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Abstract

Prior to developing a Cost Estimating Relationship (CER) the data should be normalized for
effects not explained by the assumed CER model. This typically includes the effects of inflation
and/or escalation which has recently generated considerable discussion within the DoD. In this
paper we demonstrate two common CERs models and augment them to include an escalation
term. Discussion will be made regarding the feasibility of the solutions of the augmented models.

1 Introduction

When building models in cost estimating, as in many other scientific fields, an analyst begins with
observed data and an assumed model form that governs the relationship of the independent and
dependent variables. The desire is to determine the value of the parameters associated with the
assumed model that provide the best fit in some measure between the model predictions and the
observed data. In every application, the observed data needs to be analyzed for applicability and
suitableness for usage in deriving the parameters of the model. In the cost estimating environment,
the normalization process involves segregating data by type such as recurring or nonrecurring
or mapping raw data into consistent data types like hours per unit (HPU) so that appropriate
relationships can be investigated. The most common form of data normalization for cost data is to
remove the effects of the changing prices due to inflation or escalation. Inflation is defined as the
change in the general price level over time [1] while escalation is more narrowly defined to be the
change in the price level of a specific good or service over time.

Within recent years, rising costs to develop, procure and maintain weapon systems coupled with
increasing Federal budgetary pressures has intensified the scrutiny DoD programs are subjected to
during major reviews. This has renewed interest in understanding and accurately accounting for the
effects of inflation and escalation so that programs can deliver more credible estimates to Congress,
the warfighter and ultimately taxpayers. Through analysis, it has become clear that for many
commodities the real price change is increasing faster than inflation. In contrast, some commodities
such as electronics, experience a negative yearly real price change. This result is reflected in the 2015
update to Air Force Instruction (AFI) 65-502 [1] which now defines the difference between inflation
and specific escalation as well as reaffirm the position that “analysts should use information and
methodologies that have the highest probability of accurately estimating the budget authority that
will be required”.
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Inflation guidance is issued by the Office of the Under Secretary of Defense, Comptroller
(OUSD(C)) annually to support the President’s Budget request preparations. The inflation guid-
ance contains rates based on the GDP implicit price deflator and is used by each service to build
appropriation specific projections of raw and weighted indices [2]. An analyst could independently
build a set of rates using a measure other than GDP deflator. Some proposed replacements are
the Employment Cost Index (ECI), Consumer Price Index (CPI) and Producer Price Index (PPI).
Each of these indices has a focus area and sub-indices which are tailored to specific subsets of those
factor areas. The choice of which rate or set of indices to use ultimately depends on the subjectivity
of the analyst or local center guidance.

Once a set of inflation or escalation indices is selected and the normalization of data is complete,
Cost Estimating Relationships (CERs) are derived to predict future expected costs. Under some
conditions, the choice of incorrect inflation or escalation index could result in a lack of fit when
developing CERs. Under worse conditions, a choice of an inappropriate inflation or escalation index
leads to acceptance of a CER that is misleading and creates a potential for program disconnects.

The point of this paper is to demonstrate how to determine a best fit escalation parameter from
existing data by incorporating an escalation term into the CER. This approach has the promise of
directly computing an average escalation parameter that does not rely on the subjective choice of
the analyst. Furthermore, the solution approach gives insight into the quality of the parameters
obtained from the model. In Section 2, an overview of nonlinear regression is presented. In Section
3 and Section 4, examples are presented for two different types of CERs. For each CER, the
specific equations will be derived and verification and application of the model performed. Finally
in Section 5, a summary of the results and some concluding remarks are made with suggestions for
follow-on research.

2 Review of Nonlinear Regression

To facilitate the development of the later equations, a review of nonlinear regression is presented
using a matrix approach. For additional introduction and results see [3, 4]. The flexibility of
the nonlinear regression approach allows for many different types of error term assumptions and
function types.

In terms of notation, R is the set of all real numbers. Real scalar values and scalar functions
are denoted by non-bolded symbols, e.g. x ∈ R or f : Rn → R. Vectors and vector functions are
denoted by bolded symbols, e.g. x ∈ Rn or f : Rn → Rm. Matrices and matrix valued functions
are denoted by bold uppercase symbols, e.g. X ∈ Rn×m or F : Rn×m → Rm×p.

