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ABSTRACT 
This paper presents a set of effort and schedule estimating 
relationships for predicting software development projects using 
empirical data from 317 very recent US DoD programs. The first 
set predicts effort as a function of product size and application 
type. The second predicts the duration of software development as 
a function of product size and staffing levels. The estimating 
relationships are simpler and more viable to use for early 
estimates than traditional parametric cost models. Practical 
productivity benchmarks are also provided to guide cost analysts 
in normalizing and validating data. These methods are applicable 
to all industry sectors. 

 

General Terms 
Management, Measurement, Design, Economics 

Keywords 
COCOMO, software cost estimation, application domain, SEER-
SEM, operating environment, application type 

 

1. INTRODUCTION 
1.1 Problem Statement 
Studies on software estimation tend to approach the analysis 
framework in any of three ways.  A group of studies [1, 2, 3, 4, 5, 
9] have assessed the COCOMO framework to help identify the 
main cost drivers. A second set of studies [10, 13, 14, 21] have 
examined the impact of fewer product attributes --application 
domain, personnel capability, reliability, defects -- on software 
productivity using local data. The evidence is almost uniform in 
indicating that application domain is the second major cost driver 
after product size.  

 

Only a relative handful of studies [15, 16, 17, 20] have specially 
examined whether application domain stratification has a 
significant impact on software productivity. However, these 
studies are based on projects collected in the late 1990s and do not 
provide the data. Whether the degree of stratification has a direct 
impact on software cost remains an open question.  

 

1.2 Purpose of the Study 
This study attempted to contribute to the knowledge base by 
exploring the influence of grouping 34 application domains into 
12 general complexity zones called Application Types. This study 
examines the direct effect of Application Types on software cost 
and schedule.  It also provides the statistics and regression models 
upon which detailed estimates are based. 
 

1.3 Paper Organization 
This research paper is organized into nine sections: 

 Section 1 introduces deficiencies in past studies and 
proposed solution. 

 Section 2 summarizes the scholarly literature of related 
studies.  In particular, it highlights previous domain-
driven analyses and data grouping taxonomy. 

 Section 3 goes over the research method step by step. It 
briefly explains the survey method, instrumentation, 
data normalization framework, and criteria for selecting 
the best fit models. 

 Section 4 describes the data demographics, including 
segmentation, age of data, size, effort distribution 
percentages, and productivity benchmarks. 

 Section 5 discusses the data analysis results. 

 Section 6 presents the effort estimating models. 

 Section 7 presents the schedule estimating models. 

 Section 8 provides the research conclusions on the basis 
of the hypotheses. It also highlights the contributions 
and limitations, and outlines areas for further research. 

 Section 9 cites the sources used in the paper. 

 

2. RELATED WORK 
 
Tan [20] pioneered a domain-based effort distribution model. The 
goal of his dissertation work was to test the use of domain 
information to enhance the current COCOMO II effort 
distribution guideline to provide more accurate resource allocation 
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for software projects. Over 200 software projects from the U.S. 
Department of Defense data repository [19] were analyzed. The 
results support the use of application types on effort distribution 
estimation by rejecting the null hypothesis that the distributions 
do not vary by domains. The dissertation’s research method is 

very similar to this study in three ways. It used the same 
instrument, same data source, and similar application taxonomy.  

Putnam and Myers [14] performed an empirical study to 
determine the major contributors to software productivity 
variance.  Sixteen hundred projects from the Quantitative 
Software Management Inc. (QSM) database were used in the 
study. To reduce variation and ensure valid comparisons, project 
data in the QSM database was stratified into 10 software 
application categories: 

Application Category 

Productivity Ranking 

(Lowest to Highest) 

Microcode 1 

Firmware 2 

Real-Time Embedded,  
Avionics 

3 

Radar Systems 4 

Command and control 5 

Process Control 6 

Telecommunications 7 

System Software 8 

Scientific Systems 9 

Business Systems 10 

 

Results showed that after SIZE, the second most influencing 
factor on productivity was application category. The application 
categories and productivity ranking order (from lowest to highest) 
aligns with this study. Unfortunately the descriptive statistics and 
dataset are proprietary. 

