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ABSTRACT 
This paper develops the algorithm to calculate the predicted residual sum of squares (PRESS) and 
predicted R2 statistics when deriving nonlinear equations, including the Minimum-Unbiased-
Percent Error (MUPE) cost estimating relationships (CER).  
PRESS is a well-known “leave-one-out” cross-validation statistic. Another related statistic is the 
Predicted R2 that is defined as the fraction of the variation in the dependent variable explained by 
the “leave-one-out” model. These two statistics are commonly used in regression analysis to 
determine (1) how well the model predicts for new observations and (2) if the model’s R2 is 
inflated by including more independent variables than necessary. Predicted R2 is more useful than 
Adjusted R2 when measuring the model’s predictive power because it is calculated using 
observations not included in model building. However, many statistical packages only provide the 
PRESS and Predicted R2 statistics for ordinary least squares (OLS). This paper develops a method 
to approximate these two cross-validation statistics for nonlinear regression such as MUPE and 
demonstrates their value in practical applications. 

PURPOSE 
The objectives of this paper are twofold. First, explain the importance of using the Predicted 
residual sum of squares (PRESS) and Predicted R2 statistics in regression analysis. Although 
these two statistics are commonly used in regression analysis, they are seldom applied in the cost 
analysis community when evaluating the usefulness of a CER. This paper advocates the concept 
of cross-validation and recommends using PRESS and Predicted R2 for cost analysis. 
Second, many commercial statistical packages only provide the PRESS and Predicted R2 
statistics for linear and log-linear models. These two statistics are not readily available for 
nonlinear equations, such as MUPE or Minimum-Percentage Error Regression under Zero-
Percentage Bias (ZMPE) CER. It would be very helpful to model builders if these two cross-
validation statistics are available for nonlinear regression, which can be used to evaluate various 
fitted equations, including MUPE.  
This paper investigates the possibilities to approximate the PRESS statistic for nonlinear 
equations using a single regression method for three different error terms, additive, MUPE, and 
log error terms. Although we can calculate PRESS directly by definition for a nonlinear 
equation, we should avoid running nonlinear regression multiple times. This is because (1) the 
computation process is extremely tedious, (2) one or more of the nonlinear regression runs may 
not converge, and (3) each run can be easily trapped in local minima. This paper proposes a 
single regression approach to derive the solution efficiently. The following topics will be 
discussed: 

• Introduction

• Additive and Multiplicative Error Models

• Calculate PRESS for Linear Models

• Use of PRESS and Predicted R2

• Algorithm
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• Example Section for Validation 

• Conclusions 

INTRODUCTION 

PRESS, a well-known “leave-one-out” (LOO) statistic, is commonly used in regression analysis 
for cross-validation. PRESS evaluates the fit of a specific model to a given data set by (1) 
systematically removing each observation from the data set, (2) refitting the equation, and (3) 
computing the square of the residual for the removed data point. The smaller the PRESS statistic, 
the better the model's predictive capability. 
 
Definition of PRESS 
The PRESS statistic is defined as the sum of the squares of all the residuals such that the 
predicted value is calculated for the omitted observation in each refitted regression model (see 
Allen, 1974). In mathematical terms, it is given by 

∑
=

−−=
n

i
iiii yywPRESS

1

2
, )ˆ(  (1) 

where: 
n = the sample size 
𝑤𝑤𝑖𝑖  = the weighting factor for the ith observation  
𝑦𝑦𝑖𝑖 = the ith observation 
𝑦𝑦�𝑖𝑖,−𝑖𝑖 = the ith predicted value from the equation fitted without the ith observation  

Each residual in the PRESS statistic is commonly named the PRESS residual or LOO residual: 

niforyyresidualPRESSith iii ,...,1ˆ , =−= −  (2) 

The PRESS statistic can be used to evaluate a number of fitted equations for the same data set, 
with the lowest value of PRESS indicating the best predicative power. CERs that are over-fitted 
may tend to produce small residuals for observations included in the curve-fitting process but 
large residuals for observations that are excluded.  
 
Definition of Predicted R2 

PRESS, calculated in unit space, is an absolute measure. Using PRESS alone, however, analysts 
do not really know whether this PRESS measure calculated for a given model is good or bad (or 
how bad it is). The Predicted R2 statistic captures the predictive power of the model and puts 
PRESS in perspective: 

Predicted R2 = 1 – PRESS/SST (3) 
where SST is the total sum of squares of the dependent variable. Based upon Equations 1 and 3, 
the larger the Predicted R2, the more favorable the model becomes. In addition, Predicted R2 is 
more useful than Adjusted R2 to test the robustness of a model because this statistic is calculated 
using observations not included in the regression. 
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ADDITIVE AND MULTIPLICATIVE ERROR MODELS 
Both additive and multiplicative error models are briefly described below before explaining the 
math formula to compute the PRESS statistic. 
 