Let x ∈ RN be a data vector, β ∈ Rp be a vector in the parameter space and ε (x,β) ∈ RN×p →
R be the error function associated with the assumed model type. When the function ε (x,β) is
linear in β, the model is called linear. When the function ε (x,β) is nonlinear in β or has no
linearizing transformation, an approach other than standard Ordinary Least Squares (OLS) must
be used to solve for the parameter vector β. The most common approach of Nonlinear Regression
(NLR) involves linearization about a point and iteration. The linearization process creates a linear
model that, under the right circumstances, closely approximates the nonlinear model around the
specified point. The process is described below.

Assuming that ε (x,β) is sufficiently regular, ε (x,β) can be expanded about the point β(k) in
the parameter space using a Taylor Series expansion as

ε (x,β) = ε
(
x,β(k)

)
+

p−1∑
j=0

[
∂ε (x,β)

∂βj

]
β=β(k)

(
βj − β(k)j

)
+ LTE (1)
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where LTE is the local truncation error associated with the first order Taylor Series approximation.
The term β(k) and β(k) in this context represents an iterative approximation for the true parameters.
Using the Taylor Series approximation above and neglecting the higher order terms, ε (x,β) can
be locally approximated as a linear function in β and (1) can be written in matrix form as

ε (x,β) ≈ ε
(
x,β(k)

)
+

p−1∑
j=0

[
∂ε (x,β)

∂βj

]
β=β(k)

(
βj − β(k)j

)

= ε
(
x,β(k)

)
+
[
∂ε(x,β)
∂β0

∂ε(x,β)
∂β1

. . . ∂ε(x,β)
∂βp−1

]
β=β(k)


β0 − β(k)0

β1 − β(k)1
...

βp−1 − β(k)p−1

 . (2)

Stacking the equations for each of the data vectors xi, the matrix system equation given by

E (X;β) = E
(
X;β(k)

)
+ D(k)

(
β − β(k)

)
(3)

is obtained, where the model error E (X;β) and the matrix D(k) of partial derivatives, called the
Jacobian are given by

E (X;β) =


ε (x1,β)
ε (x2,β)

...
ε (xN ,β)

 D(k) =


∂ε(x1,β)
∂β0

∂ε(x1,β)
∂β1

. . . ∂ε(x1,β)
∂βp−1

∂ε(x2,β)
∂β0

∂ε(x2,β)
∂β1

. . . ∂ε(x2,β)
∂βp−1

...
...

. . .
...

∂ε(xN ,β)
∂β0

∂ε(xN ,β)
∂β1

. . . ∂ε(xN ,β)
∂βp−1


β=β(k)

.

In the ideal case that an exact solution exists, the term E (X;β) would be zero, hence we want
to solve the linear approximate system given by

D(k)
(
β − β(k)

)
= −E

(
X;β(k)

)
. (4)

When the number of data points is not equal to the number of parameters, i.e. N 6= p, the D
matrix is non-square and is consequently singular. When there are less data points than parameters
(N < p) the system (3) does not have a unique solution but rather an infinite number of solutions
through a p−N dimensional subspace. When there are more data points than parameters (N > p)
the system is overdetermined and has either a single solution (in the case of perfect data) or does
not have a solution. In contrast, a least squares solution always exists and is equal to the the linear
system exact solution if it exists. Note that when there is an equal number of distinct data points
and parameters, the system containing the error is solved without redundancy. For this reason, in
practical applications, it is typical to have more data points than parameters with the hope that
the least squares solution will provide a better approximation to the true population parameters
by reducing the influence of the errors.

A mathematical generalization of the matrix inverse is called the pseudoinverse. Given an
[n×m] matrix A, the pseudoinverse of A is defined by

A† =
(
ATA

)−1
AT
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where AT is the transpose of the matrix. For the overdetermined system,

Az = b (5)

the least squares solution using the pseudoinverse is given by

z = A†b. (6)

To understand how the pseudoinverse gives the least squares solution note the residual (error)
term for any vector solution z of (5) is given by

b−Az

and the sum of squared errors is

(b−Az)T (b−Az) .

