lexicon for describing these three settings is: 

 First Order Dispersion (Data-only) 

 Second Order Dispersion (Factor) 

Third Order Dispersion (CER)  

Actual

Residual

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016



CLUSTER ANALYSIS ON FITTED DISTRIBUTIONS  

 

This section presents the cluster analysis results. The analysis first addresses the CV to be 

assigned to each of the nine clusters and second addresses the distribution for each cluster.  

To determine a recommended CV for each of the nine gradations, cluster analysis is utilized 

to form nine representative CV values.  To determine a distribution for each of the nine 

gradations, the most commonly selected distributions within each cluster will be 

recommended. 

 

Clustering is a process of slicing a set of data into a set of meaningful subclasses called 

clusters.  There are numerous clustering techniques which fall into two primary categories: 

Hierarchical or Partitional.  Heirarchical clustering algorithms determine not only the 

cluster content but determine the number of final bins.  Since the problem at hand has 

already been structured as a predetermined number of bins (nine), a hierarchical technique 

is not necessary.  A Partional technique, k-means, was selected for use on this study.  K-

means is a centroid-based method defined as an optimization problem: find the cluster 

centers and assign the objects to the nearest cluster center, such that the squared distances 

from the cluster are minimized. 

 

Each of the orders of dispersion categories was separately examined. The first subset (All 

CERs) is used as an example to describe the analysis process.  Some of these figures 

resemble the results by quartile from Section 2 but this time will be in nine partitions rather 

than four.   

 

Figure 16, Cluster Results, presents the cluster results for the All CERs category with the 

nine large markers labeled with the centroid value.  The smaller markers represent the fitted 

distributions’ CVs in the dataset belonging to each cluster.  Each partition is separated with 

vertical distance for readability; the height of each partition has no meaning other than 

providing visual separation.  
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Figure 16: Cluster Results Example 

 

Figure 17, Distribution Results by Cluster, presents the count of each selected distribution 

by cluster. The information is shown first as a table, then a column chart by count, and then 

by proportion in an area chart.  The bottom of the tabular chart also shows the modal 

distribution for each cluster.  For the highest count of tidy distributions in each cluster 

triangular is listed; for the highest count of untidy distributions in each cluster lognormal 

is listed.  As was the case in the earlier quartile charts, the color scheme was chosen to 

amplify that tidy distributions are common to low CVs and untidy distributions are 

common to high CVs.  Cluster 2 for example had nine triangular distributions and two 

lognormal distributions.  In contrast, cluster 8 has twelve lognormal and seven triangular 

distributions. 

 

Cluster Results
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Figure 17: Distribution Results by Cluster Example 

 
Figure 18, Final Results, presents a tabular summary of the parameters that are useful in 

the emerging zone methodology.  The first two rows repeat the skew and CV values from 

the previous panels.  The third row presents a selected distribution which, in most cases, is 

the most common distribution within that cluster.  Given the infrequency of normal and 

beta as the modal distribution and the desirability of a final system as simple as reasonable, 

only lognormal and triangular were selected.  In the few cases where it occurred, triangular 

was always substituted for normal and lognormal was always substituted for beta.  The 

content of the remaining rows on this table vary depending on the selected distribution.  In 

the case of triangular, the minimum and maximum values are shown.  These values are the 

average minimum and average maximum of the triangular fits in that cluster. The 

Distribution Results by Cluster
Number of Times Distribution was Selected

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9
Triangular 10 9 2 10 11 8 10 7 0

Normal 2 3 3 2 6 3 0 0 0
Beta 0 0 1 0 0 0 1 0 4

Lognormal 2 4 1 6 7 13 12 12 4
Typical Distribution Triangular Triangular Triangular Triangular Triangular Lognormal Lognormal Lognormal Lognormal
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methodology shown for cluster 2 for example, is a triangular bounded by 

minimum/maximum values of 0.654 and 1.264.  With these two values, one can model a 

triangular distribution in their cost model where the point estimate is assumed to be the 

mode.  In the case of lognormal, the mean and standard deviation are shown.  For example, 

the methodology parameters for cluster 8 are a lognormal mean of 1.210 with a standard 

deviation of 0.803.  The mean shown on the table is the average of the means of the 

lognormal fits in that cluster.  The standard deviation is the cluster centroid CV multiplied 

by that mean.  With the mean and standard deviation, one can model a lognormal 

distribution in their cost model.   

 

 
Figure 18: Final Results by Cluster Example 

 

These techniques were applied to each of three Orders of Dispersion.  Figure 19 presents 

the cluster analysis CVs for each.  Note the relative spread of dispersion by order. Figure 

20 presents the selected distributions in each cluster. Note the relative occurrences of tidy 

and untidy distributions by order.   

 

Final Results
Methodology Parameters of Interest

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9
CV 0.08 0.13 0.18 0.28 0.39 0.46 0.54 0.66 0.88

Skew1 0.46 0.45 0.44 0.25 0.27 0.17 0.10 0.07 0.33
Select Distribution Triangular Triangular Triangular Triangular Triangular Lognormal Lognormal Lognormal Lognormal

Triangular Min 0.813 0.654 0.517 0.518 0.329
Triangular Max 1.160 1.264 1.465 1.768 2.092

Lognormal Mean 1.101 1.140 1.210 1.399
Lognormal StdDev 0.502 0.618 0.803 1.227

1 - Skew expressed as CDF at the mode
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Figure 19: CV Cluster Results by Order of Dispersion  

 
 

 

Figure 20: Distribution Shape Cluster Results by Order of Dispersion  
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Figure 21 presents a summary of all the parameters of interest resulting from this process.  

The figure presents 36 distributions (nine each for three categories plus all in an aggregate 

category).  

