

2014 ICEAA Professional Development & Training Workshop June 10-13, 2014 • Denver, Colorado

Expert Elicitation of a Maximum Duration using Risk Scenarios

Presented by:

Marc Greenberg Cost Analysis Division (CAD) National Aeronautics and Space Administration

A Day in the Life of a Cost Analyst ...

How Does A Cost Analyst REALLY Quantify the Unquantifiable?

- A. Use common estimating methods: analogy, parametric & build-up
- **B.** Use subject matter expert opinion
- C. Incorporate cost risk & uncertainty analysis techniques
- D. Yell out a number with conviction (like Dogbert the Quantifier)
- E. Have the estimate "magically" equal what's in your budget
- F. Combination of A, B and/or C

Estimating Minimum & Maximum Values

Perhaps the most common method of uncertainty analysis used today is where the FIRST step is to elicit Minimum & Maximum values directly from an expert based upon her Most-Likely value.

The 2 scenario-based methods presented herein take an alternative approach where the FIRST step is to elicit "risk scenarios" that enable an expert to describe risks & risk intensities that occur in typical, optimistic and pessimistic scenarios.

By having such scenarios already described, we now have (i) a justification for what risk factors contribute to the uncertainty and (ii) a means to estimate to what extent each risk factor "drives" the uncertainty in order to estimate Minimum & Maximum values.

Outline

- Purpose of Presentation
- Background
 - The Uncertainty Spectrum & Expert Judgment Elicitation
 - Five Expert Elicitation (EE) Phases
- Case Study: Estimate Morning Commute Time
 - Establish Framework of Interview Session
 - Create Objective Hierarchy
 - Brainstorm Risk Factors then Create "Risk Reference Table"
 - Includes descriptions of each Risk Factor
 - Method I: Scenario-Based Ratios (SBR) Method
 - Method 2: Scenario-Based Values (SBV) Method
 - Suggested use of SBR and SBV Methods in Practice
- Conclusion & Potential Improvements / Future Work

Purpose of Presentation

Demonstrate two expert elicitation methods that ...

. Model expert's inputs as a triangular distribution

- Two methods that use risk scenarios (derived from an objective hierarchy)
 - Method I (existing): Scenario-Based Ratios (SBR) Method
 - Method 2 (new): Scenario-Based Values (SBV) Method
- Not too complex to be impractical; not too simple to be too subjective

2. Estimate each risk factor's contribution to uncertainty

- e.g., "Bad weather" contributes 25% or 22 minutes to duration uncertainty

3. Incorporate techniques to account for expert bias

- Facilitates interview process with use of visual aids
- Uses SBV method's outputs to calibrate SBR method's outputs

4. Are structured in a way to justify expert inputs

 Using "risk reference table", expert gives rationale for values she provides under for each scenario

As with most subjective methods, there are many ways to do this.

The Uncertainty Spectrum

No Estimate Required

Expert judgment should only be used when there is (i) lack of time for collection & analysis of historical data, (ii) lack of available historical data or (iii) the design is incomplete

Expert Judgment Definition

Contrary to popular belief, this Dilbert Cartoon does NOT give the best definition of Expert "Judgment" ③

Try this one instead ...

Expert Judgment (for estimating) are value estimates developed solely on the basis of a person's experience & knowledge of the process or product being estimated.

Expert Judgment Elicitation (EE) Procedure

Source: Making Hard Decisions, An Introduction to Decision Analysis by R.T. Clemen

Expert Elicitation (EE) Phases

- **Expert Elicitation consists of five phases:** (note that Phases 4 & 5 are iterative)
- I. Motivating the expert
- 2. Structuring objective, assumptions & process
 - ..., 3. Training (conditioning) the expert
 - → 4. Assessing (encoding) expert's responses
 - Q&A Expert's experienced-based opinion is elicited
 - Quantitative results w/ documented rationale
 - 5. Verifying encoded values & documentation

Our example that follows covers only phases 1,2 & 4

Example: Estimate Commute Time

• Why this example?

