

NASA's Phasing Estimating Relationships

2014 ICEAA Professional Development & Training Workshop Denver, CO June 2014

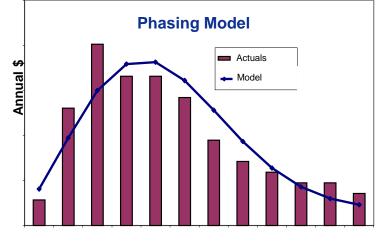
NASA-Funded Research

Darren Elliott – Tecolote Research, Inc. Erik Burgess, Chad Krause – Burgess Consulting Inc.

Los Angeles = Washington, D.C. = Boston = Chantilly = Huntsville = Dayton = Santa Barbara
 Albuquerque = Colorado Springs = Goddard Space Flight Center = Johnson Space Center = Patuxent River = Washington Navy Yard
 Aberdeen = Denver = Edgewood = Ft. Meade = Ft. Monmouth = Dahlgren = Quantico = Montgomery = Ogden = Tacoma
 Eglin AFB = San Antonio = New Orleans = San Diego = Tampa = Vandenberg AFB

PRT#173 – Approved for Public Release

- Introduction
- Data Analysis
- Regression Results
- Summary and Further Research



Phasing Estimating Relationships (PERs)

- Research funded by NASA/OE/CAD
- Estimate annual funding for a mission
 - Given a cost and schedule estimate
 - Based on historical data ... not "optimal"

Scope of PERs presented today:

- Time: System Requirements Review (SRR) to Launch
- Content:
 - Option 1: Total project excluding launch
 - Option 2: Spacecraft and instruments only

Applications:

- Support, assess, and/or defend budgets
- Starting point for analyzing cost & schedule ramifications

Keys to useful PERs:

- Clearly traceable to source data
 - Transparent and verifiable
 - Users can draw directly from analogy missions

Logical drivers and functional form

- Front/back-loading makes sense
- Theoretical and empirical basis
- Differentiates between expenditures and obligation authority
- Useful accuracy metrics
 - Indexed to program events
 - Standard error vs. time

Functional Forms for Phasing

Rayleigh Curve

$$E(t) = 1 - e^{-t^2/2\sigma^2}$$

Norden-Rayleigh Curve

$$E(t) = d \left[1 - e^{-\alpha t^2} \right]$$

John William Strutt, third Baron Rayleigh

- Discovered Argon
- Won Nobel Prize for Physics, 1904
- Didn't care about budget phasing

Peter Norden, IBM, 1960s

- Cared about phasing:
- Studied R&D projects
- Manpower build-up and phaseout follow distribution that happens to be Rayleigh's¹

Weibull curve

$$E(t) = d \left[1 - e^{-\left(\frac{t-\gamma}{\delta}\right)^{\beta}} \right]$$

Ernst Hjalmar Waloddi Weibull (18 June 1887-12 October 1979)

- Swedish engineer, scientist, and mathematician.
- Proposed distribution as statistical model for life data (fatigue, reliability, etc.)
- Did not care about budget phasing

¹Norden, Peter V. "Useful Tools for Project Management," <u>Management of Production</u>, M.K. Starr, Editor. Penguin, Baltimore, Maryland, 1970. PRT#173 – Approved for Public Release

PRT#173 – Approved for Public Release

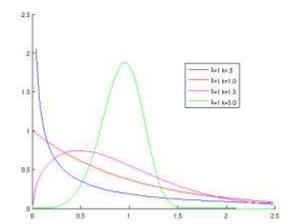
Weibull: Better Empirical Results

• Porter (2001):

- Used Weibull model to predict final costs when funding is curtailed
- Claimed greater accuracy than Rayleigh due to additional parameters
- Unger (2001):
 - Showed that cost and schedule growth are correlated with poor initial phasing
 - Showed that Weibull distribution was a better fit to 37 DoD programs

Brown (2002)

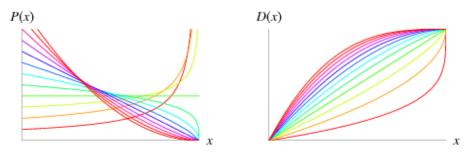
- Use program characteristics to predict Weibull parameters (128 DoD programs)
- Showed that Rayleigh curve was too inflexible


Burgess (2006):

Burgess Consulting, Inc.

