NASA Instrument Cost Model

NICM

Joe Mrozinski

Hamid Habib-Agahi
George Fox

June, 2014
Jet Propulsion Laboratory
California Institute of Technology
Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

NICM Introduction

- NICM is the NASA Instrument Cost Model
- Parametric cost model for NASA's space flight instruments
- Operates at the Instrument System and Subsystem Levels
- Supports Remote Sensing and In-situ instruments
- NICM is used across all NASA centers and is also available to restricted release to external organizations.
- Built off 174 previously flow instruments

Current NICM Dataset

- Collected data for 262 instruments
- Normalized database
- 174 of the 262 normalized
- 111 remote sensing instruments
- 49 in-situ instruments
- Remote Sensing Instruments Types:
- Optical, Active micro/sub-millimeter wave, Passive micro/sub-millimeter wave, Particles, and Fields
- In-situ Types based on instrument mounting:
- Body, Arm/Mast, Atmospheric Probe.

Data Ground Rules \& Assumptions

- Includes only instruments launched 1985 and after
- Excludes 100% foreign built instruments
- However includes some foreign contributed subsystems
- Includes space flight remote sensing and in-situ instruments only
- Includes costs of development summed over phases $\mathrm{B}, \mathrm{C} \& \mathrm{D}$ (through Launch +30 days)
- Excludes advance studies, pre-phase A and phase A costs.
- Excludes advanced technology development costs - TRL 1, 2, 3
- Excludes costs for science teams, ground data development and mission operations.
- Includes only development of $1^{\text {st }}$ unit cost
- Excludes subsequent modified builds or copies
- Did not estimate nonrecurring or recurring cost

Data Ground Rules \& Assumptions

- Database costs are expressed in FY04 \$K. The tools have the capability to express costs in any fiscal year's dollars using the NASA New Start Inflation Indices.
- Full cost accounting practice is assumed for all NASA centers.
- Cost data are assumed to include fee.

NICM Dataset By Instrument Lead Organizations

Total Normalized Instruments: 160

In-Situ Instrument Mounting Types

n2

Total Normalize Instruments:
 49

- Examples
$\begin{array}{lc}\text { mples: } & \text { Probe } \\ \text { - Huygens Probe on } & 22 \% \\ \text { Cassini } & \\ \text { •Galileo's Probe } & \\ & \\ & \end{array}$

NICM Tool Strengths

(ax)

- Based on high quality dataset
- Models validated by statistical analysis
- Reviewed by subject area experts
- Complete audit trail and documentation
- Provides probabilistic cost predictions
- Allows uncertainty for inputs
- Calculates S-curve for cost \& schedule
- Captures Objective Information
- No adjustable "knobs"
- User friendly database search engine
- Searches the normalized database for analogy instruments
- Provides Joint Confidence Level (JCL) Analysis

Model Limitations

- NICM VI costing tool does not estimate the following:
- Airborne instruments
- Suites of instruments
- Specialty subsystems, e.g. engineering experiments or demonstrations (e.g. Electra on MRO).
- Advanced technology developments
- Nonrecurring or recurring costs
- Copies/multiple builds
- Resource estimates, e.g. labor, materials, services, etc.

Methodology

- Cluster Analysis
- Identifies Instrument Groupings from Attribute Values
- Assesses Consistency of Groups with Instrument Types
- Principal Components Analysis
- Standard Data Mining Technique that
- Finds Significant Cost Drivers from Instrument Attributes
- Identifies Instrument Data Outliers - Revisit data with technical experts
- Bootstrap Cross Validation
- Bootstrap: Process for generating meaningful statistics without assuming asymptotic normality.
- Cross Validation: Partitioning of data set into training and testing sets. Out-of-sample validation.

Cluster Analysis - Remote Sensing Instrument

Na

Bootstrap Cross Validation

Instrument

- Explanation of ".632"

Bootstrap Cross-validation

\#	Trial \#1	Trial \#2	...	Trial \#999
1	II	II		Δ_{1009}
2	1	$\Delta_{2,2}$		II
3	1	1		Δ_{3099}
4	$\Delta_{4,1}$	1	..	I
5	//	//		III
6	1	1		1
7	Δ_{71}	Δ_{72}		$\Delta_{7,999}$
8	I	1	\ldots	1
9	/I	1		II
10	$\Delta_{10,1}$	1	\ldots	$\Delta_{10,999}$

for ach CER (\& associated for each CER (\& associated dataset)

- Sample with replacement from the dataset (using sample size same as dataset)
- Fit regression model to trial sample selection
- Predict cost with model for instruments in original dataset 9 that were not selected by trial 10 sampling for testing
- Repeat above steps 999 times, saving cost deltas for each instrument tested
- Calculate average model variance ($=$ cost delta^2) for all 999 trials. Average with apparent error of original regression. This approximates the prediction error of the original CER.
$\sigma_{\text {(BCV) }}^{2}=\left(\Sigma_{\mathrm{i}}\left(\sum_{\mathrm{t}} \Delta_{\mathrm{i}, \mathrm{t}}^{2} / \mathbf{N}_{\mathrm{i}}\right) / / \# \mathbf{I} \mid\right.$
$\sigma^{2}{ }_{(\text {(G32") }}=0.368 \sigma_{(\text {app })}+0.632 \sigma_{\text {(BCV) }}^{2}$
$\mathrm{N}_{\mathrm{i}}=$ \# of times the instrument was used for testing
\#I = Total number of instruments

Planetary Optical Instrument CER

Sensor Cost $($ FY04\$K $)=276.7$ Mass ${ }^{0.426}$ Power ${ }^{0.414}$ DesignLife ${ }^{0.375}$

$$
\mathrm{R}^{2}=0.76 \quad \mathrm{PE}=0.46 \quad \mathrm{~N}=32
$$

Earth Orbiting Optical Instrument CER

Sensor Cost $($ FY04\$K $)=980$ Mass $^{0.328}$ Power $^{0.357}$ DataRate ${ }^{0.092}$

$$
\mathrm{R}^{2}=0.89 \quad \mathrm{PE}=0.59 \quad \mathrm{~N}=13
$$

Optical Instrument Sensor Cost, Earth Orbiting

Schedule Estimating Relationship

Nas

Schedule (months)

$$
\begin{aligned}
& =\boldsymbol{A}_{\text {Misision Type, Instrument Type) }} * \boldsymbol{C o s t t}^{0.107} * \boldsymbol{E} \\
\mathrm{R}^{2}= & 0.66, \sigma_{\text {Predict }}=0.20, \mathrm{~N}=148
\end{aligned}
$$

where Cost is in FY04\$M and \boldsymbol{E} is lognormal, $\boldsymbol{E}=\exp (\varepsilon)$, where ε is Normal with mean 0 \& standard deviation $\sigma_{\text {Predict }}$
$\boldsymbol{A}($ Mission Type, Instrument Type $)=$

JCL Simulation

Goal: Determine the Joint Probability of building instrument below Cost Cap and Schedule Cap

JCL Simulation

2
Step 1: Run the Cost Estimating Relationship, which yields a Cost S-Curve
Step 2: Draw a Random Cost
Step 3: Plug the Random Cost into the Schedule Estimating Relationship
Step 4: Draw a Random Schedule
Step 5: Repeat 2-4 1000x

JCL Simulation

Joint Cost \& Schedule Plot