 

Jones, McGarry, Dean, Rosa, Madachy, Boehm, Clark, and 
Tan [12] introduced the concept of domain-driven software cost 
estimation by grouping similar application domains together 
called Productivity Types.  The purpose of this study was to 
present a set of open source effort and schedule estimation models 
by productivity types. The statistical models were based on 
empirical data collected from 250+ programs implemented within 
the US DoD. Results show that effort estimation models should 
account for the effect of fixed start-up costs and that the 
prediction accuracy is enhanced when dataset is grouped by 
productivity types. The productivity type definitions are the same 
used in this study but most of the data points are from projects 
implemented in the late 1990s. 
 
Rosa, Boehm, Clark, Madachy, and Dean [17] continued their 
investigation into domain-driven software estimation by updating 
their regression models using a more recent dataset (2004-2011) 
from 204 projects. It also introduced a set of software schedule 
estimation models based on product size and staffing levels. The 
authors reinforced their previous study by concluding that 
domain-driven analysis seems to be the best framework for simple 
effort estimation.  Further, the study also concluded that size and 
staffing levels are valid predictors of software development 

duration, as the prediction accuracy, PRED (30), on all cases was 
higher than 58%. 

 

Rosa [18] introduced a schedule estimation model for Enterprise 
Resource Planning projects. The model predicts the duration of 
software development phase as a function of SIZE and full time 
equivalent staff. The statistical analysis is based on empirical data 
collected from 22 programs implemented within the federal 
government over the course of ten years beginning in 2001. Result 
shows that software schedule estimation models should include 
both, product size and staffing levels as independent variables. 
 
 

3. RESEARCH METHOD 
3.1 Research Question 
This study will address the following questions: 

Is Application Type a good predictor of software engineering 
labor, when treated along with size? 

Does software development duration relate to size and staffing 
levels, when grouped by Application Type? 

 

3.2 Quantitative Method 
A survey method was used in this study to collect effort and cost 
drivers of software development projects.  A non-random sample 
was used since the researcher had access to names in the 
population and the selection process for participants was based on 
their availability.  

 

3.3 Population and Sample 
The sample was identified as 317 software projects that have been 
implemented for the United States Department of Defense (DoD). 
These projects were completed during the time period from 2004 
to 2012. The number of projects considered for effort analysis was 
317.  However, the number of observations available for schedule 
analysis (213 of 317) was lower, as some projects had incomplete 
schedule data. 

 

3.4 Instrumentation 
Data were collected by means of a questionnaire containing over 
20 items. The data collection questionnaire used in the study was 
obtained from an existing one; Software Resource Data Report 
(SRDR) questionnaire [19]. The source questionnaire entitled 
“SRDR Sample Formats” can be downloaded from the Defense 

Cost Analysis Resource Center (DCARC) website: 
 
http://dcarc.cape.osd.mil/Files/Policy/2011-SRDRFinal.pdf  

http://dcarc.cape.osd.mil/Files/Policy/Final_Developer_Report.xlsx  

The questionnaire collected data on product size, effort, schedule 
and product attributes like required reliability, software process 
maturity, etc. A new field was added to collect data on application 
domain. The list of application domains and definitions are from 
available instrument [6]. 
 

3.5 Data Normalization 
The objective of data normalization is to improve data 
consistency, so that comparisons and projections are more valid. 
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The software data set in this study was normalized using three 
steps: 
 

3.5.1 Converting to Equivalent Size Unit 
Since the dataset captures project size by type (new, modified, 
reused, auto generated) and adaptation adjustment factors for most 
of the projects, it was possible to adjust the raw size to be its 
equivalent in new code using the COCOMO Reuse Model [1, 2]. 
The adjustment is based on the additional effort it takes to modify 
the code for inclusion in the product taking into account the 
amount of design, code and testing that was changed. Once 
adjusted it is called Equivalent Source Lines of Code (ESLOC). 