The least squares solution minimizes the sum of squared errors equation with respect to the solution
vector z, hence

0 =
∂

∂z

[
(b−Az)T (b−Az)

]
= −2AT (b−Az) . (7)

Rearranging (7) we have
ATAz = ATb (8)

which is the matrix form of the parameter normal equations. The ATA term on the left side is a
square matrix and so long as rank(A) = m, is invertible. Consequently, the solution is given by

z =
(
ATA

)−1
ATb

which agrees with (6).
Using the pseudoinverse, the system linearized about the point β(k) in (3) can be solved for a

parameter estimate correction vector. Starting from an initial guess β(k) and using (4), we find a
new estimate β(k+1) by computing

β(k+1) = β(k) + δ(k) (9)

where

δ(k) = −
[
D(k)

]†
E
(
X;β(k)

)
. (10)

This process is known as the Gauss-Newton step and is repeated until the termination criteria are
met. A slight modification adds a step scaling parameter γ ∈ (0, 1] to the correction vector, yielding

β(k+1) = β(k) + γδ(k)

= β(k) + γ

(
−
[
D(k)

]†
E
(
X;β(k)

))
. (11)

Since the correction vector is computed from the linearization around the point β(k), using a
full correction step can overshoot the true solution or produce convergence issues. The scaling
parameter allows for partial steps in the right direction and can increase the stability of the overall
optimization process, though potentially at the cost of additional iterations required to reach a
given tolerance. Typically λ = 0.5 is sufficient and is used in this paper.

Note that in this derivation, the error term assumption has not been specified as additive,
multiplicative or otherwise. This solution process can be applied to any type of model equation so
long as the data points are distinct and the model error equation is sufficiently smooth.
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3 Radio Example

In this section we analyze a CER for an airborne radio. The assumed form of the CER is given by

Cost = (β0 ·Weight + β1 · Power + β2 · Frequency + β3) · (1 + β4)
year . (12)

The independent variables, Weight, Power, Frequency and Year are all assumed to be significant
and the parameter values β0, β1, β2, β3, β4 will be determined by the data. When the escalation term
is absent and an additive error term is assumed, the model is linear in the parameters and Ordinary
Least Squares (OLS) regression could be used to obtain the best fit parameter values. In some cases,
a transformation of the data set can allow for OLS to be applied where there is an assumed error
term other than an additive error. It has been well documented that these transformations not only
introduce bias errors but also distort any confidence regions associated with the parameters [4], [5].
In this paper, a multiplicative error is assumed and nonlinear regression is used to determine the
parameter values.

3.1 Parameter solution development

To apply the nonlinear regression solution method introduced in Section 2, the error equation and
its partial derivatives need to be defined in terms of the observed data and the assumed model
given in (12).

Let yi be the cost associated with an airborne radio with

xi = [Weighti, Poweri, Frequencyi, yeari]
T

characteristics. Given a vector of parameters β = [β0, β1, β2, β3, β4]
T , the cost CER with multi-

plicative error is given by

yi = f (xi,β) · (1 + ε)

= (β0 ·Weighti + β1 · Poweri + β2 · Frequencyi + β3) · (1 + β4)
year · (1 + ε)

and the multiplicative error can be written as

εi (x,β) =
yi

f (xi,β)
− 1. (13)

Using the chain rule, the partial derivatives of the error equation are

∂

∂βj
ε (x,β) =

∂

∂βj

[
yi

f (xi,β)
− 1

]

=
−yi

(
∂
∂βj

f (xi,β)
)

f (xi,β)2
. (14)

From the definition of the CER (12), the partial derivatives are given by

∂

∂β0
f (x,β) = (Weighti) · (1 + β4)

yeari (15)

∂

∂β1
f (x,β) = (Poweri) · (1 + β4)

yeari (16)
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∂

∂β2
f (x,β) = (Frequencyi) · (1 + β4)

yeari (17)

∂

∂β3
f (x,β) = (1 + β4)

yeari (18)

∂

∂β4
f (x,β) = (β0 ·Weighti + β1 · Poweri + β2 · Frequencyi + β3) · (1 + β4)

yeari−1 · yeari. (19)

With a parameter vector β(k), the partial derivatives of the CER (15)-(19) and (14), a new
parameter vector β(k+1) can be computed from (11).