- Fairly easy to find a subject matter expert
- It is a parameter that is measurable
- Most experts can estimate a most likely time
- Factors that drive uncertainty can be readily identified
- People general care about their morning commute time!

Assume only Given a Most-Likely Commute = 55 minutes

Establish Framework of Interview Session

I. Motivating the expert

- Explain the importance & reasons for collecting the data
- Explore stake in decision & potential for motivational bias

2. Structuring objective, assumptions & process

- Must be explicit about what you want to know & why you need to know it
 - Clearly define variable & avoid ambiguity and explain data values that are required (e.g. hours, dollars, %, etc)

You should have worked with SME to develop the Objective and up to 5 Major Assumptions in the table below

Objective: Develop uncertainty distribution associated with time (minutes) it will take for your morning commute starting 1 October 2014.

Assumption 1: Your commute estimate includes only MORNING driving time
Assumption 2: The commute will be analogous to the one you've been doing
Assumption 3 Period of commute will be from 1 Oct 2015 thru 30 Sep 2016
Assumption 4 Do not try to account for extremely rare & unusual scenarios
Assumption 5: Unless you prefer otherwise, time will be measured in minutes

Create Objective Hierarchy

Q: To minimize commute time, what is your primary objective?

- A: Maximize average driving speed
- Q: What are primary factors that can impact driving speed?
- A: Route Conditions, # of Vehicles on Roads, Mandatory Stops & Driving Efficiency

Q: Is it possible that other factors can impact driving speed?

A: Yes ... (but SME cannot specify them at the moment)

Objective	Means	
	These are Primary Factors	
	that can impact Objective	
	Route Conditions	
Maximize Average Driving	# of Vehicles on Roads	
Speed	Mandatory Stops	
	Driving Efficiency	
	Undefined	

The utility of this Objective Hierarchy is to aid the Expert in:

- (a) Establishing a Framework from which to elicit most risk factors,
- (b) Describing the relative importance of each risk factor with respect to means & objective, and

(c) Creating specific risk scenarios

Unlike Dilbert, Risks affecting the Objective can be Specified, Described and Well Understood by All

Brainstorm Risk Factors

SME & Interviewer brainstorm risk factors using Objective Hierarchy as a guide:

Objective	Means
	These are Primary Factors
	that can impact Objective
	Route Conditions
Maximize Average Driving	# of Vehicles on Roads
Speed	Mandatory Stops
	Driving Efficiency
	Undefined

- Q: What are some factors that could degrade route conditions?
- A: Weather, Road Construction, and Accidents
- Q: What influences the # of vehicles on the road in any given morning?
- A: Departure time, Day of the Work Week, and Time of Season (incl. Holiday Season)
- ^{*}Q: What is meant by Mandatory Stops?
- A: By law, need to stop for Red Lights, Emergency Vehicles and School Bus Signals
- **Q: What can reduce Driving Efficiency?**
- A: Picking the "Slow Lane", Talking on the Cell Phone and Driving Below Speed Limit

Create "Risk Reference Table"

The Risk Factors are then Mapped to the Objective Hierarchy.

Then the SME and Interviewer work together to describe risk factors.

Objective	Means	Risk Factors	Description (can include examples)			
	These are Primary Factors	These are Causal Factors	Subject Matter Expert's (SME's) top-level			
	that can impact Objective	that can impact Means	description of each Barrier / Risk			
		Weather	Rain, snow or icy conditions. Drive into direct sun.			
	Route Conditions	Accidents	Vehicle accidents on either side of highway.			
		Road Construction	Lane closures, bridge work, etc.			
Maximize		Departure Time	SME departure time varies from 6:00AM to 9:00AM			
Average	# of Vehicles on Roads	Day of Work Week	Driving densities seem to vary with day of week			
Driving		Season & Holidays	Summer vs. Fall, Holiday weekends			
Speed		Red Lights	Approx 8 traffic intersections; some with long lights			
	Mandatory Stops	Emergency Vehicles	Incl. police, firetrucks, ambulances & secret service			
		School Bus Signals	School buses stopping to pick up / drop off			
		Pick Slow Lane	Just check out opening scene of "Office Space" :)			
	Driving Efficiency	Talking on Cellphone	On rare occasion, will call someone during commute			
		Driving below Speed Limit	Can be due to less work pressure or not feeling well			
	Undefined	Undefined	It's possible for SME to exclude some risk factors			