 

3.5.2 Converting to Logical SLOC Count 
It is considered best practice [8] to use logical SLOC as the 
standard counting rule for software cost estimation. Several 
projects were reported in either Physical or Non‐Commented 
Source Statements (NCSS).  Those projects were converted into 
Logical SLOC using empirical factors from recent studies [12, 
17]: 
 

Conversion Factor 
Logical SLOC  = 0.66 x NCSS SLOC 
Logical SLOC = 0.34 x Physical SLOC 

 

3.5.3 Data Grouping 
According to the United States Government Accountability Office 
[7], it is considered best practice to normalize data by similar 
missions, characteristics, and operating environments. Products 
with similar mission applications have similar characteristics and 
traits, as do products with similar operating environments. For 
example, space systems exhibit characteristics different from 
those of submarines, but the space shuttle has characteristics 
distinct from those of a satellite even though they may share 
common features.  
 
To reduce variation and ensure valid comparisons, the 34 SEER-
SEM application domains [6] were stratified into 12 general 
complexity zones called Application Types [12, 17]. The 
application domains to application types mapping are shown in 
Table 1 below. 
 

Table 1Application Type Taxonomy 

Application Type Symbol 
SEER-SEM Application 

Domain(s) 

Test TST Diagnostics  
Testing Software 

Software Tools TUL Business Analysis Tool, 
CAD, Software Development 
Tools  

Intelligence & 
Information Systems 

IIS Database, Data Mining, Data 
Warehousing, Financial 
Transactions, GUI, MIS, 
Multimedia, 
Relational/Object-Oriented 
Database, Transaction 
Processing, Internet Server 
Applet, Report Generation, 
Office Automation 

Application Type Symbol 
SEER-SEM Application 

Domain(s) 

Mission Planning PLN Mission Planning & Analysis 

Mission Processing MP Command/Control 

Real Time Embedded RTE Embedded 
Electronics/Appliance, GUI 
(cockpit displays), Robotics 

Scientific Systems SCI Expert System, Math & 
Complex Algorithms, 
Simulation, Graphics 

Sensor Control and 
Signal Processing 

SCP Radar, Signal Processing 

System Software SYS Device Driver, System & 
Device Utilities, Operating 
System 

Telecommunications TEL Communications, Message 
Switching 

Vehicle Control VC Flight Systems (Controls), 
Executive 

Vehicle Payload VP Flight Systems (Payload) 

 

3.6 Variables in the Study 
The variables considered in the study are identified in Table 2. 
The variable selection procedure is described in Section 5. 

 

Table 2 Variables in the Study 

Variable  Symbol Definition 

Person-Month PM Software engineering effort (in 
Person-Month). Includes: 

 software requirements 
analysis,  

 architecture/detailed design 

 code and unit testing,  

 systems/software integration,  

 qualification test,  

 development test & 
evaluation,  

 Other direct support: 
documentation and 
configuration management, 
quality assurance, software 
verification & validation, 
software review and audit, and 
software problem resolution. 

Software 
Development 
Duration 

SCHED The time required to complete all 
activities up to the point of 
development test & evaluation 
(DT&E) by the vendor’s 

implementation team 



Variable  Symbol Definition 

Staffing Level  FTE This is the average number of full 
time equivalent (FTE) people 
employed by the vendor’s 

implementation team that were 
involved in the software 
development 

Thousand 
Equivalent 
Source Lines 
of Code 

KESLOC The COCOMO method is used to 
make new and adapted (modified, 
reuse, generated) code equivalent 
so they can be rolled up into an 
aggregate size estimate. 

Application 
Type 

i Groups of application domains that 
are environment independent, 
technology driven, and are 
characterized by 12 product 
attributes. (see Table 1) 

Requirement 
Volatility 

RVOL Refers to the requirements 
volatility encountered during 
development as a percentage of 
requirements that changed after the 
Software Requirements Review  

Software 
Process 
Maturity 

PMAT Characterization of the developer’s 

software process maturity using the 
Software Engineering Institute 
(SEI) software Capability Maturity 
Model (CMM), or the Capability 
Maturity Model Integration 
(CMMI)-SW, or an alternative 
equivalent appraisal. 

