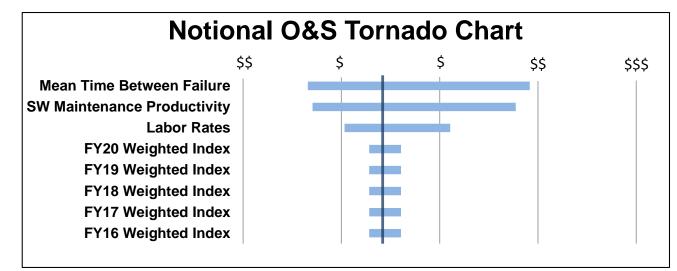
Risk Adjusted Inflation Indices

James "Jay" R Black, CCEA Operations Research Analyst / Cost Team Leader Naval Sea Systems Command Cost Engineering and Industrial Analysis Division (NAVSEA 05C)

Presented at the 2014 ICEAA Professional Development and Training Workshop June, 2014

Introduction

- It is often observed that Office of the Secretary of Defense (OSD) inflation rates are different than prime contractor specific inflation rates seen in:
 - Forward Pricing Rate Agreements/Proposals (FPRAs/FPRPs)
 - Commodity group composite rates (e.g. Global Insight indices).
- Yet, it is a standard practice in many cost estimating organizations to use OSD inflation rates for escalating future-year costs in estimates without giving consideration to a range of different possible inflation rates
- This can result in cost estimates that underestimate the effects of inflation
 - Especially for programs that have many years of procurement and/or operations & support (where the compounding effects of inflation are significant)
- This presentation proposes an approach to create risk adjusted inflation indices based on defined risk distributions, thus giving consideration to a range of different inflation rate possibilities


 Before sharing the proposed approach, I'd like to share a different approach I've seen previously...

Discreet Distributions on Weighted Indices

- One approach that has been used to model uncertainty on future-year inflation is to define discreet distributions on the weighted indices for each individual year, for example:
 - FY20 Weighted Index = distribution(parameter1, parameter2,...)
 - FY19 Weighted Index = distribution(parameter1, parameter2,...)
 - FY18 Weighted Index = distribution(parameter1, parameter2,...)
 - FY17 Weighted Index = distribution(parameter1, parameter2,...)
 - FY16 Weighted Index = distribution(parameter1, parameter2,...)
 - Where the most likely value is usually the OSD weighted index for that year
- This approach has limitations...

Discreet Distributions on Weighted Indices (cont.)

- This approach has limitations:
 - The cumulative effect of the uncertainty around all the weighted indices cannot be easily compared to the other cost risk drivers
 - I.e., "If FY16-20 Inflation were combined, where would it rank on the Tornado Chart?"
 - Often results in a tornado chart that resembles:

- Also, using discreet distributions on the weighted indices does not influence the compounding effect of each year's inflation rate on the following years
 - I.e., the results of the risk simulation for FY16 do not affect FY17, FY18, and so on

• On to the proposed approach...

Building Weighted Indices 101

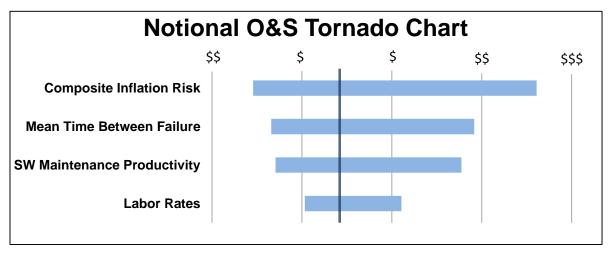
• Let's review how weighted indices are built up

• Example OSD inflation table:

Fiscal	Inflation	Raw Index	Outlay Phasing							Weighted
Year	Rate %		YEAR1	YEAR2	YEAR3	YEAR4	YEAR5	YEAR6	Total 🗨	Index
2004	2.00%	1.000	57.4%	32.7%	4.6%	2.4%	1.2%	1.7%	100.0%	1.017
2005	2.80%	1.028	58.6%	32.2%	4.3%	2.2%	1.1%	1.6%	100.0%	1.045
2006	3.10%	1.060	61.0%	29.8%	4.3%	2.2%	1.1%	1.6%	100.0%	1.074
2007	2.70%	1.088	57.5%			1	1%	1.6%	100.0%	1.102
2008	2.40%	1.115	53.6%	Weig	hted _n -		6%	0.0%	100.0%	1.124
2009	1.50%	1.131	48.6%	Inde	$x = \sum_{i=1}^{n} x_{i}$	$(\mathbf{O_i} / \mathbf{I})$	7%	0.0%	100.0%	1.139
2010	0.80%	1.140	53.4%		ے i=1	$\mathbf{U}_{\mathbf{i}}$	i) 6%	0.0%	100.0%	1.154
2011	2.00%	1.163	31.4%	-00.170	1-1	<u> </u>	5%	0.0%	100.0%	1.181
2012	1.80%	1.184	3		o 0	041	Dl	0/	100.0%	1.204
2013	2.10%	1.209	3	Raw Ind			,	0	100.0%	1.228
2014	1.90%	1.232	$_{3}$ n = 1	number	of years	in out	lay profi	lle	100.0%	1.251
2015	1.90%	1.255	31.4%	60.4%	4.6%	2.1%	1.5%	0.0%	100.0%	1.275
2016	1.90%	1.279	31.4%	60.4%	4.6%	2.1%	1.5%	0.0%	100.0%	1.299
2017	1.90%	1.304	31.4%	60.4%	4.6%	2.1%	1.5%	0.0%	100.0%	1.324
2018	1.90%	1.328	31.4%	60.4%	4.6%	2.1%	1.5%	0.0%	100.0%	1.349
2019	1.90%	1.354	31.4%	60.4%	4.6%	2.1%	1.5%	0.0%	100.0%	1.374
2020	1.90%	1.379	31.4%	60.4%	4.6%	2.1%	1.5%	0.0%	100.0%	1.401

- Here, the weighted index for 2004 is generated using the ratio method
- Also, note that OSD future-year inflation rate %'s are all the same
 - I.e. from FY15 and onward, every year is 1.9%

Proposed Approach


- The proposed approach is for future-year escalation only
 - Prior year escalation rates are actuals (i.e. can't change the past)
- The proposed approach is to:
 - Define a single distribution for all the future-year inflation rates of that appropriation type
 - Then, assign the output of the risk simulation on that distribution to each year's inflation rate %
 - For example:
 - Composite Inflation Risk = distribution(parameter1, parameter2,...)

Fiscal	Inflation Rate Raw			Weighted						
Year	%	Index	YEAR1	YEAR2	YEAR3	YEAR4	YEAR5	YEAR6	Total	Index
2015		1.255	31.4%	60.4%	4.6%	2.1%	1.5%	0.0%	100%	1.275
2016	Each Year's	1.279	31.4%	60.4%	4.6%	2.1%	1.5%	0.0%	100%	1.299
2017	set to the	1.304	31.4%	60.4%	4.6%	2.1%	1.5%	0.0%	100%	1.324
2018	output of the	1.328	31.4%	60.4%	4.6%	2.1%	1.5%	0.0%	100%	1.349
2019	risk simulation	1.354	31.4%	60.4%	4.6%	2.1%	1.5%	0.0%	100%	1.374
2020		1.379	31.4%	60.4%	4.6%	2.1%	1.5%	0.0%	100%	1.401

These weighted indices are now risk adjusted

Proposed Approach

 This approach produces a tornado chart where the cumulative effect of the uncertainty around all the weighted indices can be compared to the other cost risk drivers:

- Also, modeling uncertainty with this approach influences the compounding effect of each year's rate on the following years
 - I.e., the FY15 raw index, affects FY16, which affects FY17 and so on

• As with any cost risk analysis, make sure to assign correlation between each distribution

- Thank you to the following individuals for their inputs to this presentation:
 - Jake Mender of the Naval Center for Cost Analysis
 - Tim Lawless and Lisa Pfeiffer of the Naval Sea Systems Command Cost Engineering and Industrial Analysis Division (NAVSEA 05C)