 

 
Figure 21: Final Results Summary  

 
   

 
 
  

Methodology Parameters of Interest
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9

All CERs
TRI(0.813, 1, 

1.160)
TRI(0.654, 1, 

1.264)
TRI(0.517, 1, 

1.465)
TRI(0.518, 1, 

1.768)
TRI(0.329, 1, 

2.092)
LN(1.101, 

0.502)
LN(1.140, 

0.618)
LN(1.210, 

0.803)
LN(1.399, 

1.227)

Factors, All
LN(1.124, 

0.572)
LN(1.179, 

0.763)
LN(1.265, 

0.981)
LN(1.351, 

1.231)
LN(1.405, 

1.390)
LN(1.509, 

1.687)
LN(1.655, 

2.166)
LN(1.836, 

2.752)
LN(2.298, 

4.857)

All First Order Data
TRI(0.181, 1, 

2.138)
TRI(0.049, 1, 

3.161)
LN(1.315, 

1.144)
LN(1.480, 

1.640)
LN(1.714, 

2.399)
LN(1.932, 

3.285)
LN(2.356, 

4.989)
LN(2.731, 

7.978)
LN(3.550, 

11.692)

Everything
TRI(0.635, 1, 

1.745)
TRI(0.286, 1, 

3.171)
LN(1.139, 

0.625)
LN(1.214, 

0.822)
LN(1.332, 

1.184)
LN(1.489, 

1.644)
LN(1.704, 

2.352)
LN(2.070, 

3.752)
LN(2.849, 

7.320)
Legend
TRI(a, b, c) = Triangular(minimum, most-likely, maximum)
LN(a, b) = Lognormal(mean, standard-deviation)
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RECOMMENDED METHODOLOGY 

 

Figure 22 presents the recommended Zone Method of Cost Uncertainty Analysis. Each row 

represents a category.  Each column represents one of the nine clusters.  Within each cell 

is a distribution unitized for use on a most-likely point estimate.  An analyst would use this 

table to select a distribution shape and distribution parameters via these four steps: 

1. First, determine the degree of program challenge.   

a. Use judgment. 

b. Use a commodity-specific scoring matrix or complexity calculator. 

2. Second, identify the category row that most closely matches each element’s 

estimating methodology. 

a. Use the Zone Method table. 

3. Third, determine the relative uncertainty of this cost model element compared to 

the rest of the cost model.   

a. Use judgment. 

4. Fourth, use the distribution shape and parameters shown in the cell intersected by 

the first three choices.  

a. Use the Zone Method table. 
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Figure 22: The Zone Method of Uncertainty Analysis  

Program with Nominal Challenges

Low Uncertainty
Low-Medium 
Uncertainty

Medium 
Uncertainty

Medium-High 
Uncertainty

High Uncertainty

CER Methods
TRIANGULAR

(0.813, 1, 1.160)
TRIANGULAR

(0.654, 1, 1.264)
TRIANGULAR

(0.517, 1, 1.465)
TRIANGULAR

(0.518, 1, 1.768)
TRIANGULAR

(0.329, 1, 2.092)
LOGNORMAL
(1.101, 0.502)

LOGNORMAL
(1.140, 0.618)

LOGNORMAL
(1.210, 0.803)

LOGNORMAL
(1.399, 1.227)

Factor Methods
TRIANGULAR

(0.701, 1, 1.517)
TRIANGULAR

(0.718, 1, 1.981)
TRIANGULAR

(0.435, 1, 2.131)
TRIANGULAR

(0.273, 1, 2.510)
LOGNORMAL
(1.153, 0.667)

LOGNORMAL
(1.188, 0.763)

LOGNORMAL
(1.238, 0.885)

LOGNORMAL
(1.363, 1.212)

LOGNORMAL
(1.869, 2.775)

Central Trendency 
Methods

TRIANGULAR
(0.181, 1, 2.138)

TRIANGULAR
(0.049, 1, 3.161)

LOGNORMAL
(1.315, 1.144)

LOGNORMAL
(1.480, 1.640)

LOGNORMAL
(1.714, 2.399)

LOGNORMAL
(1.932, 3.285)

LOGNORMAL
(2.356, 4.989)

LOGNORMAL
(2.731, 7.978)

LOGNORMAL
(3.550, 11.692)

Low Uncertainty
Low-Medium 
Uncertainty

Medium 
Uncertainty

Medium-High 
Uncertainty

High Uncertainty

Legend Program with Nominal Challenges
TRIANGULAR(a, b, c) = Triangular(minimum, most-likely, maximum)
LOGNORMAL(a, b) = Lognormal(mean, standard-deviation)

Shift Left for Less Challenging 
Programs

Shift Right for More Challenging 
Programs

Shift Left for Less Challenging 
Programs

Shift Right for More Challenging 
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SUMMARY 

 

The purpose of this study was to examine the body of work from the CRUAMM task to 

make top-down observations and offer top-level guidance for use in cost uncertainty 

analysis.  This document provides the analyst a methodology for defining distributions for 

use in performing cost uncertainty analysis.  It is also a useful reference to provide a cross-

check when the analyst has developed their own uncertainty distributions. 

 

While the Zone Method guidelines may be useful as a quick-turn method, or for gut-

checking another’s estimate, or serving as a source for relative uncertainty bounds, it is not 

intended to supplant the current best practices of detailed uncertainty analysis using 

program-specific data.   

 

 

 

 

 

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016


	Abstract
	A Zone Method For Photography
	The Zone System’s Key Concepts
	A Methodology Framework
	CRUAMM Background
	CRUAMM Data Analysis
	Orders of Dispersion
	Cluster Analysis on Fitted Distributions
	Recommended Methodology
	Summary