Additive Error Model 
An additive error model is generally stated as follows: 

𝑦𝑦𝑖𝑖 = 𝑓𝑓(𝐱𝐱𝑖𝑖,𝛃𝛃) + 𝜖𝜖𝑖𝑖 = 𝑓𝑓i + 𝜖𝜖𝑖𝑖    (𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … ,𝑛𝑛) (4) 
where: 
 yi = the observed dependent variable of the ith data point, i = 1 to n 
 f (xi,β) = fi = the value of the hypothesized equation at the ith data point 
 xi = the ith data vector of the independent variables 

β = the vector of unknown parameters to be estimated by the regression equation 
εi = the error term with a mean of 0 and variance σ2 (assumed to be independent of 

the cost drivers)   
 n = the sample size 
The corresponding standard error of estimate for an additive CER is commonly termed the 
standard error of estimate (SEE) or CER’s standard error: 

∑
=

−−=
n

i
ii pnyySEE

1

2 )/()ˆ(  (5) 

where iŷ  is used to denote the predicted value of the ith data point and p is the total number of 
estimated parameters.  Based upon Equation 4, the error distribution of the dependent variable is 
assumed to be the same across the entire data range regardless of the size of the dependent variable 
(e.g., cost). This is not a realistic assumption in cost estimating, especially when the cost elements 
are approaching the upper or the lower end of the data range. 
 
Multiplicative Error Model 
Multiplicative error terms are preferred in the cost analysis field because the error of an individual 
cost observation is generally proportional to the magnitude of the hypothetical equation rather than 
some fixed amount. In such cases, it is appropriate to hypothesize a multiplicative error term for a 
CER. A multiplicative error model is generally specified as 

iii fy ε*),( βx=  = fi * εi     for i = 1, …, n (6) 

(The definitions of yi, f (xi,β), xi, β and εi are the same as given in Equation 4). Unlike the additive 
error model, the standard deviation of the dependent variable in Equation 6 is proportional to the 
level of the hypothetical equation rather than some fixed amount across the entire data range. There 
are three popular methods to fit multiplicative error models: the Log-Error Model, the Minimum-
Unbiased-Percentage-Error (MUPE) and Minimum-Percentage Error Regression under Zero-
Percentage Bias (ZMPE) methods.  
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Log-Error Model.  If the multiplicative error term (εi) in Equation 6 is further assumed to 
follow a log-normal distribution with a mean of zero and a variance of σ2 (in log space), then the 
error can be measured by the following: 

)),(ln()ln()ln( βx iiii fye −== ε  (7) 

where “ln” stands for the natural logarithm function.  The objective is then to minimize the sum of 
squared eis (i.e., (Σ(ln(εi))2).  The corresponding standard error of estimate for a log-error model is 
then given by 

∑
=

−−=
n

i
ii pnyySEE

1

2 )/())ˆln()(ln(  (8) 

If the transformed function is linear in log space, then OLS can be applied in log space to derive 
a solution for β. In this situation, the CER is termed a log space OLS equation (LOLS) or a log-
linear CER. If not, we need to apply a nonlinear regression technique to derive a solution. 

MUPE Method.  The general specifications of the MUPE and ZMPE methods are the 
same as given above (Equation 6), except that the error term is assumed to have a mean of one 
and variance, σ2.  Based upon this assumption of a multiplicative model, a generalized error term 
is defined by 

),(
),(

βx
βx

i

ii
i f

fy
e

−
=  (9) 

where ei now has a mean of 0 and variance σ2 (since ei given above becomes “εi – 1”). 
The difference between this percentage error (Equation 9) and the traditional percentage error is in 
the denominator, where predicted value instead of actual value is used as the baseline.  The 
objective of the MUPE method is to find the values of the parameter vector β that minimize the 
sum of squares due to error (SSE).  Instead of minimizing SSE in a single pass, the MUPE method 
solves for the hypothetical function, f (x,β), in the numerator separately from the function in the 
denominator through an iterative process: 

Minimize  ∑
= −





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
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kii

f
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1

2
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),(

βx
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where k is the iteration number and )ˆ,( 1−kif βx is the predicted value from the previous iteration. 

Based upon Equation 10, the weighting factor of each residual in the current iteration is equal to 
the reciprocal of the predicted value from the previous iteration. Since the denominator in Equation 
10 is kept fixed throughout each iteration, the MUPE technique turns out to be a weighted least 
squares (WLS) process with an additive error.  The final solution is derived when the change in the 
estimated parameters (β vector) between the current iteration and the previous iteration is within 
the analyst-specified tolerance limit. This optimization technique (Equation 10) is commonly 
referred to as Iteratively Reweighted Least Squares (IRLS; see Seber and Wild, 1989; Weisberg 
1985; Wedderburn 1974). The corresponding standard error of estimate for the MUPE CER is 
commonly termed multiplicative error or standard percent error (SPE): 
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∑
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Again, iŷ  is the predicted value in unit space for the ith data point and p is the total number of 
estimated parameters. The MUPE CER provides consistent estimates of the parameters and has 
zero proportional bias for all points in the data set.  See Hu (2001) or Hu and Sjovold (1994) for 
detailed descriptions of the MUPE method.  

ZMPE Method.  The ZMPE method is an alternative approach to minimize the sum of 
squared proportional errors directly in unit space. Mathematically, it is stated as follows: 

Minimize  ∑
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 (12) 

This alternative method is a “constrained” minimization process (see Book and Lao, 1999; Hu 
and Smith, 2007).  Both MUPE and ZMPE CERs have zero proportional bias for all the points in 
the data set, i.e., zero sample bias. 

CALCULATE PRESS FOR LINEAR MODELS 

The PRESS statistic can be calculated directly by its definition using Equation 1. However, the 
process can be very cumbersome as it requires refitting the regression equation many times.  For 
example, given a data set of 100 observations, analysts have to refit the regression equation 100 
times to compute the PRESS statistic using Equation 1. For linear models, however, there is an 
easy way to compute PRESS using a single regression instead of multiple regressions as given 
by the definition. The leverage value will be discussed first before explaining the simple formula 
to compute PRESS. 
 