- Compared Beta, Rayleigh, and Weibull for 26 space programs
- Weibull performed better in every metric
- Basis for DoD Space System Phasing Model

Weibull Distribution Has Theoretical and Empirical Bases



Beta Distribution

- Beta is from 9th Century BC: 1st consonant in Greek alphabet
- Beta distribution useful for Bayesian statistics (conditional)
- Also works for phasing!
 - Popular empirical curve for fitting manpower
 - Two parameters, BETADIST in Excel[©]
 - Very flexible, but no theoretical basis

$$\frac{dW(t)}{dt} = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} t^{a-1} \bullet (1-t)^{b-1} \qquad 0 < t < 1$$

Weisstein, Eric W. "Beta Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/BetaDistribution.html

PRT#173 – Approved for Public Release

- Data Analysis
- Regression Results
- Summary and Further Research

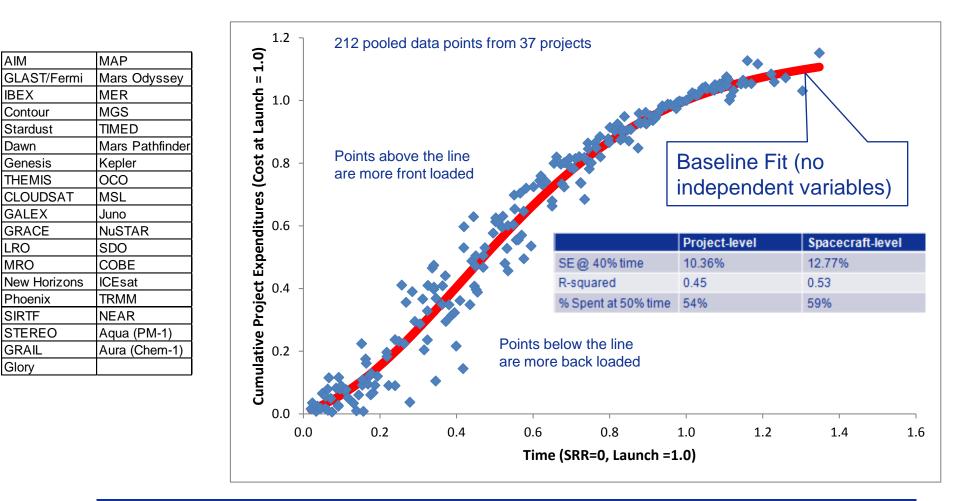
Data Analysis

- CAD prioritized 99 potential projects \rightarrow 37 used in final PERs
- Normalization workbook created for each project
 - All sources identified and/or linked
 - Cost and schedule normalized on 0.0 to 1.0 scales
- First tab in each workbook brought into regression model

Project Norm. Workbooks

 Traceable to CADRe and other data sources

Consolidated Workbook


- All data needed for regression
- May be useful for endusers

Phasing toolkit

- Implements the selected model
- Converts to NOA

Final Normalized Dataset (Project-Level)

Adding Project-specific Independent Variables Will Explain Front/Back-loading behavior

- Introduction
- Data Analysis
 - Regression Results
- Summary and Further Research

What We Expect to See

• Weibull has two parameters, α and β

• Plus a time shift if needed, γ

 $E(t) \cong 1 - e^{-\alpha(t-\gamma)^{\beta}}$

 $E(t) \cong Rt + 1 - e^{-\alpha(t-\gamma)^{\beta}}$

	α	β	γ
Affects	Time of peak expenditures	Ramp-up rate	Shifts curve left or right
Possible Drivers	 Mission class AO vs. Directed Total cost Total duration GFE payload Competitive Instrument timelines Percent new 	 Number of customers, primes, science organizations Total cost % Time from SRR to PDR 	 % Time from SRR to PDR