This is the most time-intensive part of interview process

It will serve as the reference for the Methods that follow

Scenario-Based Ratios (SBR) Method ¹

Q: What are the top 6 risk factors that impact your commute time?

A: Top 3 are ... #1. Accidents, #2. Weather and #3. Road Construction

Next 3 are ... #4. Departure Time, #5. Red Lights and #6. Seasons & Holidays

Through the use of a simple Pairwise Comparison technique, the Expert can provide relative importance of each risk factor

Because 6 Risk Factors = 15 pairs, use of Visual Aids is recommended (see examples below):

Pair #1	Pair	wis	e Co	mp	aris	son	wrt	IMF	ACI	rs c	on A	ver	age	Dr	ivin	g Sj	pee	d
	Risk Factor Weather ▲ LHS is More Important						Risk Factor Accidents -											
	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	
	Absolutely More Important 0 Very Strongly More Important 1 Strongly More Important 0 Stightly More Important 0						Equally Important		Slightly More Important		Strongly More Important		Very Strongly More Important		Absolutely More Important			
Q1	Equal	?						No		(If	No	, th	en	ans	swe	er C	(2)	
Q2	More Important? Ac					Acc	ide	nts										
Q3	Likert	SC	ore	=				1.5										

Doi:##11	Dei													Dr		- 0		,
Pall #11	Pai	Pairwise Comparison wrt IMPACTS on Average Driving Speed											a					
	Risk Factor Road Construction LHS is More Important						Risk Factor Red Lights 											
	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9	
	Absolutely More Important		Very Strongly More Important		Strongly More Important		Slightly More Important		Equally Important		Slightly More Important		Strongly More Important		Very Strongly More Important		Absolutely More Important	
Q1	Equa	1?						No		(If	No	, th	en	ans	swe	er C	(2)	
Q2	More	e Im	por	tan	t?			Roa	ad C	ons	stru	icti	on					
Q3	Liker	t Sc	ore	=				4										

1. A version of a paper by LaserLight Networks, Inc, "Estimating Cost Uncertainty when only Baseline Cost is Available." Their paper is based upon "A Quantification Structure for Assessing Risk-Impact Drivers," R.L Abramson and S.A. Book, 1990 Slide 16

SBR Method: Pairwise Comparison Results

Pairwise comparison of risk factors results in the following raw values:

Raw P/W Weighting	Weather	Accidents	Road Construction	Departure Time	Red Lights	Season & Holidays
Weather	1	2/3	1 1/2	2	4	8
Accidents	1 1/2	1	2	2 1/2	6	9
Road Construction	2/3	1/2	1	2	4	7
Departure Time	1/2	2/5	1/2	1	2	5
Red Lights	1/4	1/6	1/4	1/2	1	2
Season & Holidays	1/8	1/9	1/7	1/5	1/2	1
Sum	4.0	2.8	5.4	8.2	17.5	32.0
Rank	2	1	3	4	5	6

The raw values are normalized to a 100% scale, then summed to Weights per Risk Factor:

If Expert is not comfortable with calculated Weights, need to revisit (a) selection of her top 6 risk factors and/or (b) expert-provided Pairwise Comparisons