 

3.7 Effort Model Forms 
Three non-linear model forms were examined for each 
application type containing 12 or more observations.  

 

PMi = A x (KESLOC
B
)           Eq. (1) 

PMi = C + (A x KESLOC
B
)          Eq. (2) 

PMi = C + (KESLOC
B
)          Eq. (3) 

 

Where: 

PM = Engineering Labor in Person Months 

i = Application type I (Table 1) 

A = Productivity constant (a.k.a. coefficient) 

KESLOC = Product size in thousand Equivalent 
Source Lines of Code 

C = fixed start‐up and overhead activity 
costs in Person‐Months (a.k.a. intercept) 

B = Scaling factor expressing degree of the 
diseconomy of scale (a.k.a. exponent) 

 
Eq. (1) is based on the COCOMO Post‐Architecture model [1, 2] 
without the effort multipliers. A common issue with this model is 
determining whether there are economies or diseconomies of scale 
in the data, i.e., as the software size increases less effort is 

required (economy of scale) or as size increases more effort is 
required (diseconomies of scale). The scaling influence is found in 
the exponent, B. An estimated value for B < 1.0 indicates an 
economy of scale. An estimated value of B > 1.0 indicates a 
diseconomy of scale. Despite this issue, it is still the most popular 
mode of estimation.   
 
Eq. (2) and Eq. (3) unmask the influence of fixed start‐up costs in 
a separate variable from the diseconomies of scale present in the 
data.   
 

3.8 Schedule Model Form 
A non-linear model form was used for each application type 
containing 10 or more observations.  

 

SCHEDi = A x (KESLOC
B
) x (FTE

C
)                Eq. (4) 

Where: 

SCHED = Time (in months) to develop the 
Software Product 

i = Application Type 

A = Duration constant 

KESLOC = Product size in thousand Equivalent 
Source Lines of Code 

B = Scaling factor to account for change in 
SCHED in the presence of staffing. 

C = C-Scaling Factor accounts for the non-
linear relationship between increasing 
staffing levels and shortening 
development time, TDEV 

FTE = Staffing levels (in full-time equivalent) 

 
Eq. (4) predicts the duration of software development phase as a 
function of product size and staff levels. It starts with software 
requirements analysis, ends at the completion of qualification test, 
and precedes development test & evaluation phase.   
 

 

3.9 Model Validity, Accuracy, and Selection 
The measures for assessing the validity and accuracy of the effort 
and schedule model forms are described in Table 3 and Table 4 
respectively. The best model form for a given application type, is 
the one that surpasses the criterion shown in Table 5. 

 

Table 3 Model Validity Measures 

Measure Symbol Description 
F-test F-test The value of the F test is the square of 

the equivalent T-test; the bigger it is, the 
smaller the probability that the 
difference could occur by chance. This 
measure only applies to Eq. (1) 

p-value α P-value is the probability of obtaining a 
test statistic that is at least as extreme as 
the calculated value if the null 
hypothesis is true. Before conducting 
any analysis, determine your alpha (a) 
level. A commonly used value is 0.05. If 



the P-value of a test statistic is less than 
your alpha, the null hypothesis must be 
rejected. P-value is a measure of the 
statistical significant of the regression 
equation, established through the 
coefficient alpha 
(˛ = 0.05) 

Anderson-
Darling 
test's p-
value 

AD p-
value 

Examines whether the dataset follows a 
normal distribution. The use of non-
linear regression is appropriate when AD 
p-value is greater than 0.05, as there is 
evidence that the data do not follow a 
normal distribution.  

T-test T-stat Provides a measure of the significance 
of the predictor variables in the 
regression model.  The variable is 
significant when the t-stat is greater than 
the two-tailed value, given the degrees 
of freedom and coefficient alpha (α = 

0.05) 

Colin 
Lingwood 
Mallows 
Test 

Mallows 
Cp value 

Method used to assess the fit of a 
regression model that has been estimated 
using  least squares (linear or non-linear) 
or logistic forms. The best fit model is 
the one with the lowest Mallows Cp 
value. 