Leverage Value 
In outlier analysis, the test statistic for an extreme value of the predictors is the leverage value 
(LV). The ith LV is, in fact, the ith diagonal element of the hat matrix H, and H is defined as  

WXWXXXVXXVXXH ')'(')'( 1111 −−−− ==  (13) 

where  
X = the design matrix of the predictors 
V = the variance/covariance matrix of the errors of the observations 
W = the weighting matrix (= V-1) 

This definition is generalized to the cases where the weights are not identical and/or the errors 
are correlated among the observations. If all the observations are not correlated, then the off-
diagonal elements of V will be zero and the weighting factor for the ith observation is simply the 
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reciprocal of the ith diagonal element of V. In this case, the LV of the ith observation (denoted by 
hii) is computed by   

')'( 1
iiiii wh xWXXx −=       for the ith observation (i = 1, …, n) (14) 

where  
𝑤𝑤𝑖𝑖  = the weighting factor for the ith observation  
xi = the ith driver vector, i.e., xi = (1, x1i, x2i, ..., xki) if intercept is to be estimated 
n = the total number of observations (i.e., the sample size) 

The purpose of using a weighting variable in the process is when some of the observations in the 
data set are less reliable than others. This means the variances of the data points are not all equal. 
When this occurs, a weighting variable is added to reflect the relative quality of each data point.  
Statistically, the weighting factors should be chosen inversely proportional to the magnitude of 
the relative variances of the observations. The larger the variance of the data point, the less 
reliable the data point becomes. (Note: the weighting variable is included in the computation of 
leverage values to cover the topic of WLS.) 
The hat matrix is very useful for outlier analysis. It can be used to construct the predictive values, 
standardized residual, Cook’s D statistic, and leverage value. The predicted value of Y (i.e., Ŷ) can 
be expressed using the hat matrix H: 

Ŷ = X β̂  = X(X’V-1X)-1X’V-1Y = HY (15) 

Therefore, the predicted value for the ith data point can be written as a linear combination of the 
n observations. Note that the LV depends only on the independent variables; it does not involve 
the dependent variable Y. If the ith LV is large, the observation yi has driver values that are far 
from the center of the database. This measure is used to identify if an observation has an unusual 
predictor value.  For a simple linear model (p = 2, V = I), the ith leverage value is given by ℎ𝑖𝑖𝑖𝑖 =
1/𝑛𝑛 + (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2/∑ (𝑥𝑥𝑘𝑘 − 𝑥̅𝑥)2𝑘𝑘 . 
 
Here is an important property of the leverage values. The sum of all the leverage values equals 
the total number of estimated parameters. 

∑
=

==
n

i
ii pHTraceh

1
)(  (16) 

where the term “Trace” stands for the sum of the diagonal elements of a square matrix and the 
letter p is used to denote the total number of estimated parameters, including the intercept. This 
implies that the average of the LVs is p/n for an OLS equation. Therefore, an observation is 
flagged to have an unusual value of the predictors if its leverage value is greater than 2p/n or 
3p/n. 
Leverage points might impact the goodness-of-fit measures for the regression equation.  For 
instance, the value of R2 may drop substantially when removing the leverage point. For further 
information, see Belsley, Kuh, & Welsch (1981) or Cook and Weisberg (1982). 
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Simple Formula Using Leverage Value 
For linear models, there is a much simpler way than Equation 1 to compute PRESS by a single 
regression equation using all the observations. It turns out that the PRESS residual for each 
observation is, in fact, the ordinary residual weighted by a function of the leverage value: 

ii

ii

i

ii
iii h

yy
w

yyyyresidualPRESSith
−
−

=
−

−
=−= −− 1

ˆ
))(1(

)ˆ()ˆ( 1, '
ii xWXX'x

   (i = 1,…, n) (17) 

where: 
𝑦𝑦𝑖𝑖 = the ith observation 

𝑦𝑦�𝑖𝑖,−𝑖𝑖 = the ith predicted value from the equation fitted without the ith observation  

𝑦𝑦�𝑖𝑖 = the ith predicted value using the equation fitted by all the observations 
The definitions of wi, hii, W, X, and xi are described above. For a proof of Equation 17, see 
Montgomery and Peck, 1992. 
According to Equation 17, the larger the leverage value (hii), the larger (in absolute term) the ith 
PRESS residual becomes. The observations with large PRESS residuals are generally high 
influential points. Furthermore, a large difference between the ordinary and PRESS residuals 
usually indicates a data point where the model may fit it well, but a model built without that data 
point may predict it poorly. The proof of Equation 17 is based upon a useful identity found in 
matrix inverse operation: 

11
1

11

1
)( −−

−
−−

+
−=+ Zbb'Z

bZb'
Zbb'Z

c
cc  (18) 

where Z is a p-by-p nonsingular matrix, b is a p-by-1 vector, and c is a scalar. See Morrison 
(1976) or Bartlett (1951) for a detailed derivation of Equation 18.  
Using Equation 17, the PRESS statistic can be computed by 

∑∑
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− −
−

=−=
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yywyywPRESS
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1

2
, )1(

)ˆ()ˆ(  (19) 

Therefore, the PRESS statistic is derived by a single regression, which saves a lot of computing 
time and effort. Note that the weighting factors (wi’s) are set to be one if the variances of the 
errors are the same. 