SBR Method: Intensity Scale & Expert Inputs

Create Intensity Scale for 6 risk factors that impact commute time

Intensity Scale	Weather	Accidents	Road Construction	Departure Time	Red Lights	Season & Holidays	Value	Normalized
Low	Perfect	None	None	< 7:00AM	No lights	Never	 1	0.061
Medium-Low	Some wind	Evacuated car on side of road	Shoulder work at 1 location	7:15AM	1 light	Rarely	 1.5	0.091
Medium	Some rain	1 accident on shoulder	Shoulder work at 2 locations	7:30AM	2 lights	Half of commutes	 2	0.121
Medium-High	Rain & Wind	2 accidents on shoulder	1 of 3 lane closures	8:00AM	3 lights	More than half of commutes	 3	0.182
High	Rain & Snow	Accident shutting 1 lane	2 of 3 lane closures	8:15AM	4 lights	>75% of commutes	 4	0.242
Very High	Snow & Wind	Accident shutting 2 lanes	Temporary road closure	8:30AM	> 4 lights	Nearly Always	5	0.303

Expert provides "intensity" levels for each risk factor in each scenario

Scenario Intensities	Weather	Accidents	Road Construction	Departure Time	Red Lights	Season & Holidays	
Most Likely Intensities	Medium-Low	Low	Medium-Low	Medium	Medium	Medium-Low	Typical commute
Optimistic Intensities	Low	Low	Low	Medium-Low	Medium-Low	Low	Best case commute
Pessimistic Intensities	Very High	Very High	High	High	High	High	→ Worst case commute

SBR Method: Intensity x Weight = Score

Using the intensity scale from previous slide, the following inputs ...

Scenario Intensities	Weather	Accidents	Road Construction	Departure Time	Red Lights	Season & Holidays	
Most Likely Intensities	Medium-Low	Low	Medium-Low	Medium	Medium	Medium-Low	→ Typical commute
Optimistic Intensities	Low	Low	Low	Medium-Low	Medium-Low	Low	Best case commute
Pessimistic Intensities	Very High	Very High	High	High	High	High	→ Worst case commute

... are replaced with respective normalized values from intensity scale, then multiplied by respective risk factor weights (ref. slide 13) to produce a "Score" for each Scenario ...

	Risk Factor	Weights:					
	0.2471	0.3371	0.2029	0.1249	0.0579	0.0301	SCORE
Scenario Intensities	Weather	Accidents	Road Construction	Departure Time	Red Lights	Season & Holidays	Sum Product
Most Likely Intensities	0.091	0.061	0.091	0.121	0.121	0.091	0.0862
Optimistic Intensities	0.061	0.061	0.061	0.091	0.091	0.061	0.0661
Pessimistic Intensities	0.303	0.303	0.242	0.242	0.242	0.242	0.2778

SBR Method: Ratios to Get Min & Max

Use Scores from the 3 scenarios to calculate Ratios wrt Most Likely Score

- Optimistic Score / Most-Likely Score = 0.0661 / 0.0862 = 0.7671
- Pessimistic Score / Most-Likely Score = 0.2778 / 0.0862 = 3.2218

Given a Most Likely Commute of 55 minutes, apply these Ratios to get:

- Minimum Commute Time = $0.7671 \times 55 = 42.2$ minutes
- Maximum Commute Time = 3.2218 x 55 = 177.2 minutes

SBR Method: Risk Factor Contributions

Using weights (slide 13), "Accidents" contribute most to dispersion (46 minutes)

But this is not accounting for impact of "undefined" risk factor.

Therefore, Interviewer must ask the Expert:

Q: Suppose you knew the state of all 6 risk factors just prior to your commute. On average, within a spread of how many minutes could you estimate your commute time?

A: About 15 minutes

Risk Factor	Impact	
Weather	30	
Accidents	41	
Road Construction	24	,
Departure Time	15	
Red Lights	7	
Season & Holidays	4	
Undefined	15	
SUM	135.0	

Scenario-Based Values (SBV) Method

Using the Risk Reference Table (Slide 15) ...