We add a constant-rate term

- Reflects "standing army"
- Usually higher on large, long projects

Project-level Phasing Estimating Relationship (PER)

$$E(t) = d \left[Rt + 1 - e^{-\alpha(t-\gamma)\beta} \right]$$

$$d = \frac{TOTAL COST}{R+1-e^{-\alpha(1-\gamma)\beta}}$$

$$R = 0.329 + 0.381 \cdot (\text{Total Cost BY13}\$B)$$

$$\alpha = 3.387 - 0.190^{GFE} - 0.540^{AO}$$

$$\beta = 2.31 - 4.64 * \left(\frac{\text{months to PDR}}{\text{months to launch}} \right)$$

$$\gamma = -.2188 + 1.909 * \left(\frac{\text{months to PDR}}{\text{months to launch}} \right)$$

0.8	Relative Strength of Alpha Drivers		
0.6			
0.4			
0.2			
0	GFE (1, 0)	AO (1) v D (0)	

Accuracy Metrics	
SE of Cum Residuals	4.70%
R-squared Rate	0.63
Error @ 40% time	7.58%

Spacecraft-level Phasing Estimating Relationship (PER)

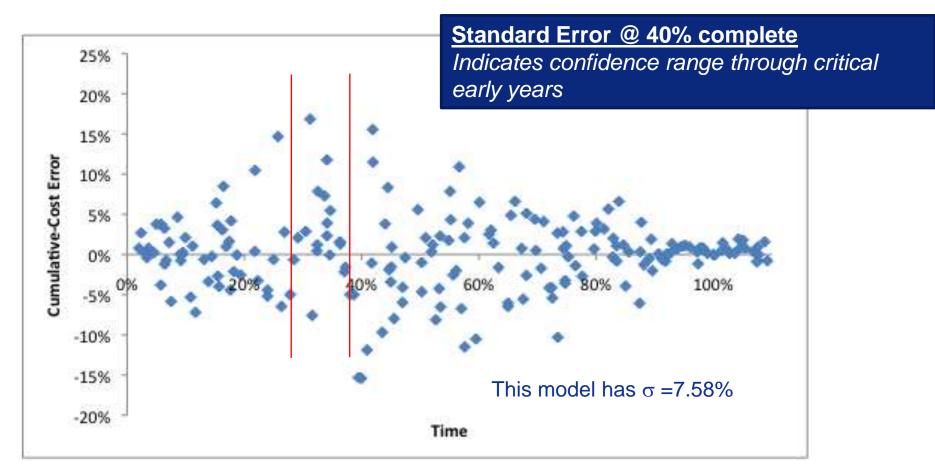
$$E(t) = d \left[Rt + 1 - e^{-\alpha(t-\gamma)\beta} \right]$$

$$d = \frac{TOTAL COST}{R+1-e^{-\alpha(1-\gamma)\beta}}$$

$$R = 0.299 + 0.154 \cdot (\text{Total Cost BY13$B})$$

$$\alpha = 4.438 - 0.405^{GFE} - 0.616^{AO}$$

$$\beta = 2.39 - 4.87 * \left(\frac{months to PDR}{months to launch} \right)$$


$$\gamma = -.211 + 1.88 * \left(\frac{months to PDR}{months to launch} \right)$$

$$GFE (1, 0) \quad AO (1) \lor D (0)$$

Accuracy Metrics	
SE of Cum Residuals	5.64%
R-squared Rate	0.66
Error @ 40% time	9.58%

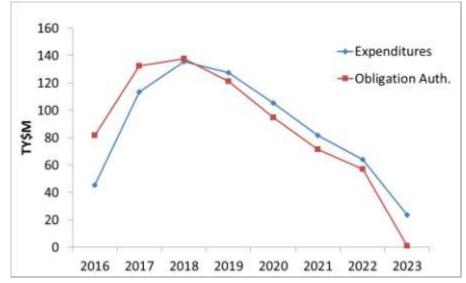
A Powerful Accuracy Metric

Implications:

- PER minus 1σ is a practical minimum
- Schedule slip or program restructure is defensible

PRT#173 – Approved for Public Release

Implementation in Phasing Toolkit


Phasing estimating relationships are based on expenditures

Not the same as a budget profile (NOA)

- Obligation authority must account for total government liability
- Difference between obligation authority and expenditures is the annual outlay rate
- Toolkit allows user to specify outlay rates by year (default is 80/20)

Phasing toolkit computes expenditures and associated NOA

- Implements process published by Lee, Hogue, and Gallagher in 1997³
- Allows quantitative evaluation of alternative profiles (e.g., the available budget!)