USE OF PRESS AND PREDICTED R2 
Weight-Based CER 
An illustrative example is given below to explain the usefulness of the PRESS and Predicted R2 
measures in regression analysis. Table 1 is a hypothetical data set where the weight of a black 
box is used to predict its cost. The weighting factors are assigned arbitrarily for demonstration 
purposes.  
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Table 1: Black Box Cost and Weight with Weighting Variable  
Data Point Cost $K Weight in lbs WF (w) 
Obs 1 538.84 6.83 1.00 
Obs 2 363.77 5.16 1.00 
Obs 3 405.83 9.17 1.00 
Obs 4 549.91 8.53 1.00 
Obs 5 619.03 10.06 1.00 
Obs 6 660.29 11.15 0.85 
Obs 7 470.80 5.92 1.00 
Obs 8 668.95 11.10 1.00 
Obs 9 385.21 4.33 1.00 
Obs 10 583.21 7.62 1.00 
Obs 11 337.02 4.37 1.00 
Obs 12 555.82 13.94 0.75 
Obs 13 542.05 9.92 1.00 
Obs 14 707.17 14.02 1.00 
Obs 15 660.15 9.18 1.00 
Obs 16 315.45 2.32 1.00 
Obs 17 656.81 10.59 0.62 
Obs 18 1701.28 25.12 1.00 

(Note: WF, denoted by w in the formulas, is the weighting factor for each observation.) 

Two weight-based CERs are used to illustrate the usefulness of the PRESS and predicted R2 
statistics in regression analysis. One CER is a weighted linear model; the other is a weighted 
log-linear model. Both examples use the same data set as given in Table 1.   

Example 1: A linear CER is derived using an OLS regression model with the weighting 
variable, WF: Cost = 78.06 + 55.51(Weight). Its adjusted R2 is 84.82%. Table 2 is the respective 
outlier analysis table: 

Table 2: Outlier Analysis Table (for a weighted linear CER) 

Obs # Cost 
Predicted Y 

Value Residual 
Std. 

Residual Leverage 
Cook's 

Distance 
1 538.8400 457.1922 81.647777 0.719363 0.072174 0.020127 
2 363.7700 364.4906 -0.720644 -0.006438 0.097687 0.000002 
3 405.8300 587.0855 -181.255453 -1.584996 0.058111 0.077497 
4 549.9100 551.5591 -1.649100 -0.014431 0.059443 0.000007 
5 619.0300 636.4893 -17.459289 -0.152779 0.059406 0.000737 
6 660.2900 696.9951 -36.705110 -0.295601 0.056084 0.002596 
7 470.8000 406.6782 64.121811 0.568733 0.084478 0.014923 
8 668.9500 694.2196 -25.269613 -0.221850 0.065559 0.001727 
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9 385.2100 318.4174 66.792596 0.602606 0.115163 0.023631 
10 583.2100 501.0451 82.164934 0.720981 0.064596 0.017948 
11 337.0200 320.6378 16.382199 0.147725 0.114248 0.001407 
12 555.8200 851.8678 -296.047807 -2.269557 0.080871 0.226605 
13 542.0500 628.7179 -86.667899 -0.758213 0.058960 0.018010 
14 707.1700 856.3086 -149.138601 -1.341295 0.109559 0.110678 
15 660.1500 587.6406 72.509448 0.634060 0.058105 0.012401 
16 315.4500 206.8425 108.607550 1.012128 0.170678 0.105413 
17 656.8100 665.9096 -9.099550 -0.062009 0.038389 0.000077 
18 1701.2800 1472.4688 228.811204 3.220733 0.636488 9.081357 

 
Based upon Equation 19, the PRESS statistic is given by 
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The corresponding predicted R2 is then 
Predicted R2 = 1 – PRESS/SST = 1 – 599,480.81/1,555,385 = 61.46% 

where 𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ (𝑤𝑤𝑖𝑖)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑤𝑤)2𝑖𝑖 = ∑ (𝑤𝑤𝑖𝑖)(𝑦𝑦𝑖𝑖 − 594.31)2𝑖𝑖  = 1,555,385 and 𝑦𝑦�𝑤𝑤 (=594.31) is the 
weighted mean of the dependent variable. Note that the predicted R2 (61.46%) is much smaller 
than the adjusted R2 (84.82%) for this equation, which indicates that the model does not predict 
new observations as well as it fits the existing data.  
Listed below is a Goodness-of-Fit Statistics table, including PRESS and Predicted R2: 
 

Table 3: Goodness-of-Fit Statistics (for a weighted linear CER) 
Std Error 

(SE) R-Squared 
R-Squared 

(Adj) 
Pearson's 
Corr Coef PRESS 

R-Squared 
(Predicted) 

117.8320 85.72% 84.82% 0.9258 599,480.8 61.46% 
 

Example 2: A log-linear CER is generated using an OLS regression model in log space 
with the weighting variable, WF: Cost = 146.99(Weight0.6268). Its adjusted R2 is 76.35%. Table 4 
is the respective outlier analysis table: 

Table 4: Outlier Analysis Table (for a weighted log-linear CER) 

Obs # Ln(Cost) 
Predicted Y 

Value 
Residual 
(𝒚𝒚𝒊𝒊 − 𝒚𝒚�𝒊𝒊) 

Std. 
Residual 

Leverage 
(𝒉𝒉𝒊𝒊𝒊𝒊) 