- 1. Get Expert to talk about risks she experiences during "typical" commute scenario. Then ask her to provide time impacts associated with each risk she experiences.
 - Result: 6 discrete time impacts associated with each of 6 risk factors
- Get Expert to talk about risks she experiences during a worst case commute scenario (Worst Case #1). Then ask her to provide time impacts associated with each risk she experiences. Helpful Hint: Use her "Most Likely" results as a reference.
 - Result: 9 discrete time impacts associated with each of 9 risk factors
- Get Expert to talk about risks she experiences during another worst case commute scenario (Worst Case #2). Then ask her to provide time impacts associated with each risk she experiences. Helpful Hint: Use "Worst Case #1" results as a reference.
 - Result: 11 discrete time impacts associated with each of 11 risk factors
- 4. Sum up **Time Impacts** of Each Scenario
- 5. Use Step 4 results to Determine **Minimum** and **Maximum** commute times.
 - For **Minimum**, the Sum is subtracted from the Most-Likely commute time.
 - For **Maximum**, the Sum is added to the Most-Likely commute time.
- 6. Select the **Higher Maximum** value of the Two Worst Case Scenarios.
- 7. Display **Triangular Distribution** associated with Minimum, Most-Likely and Maximum values.
- 8. Display contribution of risk factors to uncertainty (in minutes and %).
- 9. Iterate back through Steps 1 8 as necessary based upon Expert's feedback on output.

SBV Method: Most-Likely Scenario

6 risk factors impact most-likely commute time

Given by Expert: Most-Likely Commute Time = 55 minutes

Assume you drive same route in morning; no MAJOR detours & no random stops (e.g. to pick up a coffee) Assume you are NOT driving in extreme (dangerous) weather.

Assume you will turnaround or "stop" commute if foresee extreme time (e.g. more than 3 hour commute). You should also do your best to account for correlated effects among risk factors within this scenario.

				Most Likely	Most Likely
Objective	Means	Risk Factors	Most Likely or Typical Scenario	Impact	Rank
	These are Primary Factors	These are Causal Factors	What SME experiences on a typical	SME guess on	Top risks
	that can impact Objective	that can impact Means	morning commute	on time added	impacting
				to Most Likely	Objective
				(in minutes)	
		Weather	Dry conditions w/direct sun, Occasional rain	2	3
	Route Conditions	Accidents	No accidents on a typical commute	0	
		Road Construction	Occasional shoulder work	3	2
Maximize		Departure Time	Depart near start of rush hour (7:30 - 7:45am)	5	1
Average	# of Vehicles on Roads	Day of Work Week	(Not applicable)	0	
Driving		Season & Holidays	(Not applicable)	0	
Speed		Red Lights	Typically 'catch' 2 "long" red lights	3	2
	Mandatory Stops	Emergency Vehicles	Typcially no emergency vehicles en route	0	
		School Bus Signals	Typically no stops needed for school bus	0	
		Pick Slow Lane	Minor issues (Several lanes are "equally" bad)	1	4
	Driving Efficiency	Talking on Cellphone	No calls in morning	0	
		Driving below Speed Limit	Drive with flow of traffic	0	
	Undefined	Undefined	Undefined	1	4
		*	Impact versus MIN commute time =	15	minutes
"I Indofi	nod" - Export acknowledges		Subtract from MOST LIKELY commute =	55	minutes
			MINIMUM commute time =	40	minutes

"Undefined" – Expert acknowledges that there could be other known and unknown factors

SBV Method: Worst Case Scenario I

9 risk factors impact commute time for this worst case scenario

Given by Expert: Most-Likely Commute Time = 55 minutes

Assume you drive same route in morning; no MAJOR detours & no random stops (e.g. to pick up a coffee) Assume you are NOT driving in extreme (dangerous) weather.

Assume you will turnaround or "stop" commute if foresee extreme time (e.g. more than 3 hour commute). You should also do your best to account for correlated effects among risk factors within this scenario.

