
Improved Method for Predicting Software Effort and
Schedule

Wilson Rosa
IT Estimating Division

Naval Center for Cost Analysis
wilson.rosa@navy.mil

Cheryl Jones and John McGarry

US Army RDECOM-ARDEC
cheryl.l.jones128.civ@mail.mil
john.mcgarry4.civ@mail.mil

Ray Madachy
Department of Systems Engineering

Naval Postgraduate School
rjmadach@nps.edu

Joe Dean

Air Force Cost Analysis Agency
joseph.dean.2@us.af.mil

Barry Boehm and Brad Clark
Center for Systems and Software
University of Southern California

boehm@usc.edu
brad@software-metrics.com

ABSTRACT
This paper presents a set of effort and schedule estimating
relationships for predicting software development projects using
empirical data from 317 very recent US DoD programs. The first
set predicts effort as a function of product size and application
type. The second predicts the duration of software development as
a function of product size and staffing levels. The estimating
relationships are simpler and more viable to use for early
estimates than traditional parametric cost models. Practical
productivity benchmarks are also provided to guide cost analysts
in normalizing and validating data. These methods are applicable
to all industry sectors.

General Terms
Management, Measurement, Design, Economics

Keywords
COCOMO, software cost estimation, application domain, SEER-
SEM, operating environment, application type

1. INTRODUCTION
1.1 Problem Statement
Studies on software estimation tend to approach the analysis
framework in any of three ways. A group of studies [1, 2, 3, 4, 5,
9] have assessed the COCOMO framework to help identify the
main cost drivers. A second set of studies [10, 13, 14, 21] have
examined the impact of fewer product attributes --application
domain, personnel capability, reliability, defects -- on software
productivity using local data. The evidence is almost uniform in
indicating that application domain is the second major cost driver
after product size.

Only a relative handful of studies [15, 16, 17, 20] have specially
examined whether application domain stratification has a
significant impact on software productivity. However, these
studies are based on projects collected in the late 1990s and do not
provide the data. Whether the degree of stratification has a direct
impact on software cost remains an open question.

1.2 Purpose of the Study
This study attempted to contribute to the knowledge base by
exploring the influence of grouping 34 application domains into
12 general complexity zones called Application Types. This study
examines the direct effect of Application Types on software cost
and schedule. It also provides the statistics and regression models
upon which detailed estimates are based.

1.3 Paper Organization
This research paper is organized into nine sections:

 Section 1 introduces deficiencies in past studies and
proposed solution.

 Section 2 summarizes the scholarly literature of related
studies. In particular, it highlights previous domain-
driven analyses and data grouping taxonomy.

 Section 3 goes over the research method step by step. It
briefly explains the survey method, instrumentation,
data normalization framework, and criteria for selecting
the best fit models.

 Section 4 describes the data demographics, including
segmentation, age of data, size, effort distribution
percentages, and productivity benchmarks.

 Section 5 discusses the data analysis results.

 Section 6 presents the effort estimating models.

 Section 7 presents the schedule estimating models.

 Section 8 provides the research conclusions on the basis
of the hypotheses. It also highlights the contributions
and limitations, and outlines areas for further research.

 Section 9 cites the sources used in the paper.

2. RELATED WORK

Tan [20] pioneered a domain-based effort distribution model. The
goal of his dissertation work was to test the use of domain
information to enhance the current COCOMO II effort
distribution guideline to provide more accurate resource allocation

mailto:wilson.rosa@navy.mil
mailto:cheryl.l.jones128.civ@mail.mil
mailto:john.mcgarry4.civ@mail.mil
mailto:rjmadach@nps.edu
mailto:joseph.dean.2@us.af.mil
mailto:boehm@usc.edu
mailto:brad@software-metrics.com

for software projects. Over 200 software projects from the U.S.
Department of Defense data repository [19] were analyzed. The
results support the use of application types on effort distribution
estimation by rejecting the null hypothesis that the distributions
do not vary by domains. The dissertation’s research method is

very similar to this study in three ways. It used the same
instrument, same data source, and similar application taxonomy.

Putnam and Myers [14] performed an empirical study to
determine the major contributors to software productivity
variance. Sixteen hundred projects from the Quantitative
Software Management Inc. (QSM) database were used in the
study. To reduce variation and ensure valid comparisons, project
data in the QSM database was stratified into 10 software
application categories:

Application Category

Productivity Ranking

(Lowest to Highest)

Microcode 1

Firmware 2

Real-Time Embedded,
Avionics

3

Radar Systems 4

Command and control 5

Process Control 6

Telecommunications 7

System Software 8

Scientific Systems 9

Business Systems 10

Results showed that after SIZE, the second most influencing
factor on productivity was application category. The application
categories and productivity ranking order (from lowest to highest)
aligns with this study. Unfortunately the descriptive statistics and
dataset are proprietary.