Cook's 
Distance 

1 6.2894 6.1946 0.0948 0.5323 0.0644 0.0097 
2 5.8965 6.0188 -0.1223 -0.7004 0.1010 0.0276 
3 6.0059 6.3792 -0.3733 -2.0914 0.0611 0.1422 
4 6.3098 6.3339 -0.0241 -0.1351 0.0585 0.0006 
5 6.4282 6.4373 -0.0091 -0.0514 0.0674 0.0001 
6 6.4927 6.5018 -0.0091 -0.0471 0.0669 0.0001 
7 6.1544 6.1050 0.0495 0.2798 0.0790 0.0034 
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8 6.5057 6.4990 0.0068 0.0382 0.0781 0.0001 
9 5.9538 5.9089 0.0449 0.2627 0.1404 0.0056 
10 6.3685 6.2632 0.1054 0.5896 0.0590 0.0109 
11 5.8201 5.9147 -0.0946 -0.5529 0.1380 0.0245 
12 6.3204 6.6417 -0.3213 -1.5824 0.0887 0.1218 
13 6.2954 6.4285 -0.1332 -0.7481 0.0662 0.0199 
14 6.5613 6.6453 -0.0841 -0.4863 0.1195 0.0161 
15 6.4925 6.3799 0.1125 0.6306 0.0611 0.0129 
16 5.7540 5.5178 0.2362 1.6338 0.3841 0.8325 
17 6.4874 6.4695 0.0179 0.0784 0.0450 0.0001 
18 7.4391 7.0108 0.4283 2.8229 0.3216 1.8886 

Based upon Equation 19, the PRESS statistic is given by 
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)Residual(  = 0.9008 

The corresponding predicted R2 is then 
Predicted R2 = 1 – PRESS/SST = 1 – 0.9008/2.4387 = 63.06% 

where 𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ (𝑤𝑤𝑖𝑖)(ln(𝑦𝑦𝑖𝑖) − 𝑦𝑦�𝑤𝑤)2𝑖𝑖 = 2.4387 and 𝑦𝑦�𝑤𝑤 = 6.3041 are both evaluated in log space. 
Note that the predicted R2 (63.06%) is 13.3% less than the adjusted R2 (76.35%) for this 
equation, which indicates that the model does not predict new observations as well as it fits the 
existing data.  
Table 5 lists Goodness-of-Fit Statistics, including PRESS and Predicted R2: 

Table 5: Goodness-of-Fit Statistics (for a weighted log-linear CER) 
Std Error 

(SE) R-Squared 
R-Squared 

(Adj) 
Pearson's 
Corr Coef PRESS 

R-Squared 
(Predicted) 

0.1842 77.74% 76.35% 0.8817 0.9008 63.06% 

ALGORITHM 
The goal of this paper is to approximate the PRESS statistic for nonlinear CERs using a single 
regression instead of running multiple regression equations. Three error terms, additive, log-error, 
and MUPE, will be validated for this approach.  
A nonlinear model with an additive error term is generally stated as follows (see Draper and 
Smith, 1981 or Morrison, 1983): 

y = f (X,θ) + ε  (20) 
where: 

y is a vector of the dependent variable (e.g., observed cost); i.e., y = (y1, y2, …, yn) and n 
is the sample size 
f (X,θ) is a nonlinear function of X and θ  
X is a set of n vectors of the independent variables; i.e., )...,,( n21 xxxX ,=  
θ is a set of p unknown parameters, i.e., )'θ...,,θ,θ( p21=θ  
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ε is the error term vector with mean of 0 and variance Vσ2 (ε is assumed to be 
independent of the cost drivers)   

 
For each data point, it can be written as follows: 

iiii ),( εfεfyi +=+= θx for i = 1, 2, …, n (21) 

where: 
yi = the dependent variable of the ith data point (i = 1, 2,…, n); n is the sample size 
f i = f (xi,θ) = the value of the hypothesized equation for the ith data point 

)x...,,x,x( iki2i1i =x , which is a set of k observed independent variables for data point i  
εi is the error term for the ith data point with a mean of 0 and a variance σi

2 

The Taylor series expansion of the nonlinear function f at a given point θο is given by 
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where 
0θθθ =∂

∂ if denotes the partial derivatives of ),( i θxf with respect to θ, evaluated at the point 

θο. Note that the above approximation ignores the second and higher order terms of partial 
derivatives. 
 
The above hypothesized model can be further simplified using matrix notations: 

εθθZyεθθZy +−≅−⇒+−+≅ )()( 0
0

00
0 ff o  (23) 

where: 
f o is a n-by-1 vector of the hypothesized equation evaluated at the point θ0 and each data 
point; i.e., f o = )',...,,(),( 00

2
0

1
0

nffff =θX  
Z0 is an n-by-p matrix of the partial derivatives of f (X,θ) with respect to θ, evaluated at the 
point θο and each observation; namely, 
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where zi is the ith row of Zo, i.e., i
if z
θ θθ

=
∂
∂

= 0

. Note that the design matrix does not exist for 

nonlinear models. To approximate the denominator of the PRESS residual, the partial derivative 
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matrix Zo is used to mimic OLS’s design matrix X. Therefore, the PRESS residual for the ith data 
point can be estimated by 

)1(
)ˆ(

)')(1(
)ˆ()ˆ( 1,

i

ii

iii

ii
iii H

yy
w

yyyyresidualPRESSith
−
−

=
−

−
≅−= −− zWZZz 0

'
0

   (i = 1,.., n) (25) 

where W and wi are defined above (see Equations 13 and 14) and Hi is given by  

')( 1
iiii wH zWZZz 0

'
0

−=      (for i = 1,…, n) (26) 

The statistic Hi (Equation 26) is used to estimate the leverage value for the ith data point, while 
the matrix Zo is used as a proxy for OLS’s design matrix X.  
Given Equation 25, the PRESS statistic for a nonlinear model is then approximated as  
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1

2
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)ˆ()ˆ(  (27) 

where Hi is used to estimate the leverage value of the ith data point for a nonlinear model. 
The partial derivative matrix Zo is widely used for nonlinear analysis—it is the basis for deriving 
the standard errors of the estimated parameters, the confidence intervals of the mean values, etc. 
However, the validity of using Equation 25 to approximate the PRESS residual depends upon 
whether the linearized form is a good approximation of the true model. Nonetheless, Equation 
25, as well as Equation 27, is very useful for cross-validation. 

