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Presentation Summary

• References/Acknowledgements:
– CEBok Module 9 - Cost and Schedule Risk Analysis
– 2014 ICEAA Workshop presentation prepared by Dr. Christian Smart 

(MDA) and Marc Greenberg (NASA)
– Joint Agency Cost Schedule Risk and Uncertainty Handbook (CSRUH, 

Feb 2014) 
• Presentation abstract: 

– The use of a prediction interval (PI) is a simple method of quantifying risk 
and uncertainty for a Cost Estimating Relationship (CER) derived from 
an Ordinary Least Squares (OLS) regression

– Yet, few cost estimators implement PIs in their estimates despite their 
frequent use of CERs 

This presentation will provide a step-by-step tutorial for modeling a PI 
for an example CER using Monte Carlo Simulation software and will 

identify the beneficial impact on the coefficient of variation (CV)
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Cost Estimating 
Relationships (CERs)

• Definition:  A Cost Estimating Relationship (CER) is a 
mathematical expression of cost as a function of one or 
more independent variables

• CERs are often developed using regression analysis to 
fit an equation to a data set

• Examples of equations used for CERs include:

Linear CER: y = a + bx
Nonlinear CERs: y = axb

y = abx

y = a + bxc

where y = Cost
x = Technical Parameter
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Modeling Uncertainty

• CERs do not perfectly fit historical data upon which 
they are based

• This results in an underlying uncertainty distribution 
about an estimate
– The outcome of a CER represents only one point on an 

uncertainty distribution (typically mean or median)

This brief 
will model 
this 
uncertainty
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Modeling Uncertainty (cont.)

Model uncertainty is variation about the dependent 
variable, i.e., cost

For a linear CER:

For a nonlinear CER:

where  represents the error between the estimated cost  
and the actual cost Y; the estimate uncertainty is 

captured by the Prediction Interval

baXY 

 bXaY Often used to create 
weight based 
estimates

Often used to model 
learning curve
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Example: Modeling Uncertainty 
for a Linear CER

• For example, consider a linear CER:
• Using Monte Carlo simulation software (e.g. Palisade 

@Risk or Oracle Crystal Ball), define a distribution for 

–  = normal(mean = 0, std dev = prediction error)

– OR

–  = student-t(midpoint = 0, scale = prediction error, degrees of 
freedom)

 bXaY

Ok, so how do you define prediction error?
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Prediction Interval Equation

• = Calculated Value from Regression Line 
• = t Critical Value (T.INV.2T function in Excel)
• = Standard Error of the Estimate (STEYX function 

in Excel)
• = number of observations 
• = average of X 
• = sum of squared deviations of X from its 

mean (DEVSQ function in Excel)
  22 XnX i

X

df α/2,t
Ŷ

SEE

n

Prediction Error
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Example Dataset

y = 0.1379x + 1432.3
R² = 0.7966
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$6,000

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000

* Note: the use of an Excel trendline and the focus on R^2 is for presentation brevity, make sure you consider 
T & F-Stat, R^2 adj, and other fit measures when running and evaluating a regression on your own

OLS Regression*

• Define distributions using Monte Carlo Simulation software:
• x = triangular(low = 4000, most likely = 5000, high = 7000)
•  student-t(midpoint = 0, scale = prediction error, degrees of 

freedom = 9 – 1 – 1 = 7)

Y = 0.1379x + 1432.3 + 

Linear CER Example: Modeling 
Uncertainty with X = 5000

Development $M 
(BY12$)

Weight 
Lbs.

$1,000 900
$1,000 1,000
$1,600 2,500
$2,000 3,000
$2,000 3,500
$1,600 4,000
$3,500 9,000
$4,000 10,000
$5,000 30,000
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Linear CER Example: Modeling 
Uncertainty with X = 5000

Example Dataset Set Up the Inputs

Prediction Error =

Evaluate 
Prediction 

Error  where 
X = 5000

=SEE*(SQRT(((n+1)/n)+(((
X-Avg)^2)/Devsq)))

=721.99

Development $M 
(BY12$)

Weight 
Lbs.