³ Lee, David A., Hogue, Michael R., and Gallagher, Mark A. "Determining a Budget Profile from a R&D Cost Estimate," <u>Journal of Cost Analysis</u>, 1997.

- Introduction
- Database
- Results
- Summary and Further Research

Summary and Further Research

Summary:

- Two PERs are presented for NASA projects
- PERs reflect actual experience, consistent with data-driven cost and schedule models ... not optimal
- Traceable to CADRe data
- Error metrics useful for formulating, assessing, or defending budgets

Further research: Assess cost and schedule impacts of deviating from PERs

- Do front-loaded programs cost less or more?
- How strong is the correlation between cost and phasing?
- What is the schedule impact of a funding cut in year *n*?

References

- Abernathy, T. "An Application of the Rayleigh Distribution to Contract Cost Data." Master's Thesis, Naval Postgraduate School, Monterey, California, 1984.
- Brown, Thomas W., White, Edward D., and Gallagher, Mark A. "Weibull-based Forecasting of R&D Program Budgets." Presented to Military Operations Research Society Symposium (MORSS), Ft. Leavenworth, Kansas, 18 June 2002.
- Burgess, Erik. (2006). "R&D Budget Profiles and Metrics." Journal of Parametrics , 11-30.
- Burgess, Erik. (2012) "Modeling R&D Budget Profiles." SCEA/ISPA Joint Annual Conference, Orlando, FL, June 2012.
- Elrod, S.M. "Engineering and Manufacturing Development Cost Estimation: An Analysis of Combined Time-Phased and Classical Techniques." Master's Thesis, Naval Postgraduate School, Monterey, California, 1993.
- Gallagher, Mark A., and Lee, David A. "Final-Cost Estimates for Research and Development Programs Conditioned on Realized Costs," <u>Military Operations Research</u>, V2 N2, 1996.
- Garcia, Rick. "Ground Radar Expenditure Phasing Analysis," presented at the International Cost Estimating and Analysis Association Annual Symposium, New Orleans, LA, 18 June 2013.
- Lee, D., Hogue, M., and Hoffman, D. "Time Histories of Expenditures for Defense Acquisition Programs in the Development Phase," presented at the 1993 Annual Meeting of the International Society for Parametric Analysis.
- Lee, David A., Hogue, Michael R., and Gallagher, Mark A. "Determining a Budget Profile from a R&D Cost Estimate," <u>Journal of Cost Analysis</u>, 1997.
- Lee, David. "Norden-Rayleigh Analysis: A Useful Tool for EVM in Development Projects," presented to the CPM Spring Conference, April 2002.
- National Aeronautics and Space Administration (NASA). <u>NASA Cost-Estimating Handbook</u>, 2002, 2008.
- Naval Center for Cost Analysis (NCCA). "Inflation Indices & Outlay Profile Factors." March 2000.
- Norden, Peter V. "Useful Tools for Project Management," <u>Management of Production</u>, M.K. Starr, Editor. Penguin, Baltimore, Maryland, 1970.
- Porter, Paul H. "Revising R&D Program Budgets when Considering Funding Curtailment with a Weibull Model," Master's Thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, March 2001.
- Unger, Eric J. "Relating Initial Budget to Program Growth with Rayleigh and Weibull Models," Master's Thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, March 2001.
- Watkins, Harry. "An Application of Rayleigh Curve Theory to Contract Cost Estimation and Control," Master's Thesis, Naval Postgraduate School, Monterey, California, March, 1982.