Jones, McGarry, Dean, Rosa, Madachy, Boehm, Clark, and
Tan [12] introduced the concept of domain-driven software cost
estimation by grouping similar application domains together
called Productivity Types. The purpose of this study was to
present a set of open source effort and schedule estimation models
by productivity types. The statistical models were based on
empirical data collected from 250+ programs implemented within
the US DoD. Results show that effort estimation models should
account for the effect of fixed start-up costs and that the
prediction accuracy is enhanced when dataset is grouped by
productivity types. The productivity type definitions are the same
used in this study but most of the data points are from projects
implemented in the late 1990s.

Rosa, Boehm, Clark, Madachy, and Dean [17] continued their
investigation into domain-driven software estimation by updating
their regression models using a more recent dataset (2004-2011)
from 204 projects. It also introduced a set of software schedule
estimation models based on product size and staffing levels. The
authors reinforced their previous study by concluding that
domain-driven analysis seems to be the best framework for simple
effort estimation. Further, the study also concluded that size and
staffing levels are valid predictors of software development

duration, as the prediction accuracy, PRED (30), on all cases was
higher than 58%.

Rosa [18] introduced a schedule estimation model for Enterprise
Resource Planning projects. The model predicts the duration of
software development phase as a function of SIZE and full time
equivalent staff. The statistical analysis is based on empirical data
collected from 22 programs implemented within the federal
government over the course of ten years beginning in 2001. Result
shows that software schedule estimation models should include
both, product size and staffing levels as independent variables.

3. RESEARCH METHOD
3.1 Research Question
This study will address the following questions:

Is Application Type a good predictor of software engineering
labor, when treated along with size?

Does software development duration relate to size and staffing
levels, when grouped by Application Type?

3.2 Quantitative Method
A survey method was used in this study to collect effort and cost
drivers of software development projects. A non-random sample
was used since the researcher had access to names in the
population and the selection process for participants was based on
their availability.

3.3 Population and Sample
The sample was identified as 317 software projects that have been
implemented for the United States Department of Defense (DoD).
These projects were completed during the time period from 2004
to 2012. The number of projects considered for effort analysis was
317. However, the number of observations available for schedule
analysis (213 of 317) was lower, as some projects had incomplete
schedule data.

3.4 Instrumentation
Data were collected by means of a questionnaire containing over
20 items. The data collection questionnaire used in the study was
obtained from an existing one; Software Resource Data Report
(SRDR) questionnaire [19]. The source questionnaire entitled
“SRDR Sample Formats” can be downloaded from the Defense

Cost Analysis Resource Center (DCARC) website:

http://dcarc.cape.osd.mil/Files/Policy/2011-SRDRFinal.pdf

http://dcarc.cape.osd.mil/Files/Policy/Final_Developer_Report.xlsx

The questionnaire collected data on product size, effort, schedule
and product attributes like required reliability, software process
maturity, etc. A new field was added to collect data on application
domain. The list of application domains and definitions are from
available instrument [6].

3.5 Data Normalization
The objective of data normalization is to improve data
consistency, so that comparisons and projections are more valid.

http://dcarc.cape.osd.mil/Files/Policy/2011-SRDRFinal.pdf
http://dcarc.cape.osd.mil/Files/Policy/2011-SRDRFinal.pdf
http://dcarc.cape.osd.mil/Files/Policy/Final_Developer_Report.xlsx
http://dcarc.cape.osd.mil/Files/Policy/Final_Developer_Report.xlsx
http://dcarc.cape.osd.mil/Files/Policy/Final_Developer_Report.xlsx

The software data set in this study was normalized using three
steps:

3.5.1 Converting to Equivalent Size Unit
Since the dataset captures project size by type (new, modified,
reused, auto generated) and adaptation adjustment factors for most
of the projects, it was possible to adjust the raw size to be its
equivalent in new code using the COCOMO Reuse Model [1, 2].
The adjustment is based on the additional effort it takes to modify
the code for inclusion in the product taking into account the
amount of design, code and testing that was changed. Once
adjusted it is called Equivalent Source Lines of Code (ESLOC).