Variance 
Inflation 
Factor  

VIF Method used to indicate whether 
multicollinearity is present in a multi-
regression analysis.  A VIF lower than 
10, indicates no multicollinearity. 

 

 

Table 4 Model Accuracy Measures 

Measure Symbol Description 
Standard 
Error of the 
Estimate 

SEE Measures the average amount of 
variability remaining after the 
regression. Standard Error of the 
Estimate is a measure of the 
difference between the observed and 
model estimated effort.  

Coefficient of 
Determination 

R2 Shows how much variation in 
dependent variable is explained by 
the regression equation.   

Coefficient of 
Variation 

CV Percentage expression of the 
standard error compared to the mean 
of the dependent variable.  A 
relative measure allowing direct 
comparison among models.  

Mean 
Absolute 
Deviation 

MAD  Measures the average percentage by 
which the regression overestimates 
or underestimates the observed 
actual value.   

 

Table 5 Model Selection Criterion 

Measure Criterion 

MAD ≤40% 

CV ≤40% 

SEE ≤50% 

T-test > Two tailed critical value (DF, α = 0.05) 

R2 >60% (only applicable for Eq. (1)) 

Mallows Cp Value Model with lowest Mallows Cp value 

VIF > 10 multicollinearity is present in the 
regression model  

 

4. Data Demographics 
The dataset is comprised of 317 projects involving 12 application 
types (AT), shown in Table 1, and seven different operating 
environments. The breakout according to application type 
(vertical axis) and operating environment (horizontal axis) is 
shown in Table 6. 
 

Table 6 Software Dataset 

  GSF GV SVU MVM AVM AVU OM 
 

TUL 1 0 0 0 5 2 0 8 

PLN 20 0 0 0 0 0 0 20 

IIS 11 2 0 0 1 0 0 14 

SCI 10 1 0 1 6 0 1 19 

SYS 13 3 0 3 6 0 0 25 

TEL 22 2 0 22 1 0 0 47 

TST 6 0 0 4 1 0 0 11 

RTE 21 3 0 5 20 3 5 57 

MP 16 0 0 3 9 1 5 34 

VC 0 14 0 0 9 1 3 27 

VP 0 0 1 1 9 2 5 18 

SCP 14 1 1 3 3 9 6 37 

 

134 26 2 42 70 18 25 317 

GSF = ground fixed; GV = ground vehicle; SVU = space vehicle 
unmanned; MVM = maritime vehicle manned; AVM = aerial 
vehicle manned; AVU = aerial vehicle unmanned; OM = 
ordnance and missile 

 
Figure 1shows the age of the software projects by delivery year. 
The age of data does not pose a challenge to validity as these are 
recent projects completed within the last 10 years. 
 

 
Figure 1 Age of Data 
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Figure 2 shows the project size distribution. The graph indicates 
that software projects sizes are uniformly distributed. 

 
Figure 2 Software Size 

 

Table 7 shows the effort distribution percentage by software 
activity.  The aggregation of software requirements analysis, 
architecture/detailed design, and code and unit test, amounts to 
50% of total effort.   

Table 7 Effort Distribution 

Software Activity Percent Distribution  

Software Requirements Analysis 10% 

Architecture/Detailed Design 15% 

Code and Unit Test 25% 

System/Software Integration 13% 

Qualification Test 9% 

Development Test & Evaluation 5% 

Other Direct Support 23% 

 

The software productivity boxplot and productivity statistics are 
shown in Figure 3 and Table 8 respectively. The results indicate 
that mission planning and intelligence and information systems 
are the most productive applications. In contrast, sensor control & 
signal processing and vehicle payload are the least productive 
applications. The ranking order is consistent with past studies [14, 
17]. These productivity benchmarks can be used to crosscheck 
estimates. 