3.2 Verification and Test

In this section, the solution method is tested both to verify that the model can identify the correct
parameters when there is no error present in the data and to characterize the accuracy when there
is error in the data. The independent variable data in this section is notional data based on a DAU
example, modified for the purposes of this paper. Perfect data was generated using the parameter
values listed in Table 1 and the complete data set is shown in Table 2. Multiplicative errors were
randomly sampled from a normal distribution with µ = 0 and σ = 5%.

Parameter Value

β0 0.060

β1 0.030

β2 0.020

β3 -3.500

β4 0.018

Table 1: True Radio Dataset Parameters

In Table 3, the list of initial and final values are shown. The final solution was obtained after 75
iterations. Figure 1 shows the parameter values over all iterations and Figure 2 shows the parameter
differences between iterations. From these plots, it is evident that after approximately 20 iterations
the parameter values are close to the final values. The final computed parameter values are close
to the true parameter values, but not exact.

When the true cost data with no error is used, there exists an exact solution to the nonlinear
regression problem. In these cases, ideally the computed set of parameters would match the true
parameters. In reality, the computed parameters may not match exactly for two reasons. First,
when using iterative techniques, stopping criteria are established to determine when enough iter-
ations have been completed. These stopping criteria often include both a maximum number of
iterations and some measure of the successive difference between iterations. These settings are
within the control of the analyst but require testing to ensure appropriate stopping criteria are
used. Second and most important, conditioning of the problem itself combined with finite precision
arithmetic means the exact answer may never be able to be computed numerically.

To understand the conditioning of the overall nonlinear regression process, we focus on the
sequence of linear system solves in (10). The condition number of a square nonsingular matrix
provides a magnification upper bound for the relative error in a computed solution in terms of the

6
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Figure 1: Computed Parameter Values by Iteration
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Figure 2: Computed Parameter Difference by Iteration
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System Wgt Pwr Freq Yr True Cost Err % Noisy Cost

1 90 5 76 5 3.90 -8.6% 3.57

2 95 248 148 6 14.02 1.2% 14.19

3 65 73 41 4 3.66 2.8% 3.76

4 118 177 255 10 16.72 -0.3% 16.68

5 85 285 37 9 12.79 7.2% 13.70

6 36 116 268 1 7.64 7.8% 8.23

7 93 195 188 2 12.11 0.7% 12.20

8 134 8 280 4 11.15 -9.0% 10.15

9 95 73 380 7 13.58 -5.6% 12.82

10 146 373 344 8 26.91 7.0% 28.78

11 76 324 303 4 18.09 3.9% 18.78

12 32 232 155 1 8.63 1.9% 8.80

13 34 151 190 2 7.12 -5.3% 6.74

14 146 247 321 8 22.02 1.6% 22.36

15 50 47 277 1 6.57 -4.4% 6.28

Table 2: Radio Example Dataset

Parameter Initial Value Final Value Final Error Relative Errors

β0 0.010 0.060 1.92e-11 3.20e-10

β1 0.000 0.030 -1.93e-12 -6.43e-11

β2 0.010 0.020 4.53e-12 2.27e-10

β3 -1.000 -3.500 -1.26e-09 3.61e-10

β4 0.000 0.018 -1.56e-11 -8.69e-10

Table 3: Computed Parameters From Radio Dataset Without Error

relative error in the data [6]. As an illustration, suppose that A is non-singular matrix, z satisfies
Az = b, z̃ satisfies the perturbed data problem Ãz̃ = b̃ and ‖Ã−A‖‖A−1‖ < 1, then

‖z− z̃‖
‖z‖

≤ κ (A)(
1− ‖Ã−A‖‖A−1‖

) (‖b− b̃‖
‖b‖

+
‖A− Ã‖
‖A‖

)
(20)

where κ (A) = ‖A‖ · ‖A−1‖ is defined to be the condition number of the matrix A. In practical
applications, only perturbed data problems are actually solved due to the errors in the collected data
or conversion to finite precision arithmetic. Even if the collected data were perfect, i.e. ‖b−b̃‖ = 0,
perturbation of the system given by ‖A−Ã‖ could still produce an error. The condition number for
perfectly conditioned systems is 1, hence the relative error in the computed solution is no greater
than the error in the data. As the condition number of a matrix grows, the error in the computed
solution may increase proportionally. A general rule of thumb says that for κ (A) = 10k, a loss of
k digits of accuracy is possible. For matrices that are singular, A−1 does not exist and no exact
solution to the system exists, thus the condition number is taken to be κ (A) = ∞. The matrix
condition number concept can be extended to matrices that are either singular or non-square. In
these cases, the pseudoinverse is used to solve the system in a least squares sense and the generalized
condition number is given as κ (A) = ‖A‖ · ‖A†‖ in [7] or equivalently as