3.5.2 Converting to Logical SLOC Count
It is considered best practice [8] to use logical SLOC as the
standard counting rule for software cost estimation. Several
projects were reported in either Physical or Non‐Commented
Source Statements (NCSS). Those projects were converted into
Logical SLOC using empirical factors from recent studies [12,
17]:

Conversion Factor
Logical SLOC = 0.66 x NCSS SLOC
Logical SLOC = 0.34 x Physical SLOC

3.5.3 Data Grouping
According to the United States Government Accountability Office
[7], it is considered best practice to normalize data by similar
missions, characteristics, and operating environments. Products
with similar mission applications have similar characteristics and
traits, as do products with similar operating environments. For
example, space systems exhibit characteristics different from
those of submarines, but the space shuttle has characteristics
distinct from those of a satellite even though they may share
common features.

To reduce variation and ensure valid comparisons, the 34 SEER-
SEM application domains [6] were stratified into 12 general
complexity zones called Application Types [12, 17]. The
application domains to application types mapping are shown in
Table 1 below.

Table 1Application Type Taxonomy

Application Type Symbol
SEER-SEM Application

Domain(s)

Test TST Diagnostics
Testing Software

Software Tools TUL Business Analysis Tool,
CAD, Software Development
Tools

Intelligence &
Information Systems

IIS Database, Data Mining, Data
Warehousing, Financial
Transactions, GUI, MIS,
Multimedia,
Relational/Object-Oriented
Database, Transaction
Processing, Internet Server
Applet, Report Generation,
Office Automation

Application Type Symbol
SEER-SEM Application

Domain(s)

Mission Planning PLN Mission Planning & Analysis

Mission Processing MP Command/Control

Real Time Embedded RTE Embedded
Electronics/Appliance, GUI
(cockpit displays), Robotics

Scientific Systems SCI Expert System, Math &
Complex Algorithms,
Simulation, Graphics

Sensor Control and
Signal Processing

SCP Radar, Signal Processing

System Software SYS Device Driver, System &
Device Utilities, Operating
System

Telecommunications TEL Communications, Message
Switching

Vehicle Control VC Flight Systems (Controls),
Executive

Vehicle Payload VP Flight Systems (Payload)

3.6 Variables in the Study
The variables considered in the study are identified in Table 2.
The variable selection procedure is described in Section 5.

Table 2 Variables in the Study

Variable Symbol Definition

Person-Month PM Software engineering effort (in
Person-Month). Includes:

 software requirements
analysis,

 architecture/detailed design

 code and unit testing,

 systems/software integration,

 qualification test,

 development test &
evaluation,

 Other direct support:
documentation and
configuration management,
quality assurance, software
verification & validation,
software review and audit, and
software problem resolution.

Software
Development
Duration

SCHED The time required to complete all
activities up to the point of
development test & evaluation
(DT&E) by the vendor’s

implementation team

Variable Symbol Definition

Staffing Level FTE This is the average number of full
time equivalent (FTE) people
employed by the vendor’s

implementation team that were
involved in the software
development

Thousand
Equivalent
Source Lines
of Code

KESLOC The COCOMO method is used to
make new and adapted (modified,
reuse, generated) code equivalent
so they can be rolled up into an
aggregate size estimate.

Application
Type

i Groups of application domains that
are environment independent,
technology driven, and are
characterized by 12 product
attributes. (see Table 1)

Requirement
Volatility

RVOL Refers to the requirements
volatility encountered during
development as a percentage of
requirements that changed after the
Software Requirements Review

Software
Process
Maturity

PMAT Characterization of the developer’s

software process maturity using the
Software Engineering Institute
(SEI) software Capability Maturity
Model (CMM), or the Capability
Maturity Model Integration
(CMMI)-SW, or an alternative
equivalent appraisal.

3.7 Effort Model Forms
Three non-linear model forms were examined for each
application type containing 12 or more observations.

PMi = A x (KESLOC
B
) Eq. (1)

PMi = C + (A x KESLOC
B
) Eq. (2)

PMi = C + (KESLOC
B
) Eq. (3)

Where:

PM = Engineering Labor in Person Months

i = Application type I (Table 1)

A = Productivity constant (a.k.a. coefficient)

KESLOC = Product size in thousand Equivalent
Source Lines of Code

C = fixed start‐up and overhead activity
costs in Person‐Months (a.k.a. intercept)

B = Scaling factor expressing degree of the
diseconomy of scale (a.k.a. exponent)

Eq. (1) is based on the COCOMO Post‐Architecture model [1, 2]
without the effort multipliers. A common issue with this model is
determining whether there are economies or diseconomies of scale
in the data, i.e., as the software size increases less effort is

required (economy of scale) or as size increases more effort is
required (diseconomies of scale). The scaling influence is found in
the exponent, B. An estimated value for B < 1.0 indicates an
economy of scale. An estimated value of B > 1.0 indicates a
diseconomy of scale. Despite this issue, it is still the most popular
mode of estimation.