 

 
Figure 3 Productivity Boxplot by Application Type 

 

 

Table 8 Productivity Statistics by Application Type 

Application 
Type 

ESLOC/PM 
N STD CV 

Q1 Median Q3 

PLN 207 329 427 20 153 46% 

IIS 292 323 407 14 82 23% 

SYS 168 235 260 25 86 38% 

SCI 129 232 260 19 101 48% 

TEL 140 185 243 47 74 39% 

RTE 84 141 172 57 66 46% 

MP 103 128 178 34 57 40% 

VC 70 110 126 27 52 45% 

VP 43 91 120 18 41 46% 

SCP 40 54 79 36 25 42% 
ESLOC = equivalent source lines of code; PM = person-month; N 
= sample size; STD = standard deviation; CV = coefficient of 
deviation; Q1 = 25th Percentile; Q3 = 75th Percentile 

 

5. Data Analysis 
This section is divided into two parts. The first section shows the 
normality test result to determine the most appropriate regression 
type (linear vs. non-linear) for both, effort and schedule models. 
The second identifies the variables for the effort model using 
Stepwise regression. 

 

5.1 Normality Test 
Figure 4 is a plot of normal probabilities versus the data for the 
dependent variable, effort. The data depart from the fitted line 
most evident in the extremes. The Anderson-Darling p-value 
indicates that, at a levels greater than 0.05, there is evidence that 
the data do not follow a normal distribution. Thus, the use of non-



linear regression is more appropriate than linear regression for 
software effort models. 

. 

 
Figure 4 Normality Test for Effort 

 

Figure 5 is a plot of normal probabilities versus the data for the 
dependent variable, schedule. The Anderson-Darling p-value 
indicates that there is evidence that the data do not follow a 
normal distribution. Thus, the use of non-linear regression is more 
appropriate than linear regression for schedule models. 

 

 
Figure 5 Normality Test for Schedule 

 
 

5.2 Stepwise Regression 
This study used Stepwise regression in the MINITAB tool [11] to 
determine which effort model fits the data best. This method 
removes and adds variables to the regression model for the 
purpose of identifying useful predictors. The analysis started with 
four predictor variables (requirements volatility, software process 
maturity, size, and application type) and removed two (software 
process maturity and requirements volatility) as their p-values 
were below the significance level (α = 0.05).  

 

The Stepwise results in Table 10 indicate the following:   

 The regression model with two predictors (application type 
and size) is more accurate (R2 = 71%) than the model with 
size as predictor (R2 = 64%). 

 The regression model with two predictors is also more 
reliable as the Mallows Cp value (1.6) is much lower. 

 

Table 9 Stepwise Regression Results 

Step: 1 2 

Constant 93.07 -630.45 

   

Product Size (Coefficient) 5.36 5.73 

T-stat 21.02 24.60 

P-value 0.000 0.000 

   

Application Type (Coefficient)  603 

T-stat  7.85 

P-value  0.000 

   

S 390 349 

R2 64.28 71.39 

Mallows Cp 60.8 1.6 

S = estimated standard deviation of the error in the model; R2 = coefficient 
of determination 

 

In summary, the predictor model containing application type and 
size fits the data best as the R2 is higher, and Mallows Cp value is 
much lower than the model with only size as predictor variable. 

 

6. EFFORT MODEL RESULTS 
 

6.1 Effort Model Functional Forms 
The resulting models are shown in Table 11 below.  Each model 
predicts effort (in person-month) for a particular application type, 
given the project size measured in terms of Thousand Equivalent 
Source Lines of Code (KESLOC). There are no models for 
software tools (TUL) and test software (TST) applications as the 
number of data points were lower than 12. 

 

Table 10 Effort Model Functional Forms 

Application 
Type Functional Form Model 

 

PLN 

 

PM = 47.78 + KESLOC
1.193

 

 

(1) 

IIS PM = 2.643 * KESLOC
1.024 

 (2) 

SYS PM = 33.58 + KESLOC
1.276                (3) 

SCI PM = 31 + KESLOC
1.334

 (4) 

TEL PM = 7.3 * KESLOC
0.9133

 (5) 

RTE PM = 60.14 + KESLOC
1.442 

 (6) 



Application 
Type Functional Form Model 

MP PM = 6.602 * KESLOC
1.045

 (7) 

VC PM = 9.048 * KESLOC
1.018

  (8) 

VP PM = 22.27 * KESLOC
0.8049

  (9) 

SCP PM  = 26.43 * KESLOC
0.8668

 (10) 

 

 
6.2 Effort Model Validity 
Table 12 below shows the model validity results. All regression 
models are significant as the t-statistics exceed the two-tailed 
critical values, given the coefficient alpha (0.05) and degrees of 
freedom (DF). 