κ (A) =
σ1
σr

8

Presented at the 2016 ICEAA Professional Development & Training Workshop - www.iceaaonline.com/atlanta2016



where σ1 and σr are the largest and smallest non-zero singular values of A.
The condition number of the regression matrices are useful for detecting and understanding any

multicollinearity that may be present in the dependent variable datasets and model specification.
In Figure 3, we plot the condition number of the error function Jacobian for each iteration. The
condition number of the final iteration Jacobian is around 1,200, however the initial iteration
condition number is over 30,000 indicating that the initial parameter vector guess produced an
ill-conditioned system. Ultimately, the method does produce sufficiently close estimates of the
parameters.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Iteration number

0

5000

10000

15000

20000

25000

30000

35000

Figure 3: Jacobian Condition Number by Iteration

In Table 2, the Noisy Cost data includes an error term randomly sampled from a Normal
distribution. In Table 4, the initial guess and final computed parameter values are shown. Figure 4
shows the parameter values over all iterations and Figure 5 shows the parameter differences between
iterations. Again, after approximately 20 iterations the computed parameter values do not change
much.

Parameter Initial Value Final Value Final Error Relative Errors

β0 0.010 0.055 5.49e-03 9.14e-02

β1 0.000 0.032 -2.39e-03 7.96e-02

β2 0.010 0.019 1.30e-03 6.51e-02

β3 -1.000 -3.280 -2.20e-01 6.29e-02

β4 0.000 0.022 -3.63e-03 2.01e-01

Table 4: Computed Parameters From Radio Dataset With Error

In Figure 6, the condition number of the error function Jacobian for each iteration is plot-
ted. The condition number of the Jacobian matrix iterates is similar to the perfect data case.
Interestingly, the erroneous cost data leads to a set of computed parameters that actually lower
the condition number of the Jacobian evaluations. Due to the errors in the cost data, the final
parameters have a non-negligible difference from the true parameters. Specifically, the escalation
parameter has the largest overall error, about 20% compared to the true parameter value.
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Figure 4: Computed Parameter Values by Iteration
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Figure 5: Computed Parameter Difference by Iteration
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Figure 6: Jacobian Condition Number by Iteration

In Table 5, the degree of linear dependence of the parameters can be seen by examining the
parameter correlation matrix. The parameters β0, β1, β2 for this problem are coefficients for the
Weight, Power and Frequency characteristics respectively and β3 is the intercept coefficient for the
linear part of the model. The escalation parameter does exhibit a strong correlation with some
of the other parameters, but not unreasonably high. It is worth noting here that eigenvalues of
the parameter correlation matrix are related to the singular values that determine the condition
number of the linear system. Therefore, if the parameters are very highly linearly correlated, the
effect can be observed in a very high condition number of the system.

β0 β1 β2 β3 β4
β0 1.000

β1 0.757 1.000

β2 0.259 0.102 1.000

β3 -0.956 -0.777 -0.421 1.000

β4 -0.856 -0.821 -0.316 0.805 1.000

Table 5: Parameter Correlation Matrix for Radio Dataset With Error
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4 Cost Improvement Curve Example

In this section, a CER for a cost improvement curve problem is analyzed. The Average Unit Cost
(AUC) for a production lot of missiles using unit theory learning with rate is given by

AUC = β0

((
L+ 1

2

)β1+1 −
(
F − 1

2

)β1+1

β1 + 1

)
· (L− (F − 1))β2−1 · (1 + β3)

year (21)

where F is the cumulative number of the first unit in the lot and L is the cumulative number of
the last unit in the lot. The parameter value β0 is usually called the T1, the theoretical first unit
cost. The parameters β1 and β2 are exponents corresponding to the learning and rate curve slopes
respectively. The β3 term is the escalation parameter.