Eq. (2) and Eq. (3) unmask the influence of fixed start‐up costs in
a separate variable from the diseconomies of scale present in the
data.

3.8 Schedule Model Form
A non-linear model form was used for each application type
containing 10 or more observations.

SCHEDi = A x (KESLOC
B
) x (FTE

C
) Eq. (4)

Where:

SCHED = Time (in months) to develop the
Software Product

i = Application Type

A = Duration constant

KESLOC = Product size in thousand Equivalent
Source Lines of Code

B = Scaling factor to account for change in
SCHED in the presence of staffing.

C = C-Scaling Factor accounts for the non-
linear relationship between increasing
staffing levels and shortening
development time, TDEV

FTE = Staffing levels (in full-time equivalent)

Eq. (4) predicts the duration of software development phase as a
function of product size and staff levels. It starts with software
requirements analysis, ends at the completion of qualification test,
and precedes development test & evaluation phase.

3.9 Model Validity, Accuracy, and Selection
The measures for assessing the validity and accuracy of the effort
and schedule model forms are described in Table 3 and Table 4
respectively. The best model form for a given application type, is
the one that surpasses the criterion shown in Table 5.

Table 3 Model Validity Measures

Measure Symbol Description
F-test F-test The value of the F test is the square of

the equivalent T-test; the bigger it is, the
smaller the probability that the
difference could occur by chance. This
measure only applies to Eq. (1)

p-value α P-value is the probability of obtaining a
test statistic that is at least as extreme as
the calculated value if the null
hypothesis is true. Before conducting
any analysis, determine your alpha (a)
level. A commonly used value is 0.05. If

the P-value of a test statistic is less than
your alpha, the null hypothesis must be
rejected. P-value is a measure of the
statistical significant of the regression
equation, established through the
coefficient alpha
(˛ = 0.05)

Anderson-
Darling
test's p-
value

AD p-
value

Examines whether the dataset follows a
normal distribution. The use of non-
linear regression is appropriate when AD
p-value is greater than 0.05, as there is
evidence that the data do not follow a
normal distribution.

T-test T-stat Provides a measure of the significance
of the predictor variables in the
regression model. The variable is
significant when the t-stat is greater than
the two-tailed value, given the degrees
of freedom and coefficient alpha (α =

0.05)

Colin
Lingwood
Mallows
Test

Mallows
Cp value

Method used to assess the fit of a
regression model that has been estimated
using least squares (linear or non-linear)
or logistic forms. The best fit model is
the one with the lowest Mallows Cp
value.

Variance
Inflation
Factor

VIF Method used to indicate whether
multicollinearity is present in a multi-
regression analysis. A VIF lower than
10, indicates no multicollinearity.

Table 4 Model Accuracy Measures

Measure Symbol Description
Standard
Error of the
Estimate

SEE Measures the average amount of
variability remaining after the
regression. Standard Error of the
Estimate is a measure of the
difference between the observed and
model estimated effort.

Coefficient of
Determination

R2 Shows how much variation in
dependent variable is explained by
the regression equation.

Coefficient of
Variation

CV Percentage expression of the
standard error compared to the mean
of the dependent variable. A
relative measure allowing direct
comparison among models.

Mean
Absolute
Deviation

MAD Measures the average percentage by
which the regression overestimates
or underestimates the observed
actual value.

Table 5 Model Selection Criterion

Measure Criterion

MAD ≤40%

CV ≤40%

SEE ≤50%

T-test > Two tailed critical value (DF, α = 0.05)

R2 >60% (only applicable for Eq. (1))

Mallows Cp Value Model with lowest Mallows Cp value

VIF > 10 multicollinearity is present in the
regression model

4. Data Demographics
The dataset is comprised of 317 projects involving 12 application
types (AT), shown in Table 1, and seven different operating
environments. The breakout according to application type
(vertical axis) and operating environment (horizontal axis) is
shown in Table 6.