$1,000 900
$1,000 1,000
$1,600 2,500
$2,000 3,000
$2,000 3,500
$1,600 4,000
$3,500 9,000
$4,000 10,000
$5,000 30,000

n=count(Development $)
SEE=STEYX(Development $, Weight)
Avg=AVERAGE(Weight)

Devsq=DEVSQ(Weight)

n=9
SEE=682.93
Avg=7100

Devsq=672620000

X= 5000
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Linear CER Example: Enter 
Inputs in Student-t Distribution

Inputs to the  Student-t distribution:
• Midpoint: 0
• Scale: Prediction Error = 721.99
• Deg. Freedom: n-k-1 = 9 – 1 – 1 = 7

721.99
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* Note: prudent estimators will also assign correlation between each distribution before running the simulation, for more details 
on correlation see CEBok Module 9 - Cost and Schedule Risk Analysis

• Define distributions using Monte Carlo Simulation software:
• x = triangular(low = 4000, most likely = 5000, high = 7000)
•  student-t(midpoint = 0, scale = prediction error, 

degrees of freedom = 9 – 1 – 1 = 7)

Y = 0.1379x + 1432.3 + 

Linear CER Example: Define 
Distributions and Set Forecast

scale = prediction error = 721.99,

• Also using Monte Carlo Simulation software, set the 
forecast on the dependent variable

Run the simulation* and capture the results

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016



13

Linear CER Example: Run the 
Simulation Using Two Scenarios

• The following slides identify two scenarios and their 
results when using the linear CER example: 

– Scenario #1: Constraining the simulation to only consider the 
triangular distribution on the independent variable X

– Scenario #2: Allowing the simulation to consider both the 
triangular distribution on the independent variable X as well as 
the student-t distribution on 

The results of Scenario #2 identify the beneficial 
impact on the CV when modeling the PI

Y = 0.1379x + 1432.3 + 
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Deciles

CV 5.2%

Scenario #1 Results
Risk Only on Independent Variable

Deciles
90% $2,396.70
80% $2,318.78
70% $2,261.32
60% $2,213.26
50% $2,170.60
40% $2,130.13
30% $2,089.70
20% $2,041.35
10% $1,980.35
CV 7.0%

$2,180.22

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

$1,800.00$1,900.00$2,000.00$2,100.00$2,200.00$2,300.00$2,400.00$2,500.00$2,600.00

CDF Chart

Total Mean
X axis centered on Mean with a range consistent with a CV of 0.07

Basis and Values of Risk Parameters

Risk Parameter Min Most Likely Max

Weight Dist Weight Low 
(10%)
4000

Weight Most 
Likely
5000

Weight High 
(90%)
7000

Note: Regression of the 
original dataset had a 
R² = 0.7966

Going from 20% to 80% confidence requires +14% more $; 
i.e. the CV of 7% is low

+14% 
more $
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Deciles

CV 5.2%

Scenario #2 Results
Risk on Independent Var. & Error Term

Deciles
90% $3,223.41
80% $2,858.32
70% $2,603.07
60% $2,381.09
50% $2,185.85
40% $1,978.97
30% $1,764.76
20% $1,502.36
10% $1,114.86
CV 39.9%

Basis and Values of Risk Parameters

Risk Parameter Min Most Likely Max

PI Dist

Weight Dist Weight Low 
(10%)
4000

Weight Most 
Likely
5000

Weight High 
(90%)
7000

$2,183.76

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

$500.00 $1,000.00 $1,500.00 $2,000.00 $2,500.00 $3,000.00 $3,500.00 $4,000.00

CDF Chart

Total Mean
X axis centered on Mean with a range consistent with a CV of 0.4

Student-t Distribution Parameters:
Midpoint = 0, 
Scale = 721.99 (Prediction Error)
Degrees of Freedom = 7 (n-2)

Note: Regression of the 
original dataset had a 
R² = 0.7966

+90% 
more $

Going from 20% to 80% confidence requires +90% more $; 
the CV improves when the simulation also considers the PI
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Summary

• Implementing risk on the error term using the prediction 
interval is not difficult

• Even for regressions with reasonable fit statistics, 
implementing risk on the error term can produce 
desirable CVs
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BACKUP
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Linear Regression Example
Fit Statistics

Development 
$ Millions 
(BY12)

Weight 
Lbs.

$1,000 900
$1,000 1,000
$1,600 2,500
$2,000 3,000
$2,000 3,500
$1,600 4,000
$3,500 9,000
$4,000 10,000
$5,000 30,000

Variable Coefficient Std Dev of Coef Beta Value
T-Statistic 
(Coef/SD) P-Value

Prob Not 
Zero

Intercept 1432.2776 294.5779 4.8621 0.0018 0.9982
Lbs 0.1379 0.0263 0.8925 5.2355 0.0012 0.9988

Goodness-of-Fit Statistics

Std Error (SE) R-Squared R-Squared (Adj)
Pearson's 
Corr Coef

682.9319 79.66% 76.75% 0.8925

Analysis of Variance

Due To DF Sum of Sqr (SS)
Mean SQ = 

SS/DF F-Stat P-Value
Prob Not 

Zero
Regression 1 12784117.1836 12784117.1836 27.4104 0.0012 0.9988
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