EXAMPLE SECTION FOR VALIDATION 
This paper developed a single regression method to approximate the PRESS residual for 
nonlinear equations. Three error terms, additive, log-error, and MUPE, will be validated for 
developing PRESS using a single regression. A cost vs. weight sample data set is also used to 
validate the approximated PRESS residual for a nonlinear CER. Table 6 is a hypothetical data set 
of generic satellite electronic units. Again, the weighting factors are assigned arbitrarily for 
demonstration purposes. 

Table 6: Cost and Weight of Generic Satellite Electronic Units 
Data Point Cost $K Weight in lbs WF (w) 
Obs 1 3106.64 77.05 1.00 
Obs 2 29166.32 1236.77 0.62 
Obs 3 4820.48 232.14 1.00 
Obs 4 34111.22 863.36 1.00 
Obs 5 6387.04 224.40 1.00 
Obs 6 20871.60 720.44 0.75 
Obs 7 28621.92 959.33 1.00 
Obs 8 19796.80 332.50 1.00 
Obs 9 7526.40 269.42 0.50 
Obs 10 6002.24 123.84 1.00 
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Data Point Cost $K Weight in lbs WF (w) 
Obs 11 11668.48 316.15 1.00 
Obs 12 6329.12 59.77 1.00 
Obs 13 4683.20 59.17 1.00 
Obs 14 21068.72 369.12 1.00 

(Note: WF, denoted by w in the formulas, is the weighting factor for each observation.) 
The SST for the dependent variable y (cost) is given by 

𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ (𝑤𝑤𝑖𝑖)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑤𝑤)2 = 1,375,549,914.28𝑛𝑛
𝑖𝑖=1  (28) 

where wi’s are the weighting factors and 𝑦𝑦�𝑤𝑤 is a weighted mean of the cost variable: 

  𝑦𝑦�𝑤𝑤 = ∑ (𝑤𝑤𝑖𝑖 × 𝑦𝑦𝑖𝑖)/∑ 𝑤𝑤𝑖𝑖 = 14,304.26𝑖𝑖𝑖𝑖  (29) 

 
Additive Error CER: y = a(xb) + ε (E(ε) = 0, Var(ε) = Vσ2) 
A nonlinear weight-based CER is generated from this data set. Its error term is assumed to be 
additive; a weighting variable (WF) is also applied. The fitted equation is given below:  

Cost = 225.5949*Weight^0.70886 Adj. R2 = 82.4% (30) 
Table 7 compares the PRESS residuals approximated by a single regression (Equation 25) with 
those calculated by the direct approach using the LOO definition (Equation 2). 

 Table 7: Comparison of PRESS Residual between Single Regression and its Definition 
Data 
Point 

WF 
(w) 

Residual 
(𝒚𝒚𝒊𝒊 − 𝒚𝒚�𝒊𝒊) 

Hi 𝒚𝒚𝒊𝒊 − 𝒚𝒚�𝒊𝒊,−𝒊𝒊  
Single Regr 

𝒚𝒚𝒊𝒊 − 𝒚𝒚�𝒊𝒊,−𝒊𝒊  
LOO Def 

% 
Difference 

Obs 1 1.00 -1,800.10 0.08381 -1,964.77 -1,956.66 0.41% 
Obs 2 0.62 -5,936.22 0.38303 -9,621.64 -9,688.84 -0.69% 
Obs 3 1.00 -5,902.66 0.12094 -6,714.77 -6,660.69 0.81% 
Obs 4 1.00 6,903.81 0.22278 8,882.69 8,868.27 0.16% 
Obs 5 1.00 -4,081.41 0.12077 -4,642.04 -4,606.37 0.77% 
Obs 6 0.75 -3,060.16 0.11428 -3,455.01 -3,454.69 0.01% 
Obs 7 1.00 -696.20 0.29367 -985.66 -979.13 0.67% 
Obs 8 1.00 5,963.23 0.11769 6,758.65 6,742.03 0.25% 
Obs 9 0.50 -4,390.71 0.06033 -4,672.61 -4,656.59 0.34% 
Obs 10 1.00 -866.56 0.10543 -968.69 -962.24 0.67% 
Obs 11 1.00 -1,679.36 0.11862 -1,905.38 -1,893.06 0.65% 
Obs 12 1.00 2,230.74 0.07178 2,403.23 2,385.89 0.73% 
Obs 13 1.00 614.02 0.07131 661.17 657.43 0.57% 
Obs 14 1.00 6,171.70 0.11555 6,977.99 6,968.17 0.14% 
PRESS    332,790,557 331,656,343 0.34% 
Pred R2    75.81% 75.89% 0.1% 
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Here, the H column contains the diagonal elements of the nonlinear “hat” matrix and its ith 
element is given by Equation 26. Hence, the PRESS residual of the ith data point is approximated 
by (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)/(1 − 𝐻𝐻𝑖𝑖) using a single regression (Column 5). The last column of Table 7 
illustrates the percentage differences between the PRESS residuals calculated by the single 
regression method and direct approach. The percentage differences are all within 1%.  
The PRESS statistic calculated using the definition (Column 6) is given by  