Table 6 Software Dataset

 GSF GV SVU MVM AVM AVU OM

TUL 1 0 0 0 5 2 0 8

PLN 20 0 0 0 0 0 0 20

IIS 11 2 0 0 1 0 0 14

SCI 10 1 0 1 6 0 1 19

SYS 13 3 0 3 6 0 0 25

TEL 22 2 0 22 1 0 0 47

TST 6 0 0 4 1 0 0 11

RTE 21 3 0 5 20 3 5 57

MP 16 0 0 3 9 1 5 34

VC 0 14 0 0 9 1 3 27

VP 0 0 1 1 9 2 5 18

SCP 14 1 1 3 3 9 6 37

134 26 2 42 70 18 25 317

GSF = ground fixed; GV = ground vehicle; SVU = space vehicle
unmanned; MVM = maritime vehicle manned; AVM = aerial
vehicle manned; AVU = aerial vehicle unmanned; OM =
ordnance and missile

Figure 1shows the age of the software projects by delivery year.
The age of data does not pose a challenge to validity as these are
recent projects completed within the last 10 years.

Figure 1 Age of Data

http://en.wikipedia.org/wiki/Goodness_of_fit
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Ordinary_least_squares

Figure 2 shows the project size distribution. The graph indicates
that software projects sizes are uniformly distributed.

Figure 2 Software Size

Table 7 shows the effort distribution percentage by software
activity. The aggregation of software requirements analysis,
architecture/detailed design, and code and unit test, amounts to
50% of total effort.

Table 7 Effort Distribution

Software Activity Percent Distribution

Software Requirements Analysis 10%

Architecture/Detailed Design 15%

Code and Unit Test 25%

System/Software Integration 13%

Qualification Test 9%

Development Test & Evaluation 5%

Other Direct Support 23%

The software productivity boxplot and productivity statistics are
shown in Figure 3 and Table 8 respectively. The results indicate
that mission planning and intelligence and information systems
are the most productive applications. In contrast, sensor control &
signal processing and vehicle payload are the least productive
applications. The ranking order is consistent with past studies [14,
17]. These productivity benchmarks can be used to crosscheck
estimates.

Figure 3 Productivity Boxplot by Application Type

Table 8 Productivity Statistics by Application Type

Application
Type

ESLOC/PM
N STD CV

Q1 Median Q3

PLN 207 329 427 20 153 46%

IIS 292 323 407 14 82 23%

SYS 168 235 260 25 86 38%

SCI 129 232 260 19 101 48%

TEL 140 185 243 47 74 39%

RTE 84 141 172 57 66 46%

MP 103 128 178 34 57 40%

VC 70 110 126 27 52 45%

VP 43 91 120 18 41 46%

SCP 40 54 79 36 25 42%
ESLOC = equivalent source lines of code; PM = person-month; N
= sample size; STD = standard deviation; CV = coefficient of
deviation; Q1 = 25th Percentile; Q3 = 75th Percentile

5. Data Analysis
This section is divided into two parts. The first section shows the
normality test result to determine the most appropriate regression
type (linear vs. non-linear) for both, effort and schedule models.
The second identifies the variables for the effort model using
Stepwise regression.

5.1 Normality Test
Figure 4 is a plot of normal probabilities versus the data for the
dependent variable, effort. The data depart from the fitted line
most evident in the extremes. The Anderson-Darling p-value
indicates that, at a levels greater than 0.05, there is evidence that
the data do not follow a normal distribution. Thus, the use of non-

linear regression is more appropriate than linear regression for
software effort models.

.

Figure 4 Normality Test for Effort

Figure 5 is a plot of normal probabilities versus the data for the
dependent variable, schedule. The Anderson-Darling p-value
indicates that there is evidence that the data do not follow a
normal distribution. Thus, the use of non-linear regression is more
appropriate than linear regression for schedule models.

Figure 5 Normality Test for Schedule

5.2 Stepwise Regression
This study used Stepwise regression in the MINITAB tool [11] to
determine which effort model fits the data best. This method
removes and adds variables to the regression model for the
purpose of identifying useful predictors. The analysis started with
four predictor variables (requirements volatility, software process
maturity, size, and application type) and removed two (software
process maturity and requirements volatility) as their p-values
were below the significance level (α = 0.05).

The Stepwise results in Table 10 indicate the following:

 The regression model with two predictors (application type
and size) is more accurate (R2 = 71%) than the model with
size as predictor (R2 = 64%).

 The regression model with two predictors is also more
reliable as the Mallows Cp value (1.6) is much lower.