 

Table 11 Effort Model Validity Results 

Model 

t-statistics 

F-Stat N DF 
Intercept 

C 
Coefficient 

A 
Exponent 

B 

(1) 2.5 ** 34.1  20 18 

(2) ** 5.5 23.1 535.6 16 14 

(3) 3.6 ** 41.8 ** 25 23 

(4) 2.7 ** 33.4 ** 17 15 

(5) ** 13.4 18.0 325.5 47 45 

(6) 6.9 ** 52.9 ** 57 55 

(7) ** 7.2 15.2 231.1 33 31 

(8) ** 11.0 17.2 296.6 27 25 

(9) ** 13.8 11.7 136.0 18 16 

(10) ** 21.8 18.6 345.3 37 35 
DF = degrees of freedom; N = sample size 

 

6.3 Effort Model Reliability 
Table 13 shows the accuracy test results.  All effort models are 
reliable as their MAD and CV are ≤ 40%.   

 

Table 12 Effort Model Reliability Results 

Model SEE 
(%) 

MAD 
(%) 

CV 
(%) R2 KESLOC 

(min) 
KESLOC 

(MAX) 

(1) 0.5 35 38 ** 10 570 

(2) 0.2 18 24 97 18 417 

(3) 0.5 36 43 ** 6 842 

(4) 0.5 40 39 ** 2 226 

(5) 0.5 35 32 88 1 532 

(6) 0.5 36 39 ** 2 201 

(7) 0.5 36 40 88 1 229 

(8) 0.5 37 35 92 1 330 

(9) 0.5 35 15 89 1 221 

(10) 0.4 34 29 91 1 193 

SEE = standard error of estimate; MAD = mean absolute 
deviation; CV = coefficient of variation; R2 = coefficient of 
determination; min = minimum; max = maximum 

 

 

7. SCHEDULE MODEL RESULTS 
 

7.1 Schedule Model Functional Forms 
The resulting models are shown in Table 14.  Each model predicts 
schedule (in months) for a particular application type, given the 
project size (KESLOC) and staffing level (FTE). There are no 
models for vehicle payload, software tools and test software 
application types as the number of data points were lower than 10. 

 

Table 13 Schedule Model Functional Forms 

AT Functional Form Model 

 

PLN 
 

SCHED = 2.657 * KESLOC
0.9995  

* FTE
-0.9854

 
 

(11) 

IIS SCHED = 6.034 * KESLOC
0.6622 

* FTE
-0.6002

 (12) 

SYS SCHED = 7.681 * KESLOC
0.8363

 * FTE
-0.9489

 (13) 

SCI SCHED = 16.87 * KESLOC
0.3082 

* FTE
-0.2603

 (14) 
TEL SCHED = 14.78 * KESLOC

0.4512 
* FTE

-0.4881
 (15) 

RTE SCHED = 18.08 * KESLOC
0.5201 

* FTE
-0.5695

 (16) 
MP SCHED = 9.934 * KESLOC

0.731  
* FTE

-0.5978
 (17) 

VC SCHED = 8.288 * KESLOC
0.8527 

* FTE
-0.772

 (18) 
SCP SCHED = 30.6 * KESLOC

0.4982 
* FTE

-0.4895
 (19) 

 

 
7.2 Schedule Model Validity 
Table 15 shows the schedule model validity results.  All 
regression models are significant as the t-statistics exceed the two-
tailed critical values and the VIF values indicate no 
multicollinearity present in the analysis. 