343,656,331)ˆ(
1

2
,∑

=
− =−=

n

i
iiii yywPRESS  (31) 

The PRESS statistic calculated using a single regression approximation (Column 5) is given by 

( ) 557,790,332)1/()ˆ()ˆ(
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n

i
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The percent difference between these two PRESS statistics is 0.34%, which is well within one 
percent. The corresponding Predicted R2 measures are 75.81% and 75.89%, respectively. Below 
is a summary table: 

Table 8: Comparisons of PRESS and Predicted R2 for Cost = aWeightb + ε 
Statistics Single Regr LOO Definition % Difference 
PRESS 332,790,557 331,656,343 0.34% 
Predicted R2  75.81% 75.89% 0.1% 

 
where Predicted R2 = 1 – PRESS/SST (see Equation 3) and SST = 1,375,549,914. Table 8 shows 
that the single regression approach provides very good approximations of the PRESS and 
Predicted R2 statistics for this nonlinear power form equation. 

 
MUPE CER: y = a(xb)*ε 
With the same data set, the MUPE assumption is now applied to the power-form equation. Given 
below is the respective MUPE CER:   

Cost = 241.06*Weight^0.69115 Adj. R2 = 68.7% (33) 
As explained above, the MUPE technique turns out to be a WLS process with an additive error 
and the weighting factor for each data point is the square of the reciprocal of its predicted value. 
Therefore, we proceed using the same single regression process as the additive error case. The 
challenge for the MUPE case is that the weighting factors are not fixed in the individual leave-
one-out regression models. In other words, the weighting factors vary from one leave-one-out 
model to another. Consequently, using Equation 27 to derive PRESS for a MUPE CER may not 
be as good as the additive error case with fixed weighting factors.  
Table 9 compares MUPE’s PRESS residuals derived by a single regression with those calculated 
using the direct approach. Again, the ith PRESS residual in Column 4 is derived by a single 
regression approximation: (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)/(1 − 𝐻𝐻𝑖𝑖). 
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Table 9: Comparison of MUPE’s PRESS Residuals and Percentage Errors between Single 
Regression Method and Direct Approach 

Data 
Point 

Residual  
(𝒚𝒚𝒊𝒊 − 𝒚𝒚�𝒊𝒊) 

Hi 𝒚𝒚𝒊𝒊 − 𝒚𝒚�𝒊𝒊,−𝒊𝒊  
Single Regr 

𝒚𝒚𝒊𝒊 − 𝒚𝒚�𝒊𝒊,−𝒊𝒊  
LOO Def 

% Error 
Single Regr 

% Error 
LOO Def 

Obs 1 -1,748.13 0.19334 -2,167.11 -2,139.71 41% 41% 
Obs 2 -3,898.10 0.24316 -5,150.50 -5,049.08 15% 15% 
Obs 3 -5,583.84 0.07352 -6,026.96 -6,026.13 56% 56% 
Obs 4 8,319.85 0.17099 10,035.90 9,947.85 -42% -41% 
Obs 5 -3,776.26 0.07447 -4,080.09 -4,079.19 39% 39% 
Obs 6 -1,887.45 0.14205 -2,199.96 -2,185.35 10% 9% 
Obs 7 881.53 0.19013 1,088.48 1,075.85 -4% -4% 
Obs 8 6,459.69 0.07424 6,977.74 6,975.68 -54% -54% 
Obs 9 -4,005.93 0.07145 -4,314.18 -4,314.19 36% 36% 
Obs 10 -736.93 0.11922 -836.68 -833.13 12% 12% 
Obs 11 -1,211.84 0.07296 -1,307.22 -1,307.06 10% 10% 
Obs 12 2,255.86 0.24700 2,995.83 2,956.66 -90% -88% 
Obs 13 638.25 0.24933 850.24 835.49 -22% -22% 
Obs 14 6,732.88 0.07812 7,303.42 7,298.36 -53% -53% 
PRESS     242.9% 237.9% 
Pred R2     56.4% 57.3% 

 
As described above, the weighting factor (wi) for each data point is 1/(predicted value)2 for the 
MUPE CER. Therefore, MUPE’s PRESS statistic is the sum of all percentage errors (see 
Equation 34 below).  
As shown in Table 9, the individual PRESS percent error approximated by the single regression 
method closely follows its definition except for observation 12, which is off by two percent 
(columns in light blue). The individual PRESS residuals derived by the single regression are also 
very close to those calculated directly (columns in orange); the differences are all within 2%. 
The PRESS statistic for MUPE using the LOO definition (Column 7) is given by  

%9.237)(%
)ˆ(

)ˆ(
)ˆ('

1

2
)(

1
2

,

2
,

1

2
, ==

−
=−= ∑∑∑

== −

−

=
−

n

i
i

n

i ii

iii
n

i
iiii Error

y
yy

yywPRESSsMUPE  (34) 

where the predicted values (circled in Equation 34) are derived from the leave-one-out model to 
match the LOO definition. 
The PRESS statistic using the single regression approximation (Column 6) is given by 
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where the predicted value, 𝑦𝑦�𝑖𝑖,−𝑖𝑖∗ , is calculated as the actual cost minus the PRESS residual, to 
match the LOO definition.  
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The percent difference between these two MUPE’s PRESS statistics is 2.1%, which is still 
reasonably good. The respective Predicted R2 measures are calculated to be 56.4% and 57.3%. 
Below is a summary table: 

Table 10: Comparisons of MUPE’s PRESS and Predicted R2 for Cost = (aWeightb)ε 
Statistics Single Regr LOO Definition Difference % Difference 
PRESS 2.429 2.379 0.005 2.10% 
Predicted R2  56.4% 57.3% -0.9% -1.57% 

 
where Predicted R2 = 1 – PRESS/SST and SST = 5.56962. Table 10 demonstrates that the single 
regression approach provides very good approximations of the PRESS and Predicted R2 statistics 
for this power form MUPE equation.  
 