Table 9 Stepwise Regression Results

Step: 1 2

Constant 93.07 -630.45

Product Size (Coefficient) 5.36 5.73

T-stat 21.02 24.60

P-value 0.000 0.000

Application Type (Coefficient) 603

T-stat 7.85

P-value 0.000

S 390 349

R2 64.28 71.39

Mallows Cp 60.8 1.6

S = estimated standard deviation of the error in the model; R2 = coefficient
of determination

In summary, the predictor model containing application type and
size fits the data best as the R2 is higher, and Mallows Cp value is
much lower than the model with only size as predictor variable.

6. EFFORT MODEL RESULTS

6.1 Effort Model Functional Forms
The resulting models are shown in Table 11 below. Each model
predicts effort (in person-month) for a particular application type,
given the project size measured in terms of Thousand Equivalent
Source Lines of Code (KESLOC). There are no models for
software tools (TUL) and test software (TST) applications as the
number of data points were lower than 12.

Table 10 Effort Model Functional Forms

Application
Type Functional Form Model

PLN

PM = 47.78 + KESLOC
1.193

(1)

IIS PM = 2.643 * KESLOC
1.024

 (2)

SYS PM = 33.58 + KESLOC
1.276 (3)

SCI PM = 31 + KESLOC
1.334

 (4)

TEL PM = 7.3 * KESLOC
0.9133

 (5)

RTE PM = 60.14 + KESLOC
1.442

 (6)

Application
Type Functional Form Model

MP PM = 6.602 * KESLOC
1.045

 (7)

VC PM = 9.048 * KESLOC
1.018

 (8)

VP PM = 22.27 * KESLOC
0.8049

 (9)

SCP PM = 26.43 * KESLOC
0.8668

 (10)

6.2 Effort Model Validity
Table 12 below shows the model validity results. All regression
models are significant as the t-statistics exceed the two-tailed
critical values, given the coefficient alpha (0.05) and degrees of
freedom (DF).

Table 11 Effort Model Validity Results

Model

t-statistics

F-Stat N DF
Intercept

C
Coefficient

A
Exponent

B

(1) 2.5 ** 34.1 20 18

(2) ** 5.5 23.1 535.6 16 14

(3) 3.6 ** 41.8 ** 25 23

(4) 2.7 ** 33.4 ** 17 15

(5) ** 13.4 18.0 325.5 47 45

(6) 6.9 ** 52.9 ** 57 55

(7) ** 7.2 15.2 231.1 33 31

(8) ** 11.0 17.2 296.6 27 25

(9) ** 13.8 11.7 136.0 18 16

(10) ** 21.8 18.6 345.3 37 35
DF = degrees of freedom; N = sample size

6.3 Effort Model Reliability
Table 13 shows the accuracy test results. All effort models are
reliable as their MAD and CV are ≤ 40%.

Table 12 Effort Model Reliability Results

Model SEE
(%)

MAD
(%)

CV
(%) R2 KESLOC

(min)
KESLOC

(MAX)

(1) 0.5 35 38 ** 10 570

(2) 0.2 18 24 97 18 417

(3) 0.5 36 43 ** 6 842

(4) 0.5 40 39 ** 2 226

(5) 0.5 35 32 88 1 532

(6) 0.5 36 39 ** 2 201

(7) 0.5 36 40 88 1 229

(8) 0.5 37 35 92 1 330

(9) 0.5 35 15 89 1 221

(10) 0.4 34 29 91 1 193

SEE = standard error of estimate; MAD = mean absolute
deviation; CV = coefficient of variation; R2 = coefficient of
determination; min = minimum; max = maximum

7. SCHEDULE MODEL RESULTS

7.1 Schedule Model Functional Forms
The resulting models are shown in Table 14. Each model predicts
schedule (in months) for a particular application type, given the
project size (KESLOC) and staffing level (FTE). There are no
models for vehicle payload, software tools and test software
application types as the number of data points were lower than 10.

Table 13 Schedule Model Functional Forms

AT Functional Form Model

PLN

SCHED = 2.657 * KESLOC
0.9995

* FTE
-0.9854

(11)

IIS SCHED = 6.034 * KESLOC
0.6622

* FTE
-0.6002

 (12)

SYS SCHED = 7.681 * KESLOC
0.8363

 * FTE
-0.9489

 (13)

SCI SCHED = 16.87 * KESLOC
0.3082

* FTE
-0.2603

 (14)
TEL SCHED = 14.78 * KESLOC

0.4512
* FTE

-0.4881
 (15)

RTE SCHED = 18.08 * KESLOC
0.5201

* FTE
-0.5695

 (16)
MP SCHED = 9.934 * KESLOC

0.731
* FTE

-0.5978
 (17)

VC SCHED = 8.288 * KESLOC
0.8527

* FTE
-0.772

 (18)
SCP SCHED = 30.6 * KESLOC

0.4982
* FTE

-0.4895
 (19)

7.2 Schedule Model Validity
Table 15 shows the schedule model validity results. All
regression models are significant as the t-statistics exceed the two-
tailed critical values and the VIF values indicate no
multicollinearity present in the analysis.