 

Table 14 Schedule Model Validity Results 

Model 

t-statistics 

VIF N DF 
Coefficient 

A 
Exponent 

B 
Exponent 

C 

(11) 1.7 4.3 -4.8 5.5 10 7 

(12) 4.1 5.6 -3.7 1.4 19 16 

(13) 5.6 5.5 -5.1 4.2 14 11 

(14) 6.1 1.5 -1.4 7.7 14 11 

(15) 16.5 5.5 -6.1 4.6 42 39 

(16) 16.4 7.1 -6.7 2.2 44 41 



Model 

t-statistics 

VIF N DF 
Coefficient 

A 
Exponent 

B 
Exponent 

C 

(17) 3.4 5.8 -4.6 3.1 24 21 

(18) 9.7 6.5 -4.9 4.8 18 15 

(19) 27.8 5.5 -4.3 5.5 28 25 

DF = degrees of freedom; N = sample size; VIF = variance 
inflation factor 

 

7.3 Schedule Model Reliability 
Table 16 shows the accuracy test results.  All schedule models are 
reliable as their MAD and CV are ≤ 40%.   

 

Table 15 Schedule Model Reliability Results 

Model SEE 
(%) 

MAD 
(%) 

CV 
(%) 

KESLOC 
(min) 

KESLOC 
(MAX) 

(11) 0.3 19 19 10 570 

(12) 0.4 31 31 18 417 

(13) 0.4 27 24 7 764 

(14) 0.4 25 24 2 120 

(15) 0.4 28 22 1 312 

(16) 0.3 23 23 5 201 

(17) 0.4 35 34 1 225 

(18) 0.4 34 34 1 330 

(19) 0.3 25 21 1 193 

SEE = standard error of estimate; MAD = mean absolute 
deviation; CV = coefficient of variation; min = minimum; max = 
maximum 

 

8. CONCLUSION 
8.1 Primary Findings 
This study resulted in seven primary findings: 

 
1. The Anderson-Darling test proved that nonlinear regression 

is more appropriate than ordinary least squares for 
developing both, software effort and schedule estimation 
models. 
 

2. The Stepwise regression analysis revealed that software 
effort models based on size and application types are more 
accurate that models based on size alone. Size (KESLOC) 
alone explains 64% of the variation in effort. Size and 
application type explain71% of the variation in effort. 

 
3. The regression results show that the effect of product size 

and staff levels on software development schedule is 
significant, indicating that when KESLOC increases and/or 
staff level decreases, the schedule duration tends to increase. 

 

4. All effort and schedule models were deemed valid as these 
did not violate any of the regression assumptions or 

diagnostic tests, and met the model selection criterion in 
Table 5. 
 

5. Meaningful productivity comparisons (ESLOC/PM) can be 
made when projects are grouped by application types. The 
productivity benchmarks and ranking (from lowest to 
highest) crosschecks with recent studies. 

 

8.2 Challenges to Validity 
Although the models were deemed reliable, they still have a few 
limitations: 

1.  A larger dataset (>400 projects) is required to increase 
model validity and accuracy. A future investigation should 
attempt to control for the impact of operating environment.  

2. A non-random sample was preferred as the researcher had 
access to names in the population and the selection process 
for participants was based on their convenience and 
availability.  However, this process limits the ability to 
generalize to a population.  

3. Two popular application domains were not addressed in this 
study -- Project Control and Training. A future investigation 
should attempt to collect project data for these two domains. 

8.3 Future Research 
The following topics may be considered for future research: 

1. Develop a software effort model using functional 
requirements along with application type with a similar 
experimental design. 
 

2. Instead of developing multiple models, pioneer a single 
software effort estimating model using size, quantitative 
values for application type, and operating environment. 

 

3. Use local data to calibrate COCOMO and/or SEER-SEM 
using application types in lieu of application domains. 

 

8.4 Summary 
 Nineteen software estimation models have been developed 

based on 317 programs implemented within the U.S. 
Department of Defense.  The source data provided valuable 
insight into the costs and schedules associated with the 
vendor’s implementation team in the course of developing 

and implementing software.  
 

  The method is simpler and more viable to use for early 
estimates than traditional parametric cost models.  

 
 The productivity benchmarks (ESLOC/PM) are appropriate 

for validating productivity estimates. 
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