Log-Error CER: y = a(xb)*ε  (ε ∼ LN(0, Iσ2)) 
A power form weight-based CER is generated from this data set. Its error term is assumed to be 
multiplicative; a weighting variable (WF) is applied as in the additive case. The regression is 
done in log space and the fitted equation is given below:  

Cost = 200.1*Weight^0.7167 Adj. R2 = 76.7% (36) 
Table 11 compares the PRESS residuals approximated by a single regression (Equation 25) with 
those calculated by the direct approach (Equation 2). 

 Table 11: Comparison of PRESS Residual between Single Regression and Direct Approach 
Data 
Point 

WF 
(w) 

Residual 
ln(yi)– ln(ŷi) 

Hi ln(yi)– ln(ŷi,-i) 
Single Regr 

ln(yi)– ln(ŷi,-i) 
LOO Def % Diff 

Obs 1 1.00 -0.3711 0.19835 -0.4629 -0.4629 0% 
Obs 2 0.62 -0.1210 0.17465 -0.1466 -0.1466 0% 
Obs 3 1.00 -0.7222 0.07859 -0.7838 -0.7838 0% 
Obs 4 1.00 0.2932 0.19893 0.3660 0.3660 0% 
Obs 5 1.00 -0.4165 0.07927 -0.4523 -0.4523 0% 
Obs 6 0.75 -0.0683 0.12403 -0.0780 -0.0780 0% 
Obs 7 1.00 0.0422 0.22098 0.0542 0.0542 0% 
Obs 8 1.00 0.4330 0.08311 0.4722 0.4722 0% 
Obs 9 0.50 -0.3834 0.03893 -0.3989 -0.3989 0% 
Obs 10 1.00 -0.0526 0.12212 -0.0599 -0.0599 0% 
Obs 11 1.00 -0.0595 0.08118 -0.0648 -0.0648 0% 
Obs 12 1.00 0.5225 0.25448 0.7009 0.7009 0% 
Obs 13 1.00 0.2286 0.25693 0.3076 0.3076 0% 
Obs 14 1.00 0.4203 0.08843 0.4611 0.4611 0% 
PRESS    2.2969 2.2969 0% 
Pred R2    70.93% 70.93% 0% 
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(Note: SST = 7.9017 in this case.) 
The PRESS statistic derived by the LOO definition (Column 6) is given by  
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The PRESS statistic calculated using the approximation (Column 5) is given by 
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This case shows there is no difference between these two PRESS statistics or their respective 
predicted R2 measures. This is because the power-form equation becomes linear in log space and 
Equation 26 (based upon the partial derivative matrix Z0) precisely estimates the leverage values 
for the log-linear CER. A linear equation regressed in log space is also tested as an excursion; 
the differences between the single regression and direct method are also within 2%. 

CONCLUSIONS 
PRESS and Predicted R2 are useful cross-validation statistics. Use PRESS to evaluate the 
model's predictive power. The smaller the PRESS statistic, the better the model's predictive 
capability. 
PRESS is an absolute measure; predicted R2 puts PRESS in a relative scale. PRESS alone 
does not provide useful insight into the robustness of the regression model. Analysts do not really 
know whether the PRESS measure calculated for a particular regression model is good or bad 
because PRESS is an absolute measure. The Predicted R2 statistic captures the predictive power of 
the model and puts PRESS in perspective. 

Use predicted R2, not adjusted R2, to judge the predictive power of the regression model. 
The adjusted R2 measure is very popular to measure the quality of the fit in regression analysis. 
However, predicted R2 is more useful than adjusted R2 to access the ability to predict future 
observations because predicted R2 is calculated using observations not included in the regression.  
Recommend using PRESS and Predicted R2 for all equations. Many commercial statistical 
packages only provide these two statistics for linear and log-linear models. They are not readily 
available for nonlinear equations, such as MUPE or ZMPE. These two cross-validation statistics 
should be very valuable to model developers when deriving nonlinear CERs. 

Recommend using a single regression algorithm developed in this paper to approximate 
PRESS and Predicted R2 for nonlinear equations, including MUPE. Although PRESS can be 
calculated directly by definition for a nonlinear equation, avoid running nonlinear regression 
multiple times. This is because (1) the computation process is extremely tedious, (2) one or more 
of the nonlinear regression runs may not converge, and (3) each run can be easily trapped in local 
minima. This paper proposes a single regression approach to derive the solution efficiently. The 
approximated PRESS and Predicted R2 measures are validated against their definitions for three 
error terms: additive, MUPE, and log-error terms. The partial derivative matrix Z0 (as a proxy for 
OLS’s design matrix X) works really well. A data set of generic satellite electronic units is used 
in the validation process. We should also generate the PRESS and Predicted R2 measures for the 
ZMPE CERs in the future. 
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