Table 14 Schedule Model Validity Results

Model

t-statistics

VIF N DF
Coefficient

A
Exponent

B
Exponent

C

(11) 1.7 4.3 -4.8 5.5 10 7

(12) 4.1 5.6 -3.7 1.4 19 16

(13) 5.6 5.5 -5.1 4.2 14 11

(14) 6.1 1.5 -1.4 7.7 14 11

(15) 16.5 5.5 -6.1 4.6 42 39

(16) 16.4 7.1 -6.7 2.2 44 41

Model

t-statistics

VIF N DF
Coefficient

A
Exponent

B
Exponent

C

(17) 3.4 5.8 -4.6 3.1 24 21

(18) 9.7 6.5 -4.9 4.8 18 15

(19) 27.8 5.5 -4.3 5.5 28 25

DF = degrees of freedom; N = sample size; VIF = variance
inflation factor

7.3 Schedule Model Reliability
Table 16 shows the accuracy test results. All schedule models are
reliable as their MAD and CV are ≤ 40%.

Table 15 Schedule Model Reliability Results

Model SEE
(%)

MAD
(%)

CV
(%)

KESLOC
(min)

KESLOC
(MAX)

(11) 0.3 19 19 10 570

(12) 0.4 31 31 18 417

(13) 0.4 27 24 7 764

(14) 0.4 25 24 2 120

(15) 0.4 28 22 1 312

(16) 0.3 23 23 5 201

(17) 0.4 35 34 1 225

(18) 0.4 34 34 1 330

(19) 0.3 25 21 1 193

SEE = standard error of estimate; MAD = mean absolute
deviation; CV = coefficient of variation; min = minimum; max =
maximum

8. CONCLUSION
8.1 Primary Findings
This study resulted in seven primary findings:

1. The Anderson-Darling test proved that nonlinear regression

is more appropriate than ordinary least squares for
developing both, software effort and schedule estimation
models.

2. The Stepwise regression analysis revealed that software
effort models based on size and application types are more
accurate that models based on size alone. Size (KESLOC)
alone explains 64% of the variation in effort. Size and
application type explain71% of the variation in effort.

3. The regression results show that the effect of product size

and staff levels on software development schedule is
significant, indicating that when KESLOC increases and/or
staff level decreases, the schedule duration tends to increase.

4. All effort and schedule models were deemed valid as these
did not violate any of the regression assumptions or

diagnostic tests, and met the model selection criterion in
Table 5.

5. Meaningful productivity comparisons (ESLOC/PM) can be
made when projects are grouped by application types. The
productivity benchmarks and ranking (from lowest to
highest) crosschecks with recent studies.

8.2 Challenges to Validity
Although the models were deemed reliable, they still have a few
limitations:

1. A larger dataset (>400 projects) is required to increase
model validity and accuracy. A future investigation should
attempt to control for the impact of operating environment.

2. A non-random sample was preferred as the researcher had
access to names in the population and the selection process
for participants was based on their convenience and
availability. However, this process limits the ability to
generalize to a population.

3. Two popular application domains were not addressed in this
study -- Project Control and Training. A future investigation
should attempt to collect project data for these two domains.

8.3 Future Research
The following topics may be considered for future research:

1. Develop a software effort model using functional
requirements along with application type with a similar
experimental design.

2. Instead of developing multiple models, pioneer a single
software effort estimating model using size, quantitative
values for application type, and operating environment.

3. Use local data to calibrate COCOMO and/or SEER-SEM
using application types in lieu of application domains.

8.4 Summary
 Nineteen software estimation models have been developed

based on 317 programs implemented within the U.S.
Department of Defense. The source data provided valuable
insight into the costs and schedules associated with the
vendor’s implementation team in the course of developing

and implementing software.

 The method is simpler and more viable to use for early
estimates than traditional parametric cost models.

 The productivity benchmarks (ESLOC/PM) are appropriate

for validating productivity estimates.