				Worst Case	Worst Case
Objective	Means	Risk Factors	Worst Case Scenario 1	Impact	Rank
	These are Primary Factors	These are Causal Factors	What SME believes is a feasible	SME guess on	Top risks
	that can impact Objective	that can impact Means	worst case morning commute	on time added	impacting
				to Most Likely	Objective
				(in minutes)	
		Weather	Drove in heavy rain; likely led to accident	15	2
	Route Conditions	Accidents	Severe accident that shut 2 lanes	50	1
		Road Construction	Lane closures on bridge due to accident	0	
Maximize		Departure Time	Depart during rush hour peak (8:30am)	10	3
Average	# of Vehicles on Roads	Day of Work Week	More traffic on Tuesdays & Wednesdays	4	6
Driving		Season & Holidays	Shopping traffic (mid-Nov)	5	5
Speed		Red Lights	Caught' 4 red lights en route	8	4
	Mandatory Stops	Emergency Vehicles	Had to pull over for 2 emergency vehicles	2	7
		School Bus Signals	Bus pick-ups are prior to rush hour	0	
		Pick Slow Lane	Can be stuck in a lane behind metro bus	2	7
	Driving Efficiency	Talking on Cellphone	If accident, typically will make phone call	0	
		Driving below Speed Limit	Already driving slowly from Route Conditions	0	
	Undefined	Undefined	Undefined	5	5
		1	Impact versus Most Likely commute time =	101	minutes
"Undefined" – Expert acknowledges			Add to MOST LIKELY commute =	55	minutes
that there early he athen in early			MAXIMUM commute time =	156	minutes

that there could be other known and unknown factors

SBV Method: Worst Case Scenario 2

II risk factors impact most-likely commute time

Given by Expert: Most-Likely Commute Time = 55 minutes

Assume you drive same route in morning; no MAJOR detours & no random stops (e.g. to pick up a coffee) Assume you are NOT driving in extreme (dangerous) weather.

Assume you will turnaround or "stop" commute if foresee extreme time (e.g. more than 3 hour commute). You should also do your best to account for correlated effects among risk factors within this scenario.

				Worst Case	Worst Case
Objective	Means	Risk Factors	Worst Case Scenario 2	Impact	Rank
	These are Primary Factors	These are Causal Factors	What SME believes is a feasible	SME guess on	Top risks
	that can impact Objective	that can impact Means	worst case morning commute	on time added	impacting
				to Most Likely	Objective
				(in minutes)	
		Weather	Drove in light snow	20	2
	Route Conditions	Accidents	Witnessed 2 accidents on side of road	35	1
		Road Construction	Lane closures unrelated to accidents	15	3
Maximize		Departure Time	Departed during rush hour peak (8:30am)	10	4
Average	# of Vehicles on Roads	Day of Work Week	More traffic on Tuesdays & Wednesdays	4	7
Driving		Season & Holidays	Shopping traffic (mid-Nov)	5	6
Speed		Red Lights	Caught' 4 red lights en route	8	5
	Mandatory Stops	Emergency Vehicles	Salt trucks caused additional slow down	2	8
		School Bus Signals	Bus pick-ups are prior to rush hour	0	
		Pick Slow Lane	Can be stuck in a lane behind metro bus	2	8
	Driving Efficiency	Talking on Cellphone	Could do a phone call unrelated to risks	2	8
		Driving below Speed Limit	Already driving slowly from Route Conditions	0	
	Undefined	Undefined	Undefined	5	6
		*	Impact versus Most Likely commute time =	108	minutes
			Subtract from MOST LIKELY commute of	55	minutes

"Undefined" – Expert acknowledges that there could be other known and unknown factors

This is higher than Max from Worst Case Scenario

MAXIMUM commute time =

minutes

163

SBV Method: Min, Most-Likely and Max

Given a Most Likely Commute of 55 minutes, estimated:

- Minimum Commute Time = 55 15 = 40 minutes
- Maximum Commute Time = 55 + 108 = 163 minutes

Can use these Min and Max values to calibrate SBR results

SBV Method: Risk Factor Contributions

Time Contribution:

from Minimum to Most Likely (in minutes)

Risk Factor	Impact	% of Total	
Weather	2	13%	
Road Construction	3	20%	
Departure Time	5	33%	
Red Lights	3	20%	
Pick Slow Lane	1	7%	
Undefined	1	7%	
SUM	15.0	100%	

Time Contribution:

from Most Likely to Maximum (in minutes)

Risk Factor	Impact	% of Total
Weather	20	19%
Accidents	35	32%
Road Construction	15	14%
Departure Time	10	9%
Day of Work Week	4	4%
Season & Holidays	5	5%
Red Lights	8	7%
Emergency Vehicles	2	2%
Pick Slow Lane	2	2%
Talking on Cellphone	2	2%
Undefined	5	5%
SUM	108.0	100%

Time Uncertainty Contribution by Risk Factor

From Most Likely Commute Time of 55 minutes to Worst Case Commute Time of 163 minutes

provides a more detailed look (vs. SBR Method) at what drives the uncertainty

SBV Method

Suggested Use of SBR & SBV Methods in Practice

The most critical effort is to create a "Risk Reference Table"

And it will only serve schedule / cost elements that share these risks & objective

Can take >2 hours to set up each, but can be used again for other estimates

SBR Method takes a little time to set-up, primarily because Intensity Scale is customized to specific risk factors

After which the Expert can efficiently select Intensities for each activity or CER (that could be affected by specific risk factors)

The Pairwise Comparison only needs to be completed one time to get Weights

SBV Method takes less time to set-up, but the discussion, iterations & documentation for Most-Likely and Maximum scenarios can be time consuming (> I hour per WBS item)

SBV Method may be more useful for schedule / cost elements that have "largeshare" most-likely values (with no specified uncertainty)

SBV Method could be used to calibrate results of **SBR** Method

Example: After applying SBR Method to 10 WBS elements, apply SBV Method on 1 or 2 of these WBS that have largest "spread." Then calibrate Ratios using SBV results.

Conclusion

- Demonstrated two expert elicitation methods that modeled expert's inputs as a triangular distribution
 - Started with only one numeric value: Most-Likely Commute = 55 minutes
 - Method I (existing): Scenario-Based Ratios (SBR) Method
 - Method 2 (new): Scenario-Based Values (SBV) Method

• Each method focused <u>first</u> on describing Risk Scenarios

- A "Risk Reference Table" was created from which the expert described
 - relative importance and intensity of each risk factor (SBR Method), or
 - how each risk impacts ideal commute time (SBV Method)

• Each method measured risk factor impacts on uncertainty

e.g., "Accidents" contributes 34% or 41 minutes to duration uncertainty

• Incorporated techniques to account for expert bias

- Facilitates interview process with use of visual aids
- Recommends using SBV method outputs to calibrate SBR method outputs
- Are structured in a way to justify expert inputs

Potential Improvements / Future Work

- Develop standardized NASA system objective hierarchies
 - Example: One for Satellites, One for Rockets, One for Aircraft, etc.
- Develop risk factor "sets" for each objective hierarchy
 - Example: A satellite objective hierarchy may have 3 sets depending on estimate type
- Improve method of weighting risk factors
- Improve intensity tables that depict expert judgment
 - Example: Make less subjective using pairwise comparison method
- Develop step-by-step templates for SBR & SBV methods
 - Example: Something along the lines of a 1040 EZ form
- Provide criteria when to elicit mean or median (vs mode)
- Incorporate methods to combine expert judgments
- Demonstrate how elements of SBR and SBV methods can augment output of data-driven CERs

Questions?

Marc Greenberg 202.358.1025 marc.w.greenberg@nasa.gov