

NASA Instrument Cost Model

NICM

Joe Mrozinski Hamid Habib-Agahi George Fox

June, 2014
Jet Propulsion Laboratory
California Institute of Technology

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

NICM Introduction

- NICM is the <u>NASA Instrument Cost Model</u>
 - Parametric cost model for NASA's space flight instruments
 - Operates at the Instrument System and Subsystem Levels
 - Supports Remote Sensing and In-situ instruments
 - NICM is used across all NASA centers and is also available to restricted release to external organizations.
 - Built off 174 previously flow instruments

NICM Evolution FY 2004-2014

FY04 FY06 FY08 FY10 FY12 FY14

Current NICM Dataset

- Collected data for 262 instruments
- Normalized database
 - 174 of the 262 normalized
 - 111 remote sensing instruments
 - 49 in-situ instruments
- Remote Sensing Instruments Types:
 - Optical, Active micro/sub-millimeter wave, Passive micro/sub-millimeter wave, Particles, and Fields
- In-situ Types based on instrument mounting:
 - Body, Arm/Mast, Atmospheric Probe.

Data Ground Rules & Assumptions

- Includes only instruments launched 1985 and after
- Excludes 100% foreign built instruments
 - However includes some foreign contributed subsystems
- Includes space flight remote sensing and in-situ instruments only
- Includes costs of development summed over phases
 B,C & D (through Launch + 30 days)
 - Excludes advance studies, pre-phase A and phase A costs.
- Excludes advanced technology development costs
 - TRL 1, 2, 3
- Excludes costs for science teams, ground data development and mission operations.
- Includes only development of 1st unit cost
 - Excludes subsequent modified builds or copies
 - Did not estimate nonrecurring or recurring cost

Data Ground Rules & Assumptions

- Database costs are expressed in FY04 \$K. The tools have the capability to express costs in any fiscal year's dollars using the NASA New Start Inflation Indices.
- Full cost accounting practice is assumed for all NASA centers.
- Cost data are assumed to include fee.

NICM Dataset By Instrument Lead Organizations

Total Normalized Instruments: 160

Remote Sensing Instrument Types

Total Normalize Instruments:

111

- Camera,
- Spectrometer,
- Infrared Sounder,
- Laser Altimeter,
- Photometer,
-etc.

- Microwave Radiometer,
- Microwave Imager,
- Microwave Limb Sounder,
- Radar,
- Altimeter,
- Scatterometer,
- ...etc.

- Magnetometer,
- Magnetic Field Instrument,
- Electric Field Instrument,
- Plasma Wave Instrument,
-etc.

- Particle Detector,
- Gamma Ray Spectrometer,
- X-Ray Imager,
- Magnetospheric Imaging Instrument,
- Plasma Spectrometer,
-etc.

In-Situ Instrument Mounting Types

NICM Tool Strengths

- Based on high quality dataset
 - Models validated by statistical analysis
 - Reviewed by subject area experts
 - Complete audit trail and documentation
- Provides probabilistic cost predictions
 - Allows uncertainty for inputs
 - Calculates S-curve for cost & schedule
- Captures Objective Information
 - No adjustable "knobs"
- User friendly database search engine
 - Searches the normalized database for analogy instruments
- Provides Joint Confidence Level (JCL) Analysis

Model Limitations

- NICM VI costing tool does not estimate the following:
 - Airborne instruments
 - Suites of instruments
 - Specialty subsystems, e.g. engineering experiments or demonstrations (e.g. Electra on MRO).
 - Advanced technology developments
 - Nonrecurring or recurring costs
 - Copies/multiple builds
 - Resource estimates, e.g. labor, materials, services, etc.

Methodology

- Cluster Analysis
 - Identifies Instrument Groupings from Attribute Values
 - Assesses Consistency of Groups with Instrument Types
- Principal Components Analysis
 - Standard Data Mining Technique that
 - Finds Significant Cost Drivers from Instrument Attributes
 - Identifies Instrument Data Outliers Revisit data with technical experts
- Bootstrap Cross Validation
 - *Bootstrap*: Process for generating meaningful statistics without assuming asymptotic normality.
 - Cross Validation: Partitioning of data set into training and testing sets. Out-of-sample validation.