9. REFERENCES
[1] Boehm B., Software Engineering Economics. Englewood

Cliffs, NJ, Prentice‐Hall, 1981

[2] Boehm B., Abts C., Brown W., Chulani S., Clark B.,
Horowitz E., Madachy R., Reifer D., Steece B., Software
Cost Estimation with COCOMO II, Prentice‐Hall, 2000

[3] Boehm, B., 2000, “Safe and simple software cost analysis,”

Software, IEEE, 17(5), pp. 14–17.

[4] Clark, B., Devnani-Chulani, S., and Boehm, B., 1998,
“Calibrating the COCOMO II Post-Architecture model,”

Proc. Int’l Conf. Software Eng. (ICSE ’98), pp. 477–480.

[5] Clark, B. K., 1997, “The Effects of Software Process

Maturity on Software Development Effort,” Technical

Report No. AAT 9816016, University of Southern
California, CA.

[6] Galorath, 2001, SEER-SEM™ User's Manual, Galorath, Inc.,
El Segundo, CA, Chaps.1-4, 6-6, 15-6.

[7] Government Accountability Office, 2009, “GAO Cost

Estimating and Assessment Guide: Best Practices for
Developing and Managing Capital Program Costs”

http://www.gao.gov/products/GAO-09-3SP, site accessed on
28 February 2014.

[8] IEEE, 1993, “IEEE Standard for Software Productivity

Metrics,” IEEE Std 1045-1992.

[9] Liang, T., and Noore, A., 2003, “Multistage Software

Estimation,” Proc. 35th Southeastern Symp. System Theory,
pp. 232–236.

[10] Maxwell, K. D., Van Wassenhove, L., and Dutta, S., 1996,
“Software Development Productivity of European Space,

Military, and Industrial Applications,” Software Engineering,
IEEE Transactions, 22(10), pp. 706–718.

[11] Minitab Inc., 2003, MINITAB 14, www.minitab.com Site
accessed in 2005 [student license purchased online]

[12] Jones C., McGarry J., Dean J., Rosa W., Madachy, R.,
Boehm B., Clark B., Tan T., 2013, “Software Cost Metrics

Manual” http://softwarecost.org/index.php?title=Main_Page,
Site accessed on 27 February 2014.

[13] Jones, C., 2003, “Variations in Software Development

Practices,” Software IEEE, pp. 22–27.

[14] Putnam, L., and Myers, W., 1991, Measures for Excellence:
Reliable Software on Time, Within Budget, Prentice Hall
PTR, Upper Saddle River, NJ, pp. 1–356.

[15] Madachy, R.; Boehm, B.; Clark, B.; Tan, T.; Rosa, W. "US
DoD Application Domain Empirical Software Cost
Analysis", Empirical Software Engineering and
Measurement (ESEM), 2011 International Symposium on,
On page(s): 392 - 395

[16] Lipkin, I., 2011, “Test Software Development Project

Productivity Model”, Dissertation Thesis, Univerity of

Toledo (Toledo, OH, 2011).

[17] Rosa W., Boehm B., Clark B., Madachy R., Dean J., 2013,
“Domain-Driven Software Cost and Schedule Estimating
Models: Using Software Resource Data Reports (SRDRs)”,

2013 International Cost Estimating and Analysis Association
(ICEAA), Professional Development & Training Workshop

[18] Rosa W., Packard T., Krupanand A., James Bilbro J., Hodal
M.: COTS integration and estimation for ERP. Journal of
Systems and Software 86(2): 538-550 (2013)

[19] Software Resource Data Report, 2011,
http://dcarc.cape.osd.mil/Files/Policy/2011-SRDRFinal.pdf

[20] Tan, T, “Domain‐Based Effort Distribution Model for
Software Cost Estimation,” PhD Dissertation, Computer

Science Department, University of Southern California, June
2012.

[21] The International Software Benchmarking Group, 2013,
www.isbsg.org, [professional license purchased online]

http://www.gao.gov/products/GAO-09-3SP
http://softwarecost.org/index.php?title=Main_Page
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Packard:Travis.html
http://www.informatik.uni-trier.de/~ley/pers/hd/k/Krupanand:Abishek.html
http://www.informatik.uni-trier.de/~ley/pers/hd/b/Bilbro:James_W=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/h/Hodal:Max_M=.html
http://www.informatik.uni-trier.de/~ley/db/journals/jss/jss86.html#RosaPKBH13
http://www.informatik.uni-trier.de/~ley/db/journals/jss/jss86.html#RosaPKBH13
http://dcarc.cape.osd.mil/Files/Policy/2011-SRDRFinal.pdf
http://dcarc.cape.osd.mil/Files/Policy/2011-SRDRFinal.pdf