Unlike the previous airborne radio example problem, a cost improvement curve problem gen-
erally uses a collection of data from a single program from distinct points in time. In contrast to
the learning parameter, which models how prices decrease over time due to production efficiencies,
the escalation parameter models how prices increase over time due to market and currency effects.
Under certain production profiles, the regression analysis may not be able to discriminate between
the influences of each parameter. Given a relatively flat pricing curve, this could lead to either
a steep learning curve coupled with a higher escalation rate or a flatter learning curve with low
escalation parameters. In either case, the system Jacobian condition number and the parameter
correlation matrix can identify potential issues such as these.

As in the previous example, a multiplicative error is assumed and nonlinear regression is used
to determine the parameter values.

4.1 Parameter solution development

The derivation of the nonlinear regression solution method is similar to the previous example. Due
to the multiplicative error terms and through the use of the chain rule, the partial derivatives of
the error function are based on the partial derivatives of the CER (14). From the definition of the
CER (21), we have the list of partial derivatives as

∂

∂β0
f (x,β) =

((
L+ 1

2

)β1+1 −
(
F − 1

2

)β1+1

β1 + 1

)
· (L− (F − 1))β2−1 · (1 + β3)

year (22)

∂

∂β1
f (x,β) = β0

((
L+ 1

2

)β1+1 · ln
(
L+ 1

2

)
−
(
F − 1

2

)β1+1 · ln
(
F − 1

2

)
β1 + 1

−
(
L+ 1

2

)β1+1 −
(
F − 1

2

)β1+1

(β1 + 1)2

)
· (L− (F − 1))β2−1 · (1 + β3)

year (23)

∂

∂β2
f (x,β) = β0

((
L+ 1

2

)β1+1 −
(
F − 1

2

)β1+1

β1 + 1

)
· (L− (F − 1))β2−1 · ln (L− (F − 1)) · (1 + β3)

year

(24)
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∂

∂β3
f (x,β) = β0

((
L+ 1

2

)β1+1 −
(
F − 1

2

)β1+1

β1 + 1

)
· (L− (F − 1))β2−1 · (1 + β3)

year−1 · year (25)

Now with any parameter vector β(k), the partial derivatives of the CER (22)-(25) and (14), a
new parameter vector β(k+1) can be computed from (11).

4.2 Verification and Test

The independent variable data in this application is all notional. Perfect data was generated using
the parameter values listed in Table 6 and the complete data set is shown in Table 7. Multiplicative
errors were randomly sampled from a normal distribution with µ = 0 and σ = 5%.

Parameter Value

β0 100

β1 −0.120

β2 −0.201

β3 0.018

Table 6: True Cost Improvement Curve Dataset Parameters

Lot F L Yr True Cost Err % Noisy Cost

1 6 15 0 47.71 -3.2% 46.18

2 16 35 1 37.91 2.0% 38.66

3 36 85 2 28.95 -2.4% 28.24

4 86 185 3 23.25 -7.4% 21.53

5 186 385 4 18.82 3.9% 19.55

6 386 585 5 17.94 5.1% 18.87

7 586 785 6 17.51 -4.5% 16.72

8 786 985 7 17.28 4.0% 17.98

9 986 1185 8 17.16 0.2% 17.21

10 1186 1385 9 17.12 2.4% 17.53

Table 7: Cost Improvement Curve Example Dataset

In Table 8, the list of initial and final values are shown. The final solution was obtained after 75
iterations. Figure 7 shows the parameter values over all iterations and Figure 8 shows the parameter
differences between iterations. From these plots, it is evident that after about 10 iterations the
parameter values are close to the final values and close to the true parameters.

Parameter Initial Value Final Value Final Error Relative Errors

β0 50 100 -8.29e-09 8.29e-11

β1 -0.152 -0.120 1.03e-10 8.59e-10

β2 -0.152 -0.201 -9.38e-11 4.67e-10

β3 0 0.018 -1.48e-11 8.24e-10

Table 8: Computed Parameters From Cost Improvement Curve Dataset Without Error

In Figure 9, the condition number of the error function Jacobian for each iteration is plotted.
The condition number of the final iteration Jacobian is around 7,600, however the initial iteration
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Figure 7: Computed Parameter Values by Iteration
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Figure 8: Computed Parameter Difference by Iteration
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condition number is only about 4,000 indicating that the initial parameter vector guess produced
a better conditioned system. Still, the method produces sufficiently close estimates of the true
parameters.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Iteration number
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6500

7000

7500

8000

Figure 9: Jacobian Condition Number by Iteration

In Table 9, the initial guess and final computed parameter values are shown when using the
Noisy Cost data. Figure 10 shows the parameter values over all iterations and Figure 11 shows the
parameter differences between iterations. Again, after about 10 iterations the computed parameter
values do not change substantially.