Cluster Analysis – Remote Sensing Instrument

Bootstrap Cross Validation

Instrument

#

5

6

8

- Explanation of ".632" Bootstrap Cross-validation
 - Apply the following procedure for each CER (& associated dataset)
 - Sample with replacement from the dataset (using sample size same as dataset)
 - Fit regression model to trial sample selection
 - Predict cost with model for instruments in original dataset that were not selected by trial 10 sampling for testing
 - Repeat above steps 999 times, saving cost deltas for each instrument tested
 - Calculate average model variance (= cost delta^2) for all 999 trials. Average with apparent error of original regression. This approximates the prediction error of the original CER.

Trial #1	Trial #2	 Trial #999
//	//	 $\Delta_{1.999}$
/	$\Delta_{2,2}$	
/	/	 $\Delta_{3.999}$
$\Delta_{4,1}$	/	
//	//	 ///
/	/	 /
$\Delta_{7.1}$	$\Delta_{7.2}$	 $\Delta_{7.999}$
/	1	 ĺ
	/	 //
$\Delta_{10,1}$	/	 $\Delta_{10,999}$

$$\sigma^{2}_{\text{(BCV)}} = (\sum_{i} (\sum_{t} \Delta^{2}_{i,t} / N_{i}) / |\#I|$$
 $\sigma^{2}_{\text{("632")}} = 0.368 \ \sigma^{2}_{\text{(app)}} + 0.632 \ \sigma^{2}_{\text{(BCV)}}$

 N_i = # of times the instrument was used for testing #I = Total number of instruments

Planetary Optical Instrument CER

Sensor Cost (FY04\$K) = 276.7 Mass^{0.426} Power^{0.414} DesignLife^{0.375}

$$R^2 = 0.76$$

$$PE = 0.46$$
 $N = 32$

$$N = 32$$

Planetary Optical Instrument Sensor Cost (\$K FY04) Cost = f(Mass, Power, Launch Date)

Optical Planetary Instruments in System CER				
CIRS	ITS	ONC		
CRISM	MARCI	PMIRR		
CTX	MCS	PPR		
DLRE	MICAS	SSI		
HiRISE	MIPS	TES_MO		
HRI	MRI	THEMIS		
IRAC	MSI	VIMS		
IRS	NIMS			
ISS	NIS			

Earth Orbiting Optical Instrument CER

Sensor Cost (FY04\$K) = 980 Mass^{0.328} Power^{0.357} DataRate^{0.092}

$$R^2 = 0.89$$

$$R^2 = 0.89$$
 $PE = 0.59$ $N = 13$

$$N = 13$$

Optical Instrument Sensor Cost, Earth Orbiting Cost = f(Mass, Power, DataRate)

Optical Earth Orbiting Instruments in System CER				
ACIS	MISR	TOMS		
ACRIM III	MODIS	WFPC1		
ACS	NICMOS	WFPC2		
GLAS	STIS			
HIRDLS	TES			

Schedule Estimating Relationship

Schedule (months)

$$=$$
 A _(Mission Type, Instrument Type) * $Cost$ $^{0.107}$ * E $R^2 = 0.66$, $\sigma_{Predict} = 0.20$, $N = 148$

where *Cost* is in FY04\$M and *E* is lognormal,

 $E = \exp(\varepsilon)$, where ε is Normal with mean 0 & standard

deviation $\sigma_{Predict}$

A(Mission Type, Instrument Type) =

Instrument Type	non-Flagship Planetary	EO & Flagship Planetary
optical	31.3	43.1
active microwave	34.1	46.9
passive microwave	30.9	42.6
particle	34.0	46.7
fields	35.8	49.3
body	31.3	43.1
probe	39.4	54.1
arm/mast	33.4	45.9

JCL Simulation

Goal: Determine the Joint Probability of building instrument below Cost Cap and Schedule Cap

JCL Simulation

Step 1: Run the Cost Estimating Relationship, which yields a Cost S-Curve

Step 2: Draw a Random Cost

Step 3: Plug the Random Cost into the Schedule Estimating Relationship

JCL Simulation

Joint Cost & Schedule Plot