In Figure 12, the condition number of the error function Jacobian for each iteration is plotted.
The condition number of the initial iteration condition number is around 4,000 and final iteration
Jacobian is around 7,300. Due to the multiplicative error term (14), the Jacobian and consequently
the condition number depend on the data set. Thus, while the condition numbers are similar
between the perfect data problem and the data set with error, they are not exactly the same.
Due to the errors in the cost data and the conditioning, the final parameters have a non-negligible
difference. Specifically, the escalation parameter has the largest overall error, about 24% compared
to the true parameter value.

Parameter Initial Value Final Value Final Error Relative Errors

β0 50 95.05 4.95e+00 4.95e-02

β1 -0.152 -0.096 -2.48e-02 2.06e-01

β2 -0.152 -0.214 1.35e-02 6.70e-02

β3 0 0.014 4.37e-03 2.43e-01

Table 9: Computed Parameters From Cost Improvement Curve Dataset With Error

In Table 10, the final parameter correlation matrix is shown. Here, there is a very strong
correlation that exists between the learning and rate curve exponent parameters and between the
learning, rate and escalation parameters.

It is worth noting, when using the perfect data the correlation matrix is almost exactly the
same as the parameter correlation matrix when using the noisy cost data. The nonlinear regression
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Figure 10: Computed Parameter Values by Iteration
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Figure 11: Computed Parameter Difference by Iteration
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Figure 12: Jacobian Condition Number by Iteration

β0 β1 β2 β3
β0 1.00

β1 -0.726 1.00

β2 0.558 -0.973 1.00

β3 0.807 -0.978 0.912 1.00

Table 10: Parameter Correlation Matrix for Cost Improvement Curve Dataset With Error

in that case computes parameters that are very close to the true values. When the data with
error is used, the nonlinear regression computes parameters with up to 25% relative error. This
is considerably better than the worst case error bound provided by the condition number of over
700, 000% error. On the other hand, there are trivial examples of systems where the relative error
of computed examples is equal to the condition number upper bound.

5 Conclusions

5.1 Summary of Results

The objective of this paper is to highlight the critical normalization step of the analysis process. In
many cost estimating applications, prior to analysis, the data are normalized using general factors
such as inflation or escalation indices. These normalization factors are used to homogenize the data,
but can actually introduce additional errors into the data set if the factors are inappropriate for
the specific data. By augmenting the model with additional parameters, the appropriate specific
factors may be inferred from the data itself.

To investigate this hypothesis two typical CERs have been modified to include an escalation
term. First, the model solution approach using nonlinear regression was developed. Next, using
notional data, the overall numerical conditioning was analyzed when using both perfect data and
data with errors. The conditioning is a measure of the multicollinearity of the independent variables,
and in both applications is significantly higher than the rule of thumb warning value of 30. Despite
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this, in both CER applications the method converges to the correct parameters when using perfect
data. When error is present in the data, the results are usable even though they were not perfect.

An additional benefit comes from solving for the normalization factors from the data set. The
analysis process can provide information regarding not just the estimated normalization param-
eter value but also its distribution and relationship to other parameter values. This diagnostic
information can aid in quantifying the uncertainty of any prediction made from resulting models.

5.2 Future Work

While this paper does not introduce new theory but rather focuses on a potentially uncommon
application of existing theory, there still remains many potential topics for future research.

As stated previously, there is considerable discussion regarding the “right” set of economic
normalization indices for any particular commodity within the DoD. With larger historical data
sets, analysis can be accomplished using the approach presented here to determine commodity
specific normalization rates.

Additionally, since regression analysis provides information about the distribution of the pa-
rameters in addition to expected values, further research could also be focused on characterizing
the impact of the overall model conditioning to the size of the joint confidence regions for model
parameters for specified confidence levels. Simple heuristics or ‘rules of thumb’ could be identified
that would improve an analysts ability to make selections between various model options.
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