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Introduction: Monte Carlo Simulation Modeling 

Monte Carlo simulation is a probabilistic method of modeling complex 
systems with many interrelated uncertain variables. 

It is a widely accepted technique in Cost Estimating for modeling cost 
uncertainty and performing risk analysis. 

MC simulation is based on repeated random sampling of probability 
distributions assigned to uncertain variables. After random sampling is 
performed, numeric results are combined according to assigned 
relationships, such as CERs. 

Modern Monte Carlo simulation tools have become very powerful and fast: 
used Booz Allen’s Argo tool for Excel for Monte Carlo simulation model in 
this presentation 
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Introduction: Bayesian Belief Networks 

A Bayesian Belief Network (BBN) is a probabilistic model that represents 
random variables and dependencies among them with assigned Bayesian 
probabilities in a form of a directed acyclic graph.  

BBNs provide a visual representation of inter-dependencies among random 
variables and estimate probabilities of events that lack direct data.  

Nodes of the graph are random variables. Directed edges represent 
conditional dependencies between random variables with causal 
relationship in the direction of the edge. 

Each node has a probability function associated with it that takes in the 
values of the node’s parent nodes and outputs conditional probability of the 
variable represented by the node. 
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Introduction: Bayesian Belief Networks 


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Bayesian Belief Network: Example 

Bad 
Brakes 

Bad Tires  
Low Gas 
Mileage 

Brakes 

T F 

30% 70% 

  Tires 

Brakes T F 
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    Mileage 

Brakes Tires T F 
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F F 10% 90% 

Model of a relationship between risk of abnormal wear and tear on brakes 
and tires and low gas mileage in a car 

What is the probability of low gas mileage given that a car’s brakes and tires 

are bad? 

What is the likelihood of having bad breaks if a car has low gas mileage? 



6 

Table Of Contents 

 Introduction: Monte Carlo Simulation and Bayesian Belief Networks 

Bayesian Belief Networks and Cost Estimating Modeling 

Bayes’ Theorem 

Bayesian Belief Networks within a Monte Carlo Simulation Model 

Summary 



7 

Monte Carlo Simulations and Cost Estimating Modeling 

There is inherent uncertainty in cost estimating models: uncertainty about 
point estimate cost and schedule estimates, probability of risk occurrence, 
uncertainty about risk impact. 

Monte Carlo simulation modeling is a highly effective method for modeling 
uncertainty and performing risk analysis within a cost estimating model.  

One of the main aspects of creating a rigorous Monte Carlo simulation cost 
estimate is the accuracy in defining uncertainty and risk parameters 
associated with the cost components of the model. 

It is equally important to assess and accurately represent inter-
dependencies between uncertain variables and risks, which are measured 
via correlation. 
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Bayesian Belief Networks and Cost Estimating Modeling 

Since oftentimes historical data is insufficient for a rigorous statistical 
analysis, both probability distribution and correlation are commonly 
estimated via a subject matter opinion. 

However, inherent complexity of variable inter-dependencies is often 
overlooked during such estimates which could significantly affect results of 
Monte Carlo simulation model.  

Bayesian Belief Networks naturally model complex relationships among 
cost components and risks.  

For cost estimating models nodes of a BBN could be cost components or 
risks associated with cost components. Edges show causal relationships 
among risks and/or cost components. 
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Combining BBNs with Monte Carlo Simulation Cost Estimating  

Since BBNs contain conditional probability information, it is natural to model 
posterior probabilities of random variables with a Monte Carlo simulation. 

In a Monte Carlo simulation we randomly sample independent random 
variable in a BBN, then follow the network direction to simulate conditional 
probabilities and impacts of dependent random variables. 

Easy to conduct what-if risk analysis: can compute conditional probabilities 
assuming certain risks are turned on or off. 
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Conditional Probability 





12 

Bayes’ Theorem 


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Bayesian Belief Network and Conditional Probabilities  


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Bayesian Belief Network: Example 
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Bayesian Belief Network: Example 
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Bayesian Belief Network: Example 
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Incorporating BBNs into Monte Carlo Simulation Cost Estimate 

Toy Cost Estimate Problem: Estimate cost of yearly maintenance of a 
military vehicle given maintenance cost components, such as technical 
maintenance cost, personnel cost and storage cost, and risk factors, such as 
tire replacement and vehicle replacement. 

Create Monte Carlo simulation model in MS Excel using Argo - Monte Carlo 
simulation Excel tool. 

First, model risk factors of tire and vehicle replacement independently. For 
each risk factor probability of occurrence is modeled via a Bernoulli 
distribution and cost impact is modeled via a Triangular distribution. 

Second, model risk factors via BBN that we presented in a previous example. 
The only risk factors with impact were tire and vehicle replacement which 
were modeled via the same Triangular distributions as in independent case. 
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Monte Carlo simulation Cost Estimate for Military Vehicle 
Maintenance with Risk Analysis in Excel using Argo 

Costs Nme Description Column1 Distribution Type Param 1 Param 2 Param 3 
Cost  

Impact 

1 Vehicle Maintenance  Total Cost per Year   Rollup       $358.92 

1.1 Oil  Oil Price   Normal 3.8 0.5   $5.14 

1.2 Changes Oil Changes per year   Triangular 0 9 15 $7.02 

1.3 Fill_ups Number of fill ups per year   Triangular 20 35 52 $28.40 

1.4 Fuel Cost of fuel per fill up   Normal 10 2   $8.49 

1.5 Brakes Brake maintenance   Triangular 11 15 25 $16.34 

1.6 Tire Tire maintenance   Triangular 11 20 25 $15.16 

1.7 Engine Engine maintenance   Triangular 0 100 120 $50.17 

2 Personnel Total cost of maintenance personnel    Rollup       $1,381.02 

2.1 Salary Salary per FTE   Normal 100 12   $72.64 

2.2 FTEs Number of FTEs   Triangular 15 20 24 $19.01 

3 Storage  Storage cost   Normal 300 45   $264.23 

Risks Name Description 

Cost Risk 
Distribution 
Parameters           

      Prob of Occur Distribution Type Param 1 Param 2 Param 3   

1 TR Tire Replacement 0.2 Triangular 100 500 700 670.6640014 

2 VR Vehicle Replacement 0.01 Triangular 400 1000 1500 0 

                  

                  

                  

                  

    
Total estimated cost of vehicle maintanance 

 $                       2,674.84  
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Bayesian Belief Network for Risk Factors of Military Vehicle 
Maintenance Model 
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Results of Argo Simulation: Independent Risk Factors vs BBN 

Monte Carlo Simulation with risk 
factors modeled as independent 
events  

 

 

 

 

Monte Carlo Simulation with BBN 
modeling risk factors 
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Results of Argo Simulation: Statistics for Total Cost 

Monte Carlo Simulation with risk 
factors modeled as independent 
events  

 

 

 

 

Monte Carlo Simulation with BBN 
modeling risk factors 

 

 

 

 

Total Cost 

Statistics Values 

Mean  $      2,824.26  

Median  $      2,751.78  

Variance  $  253,897.46  

Standard Deviation  $          503.88  

Coefficient of Variation 17.84% 

Min  $      1,755.47  

Max  $      4,588.57  

Range  $      2,833.10  

Standard Error  $            15.93  

Total Cost 
Statistics Values 

Mean  $      2,567.55  

Median  $      2,536.74  

Variance  $  142,931.81  

Standard Deviation  $          378.06  

Coefficient of Variation 14.72% 

Min  $      1,526.66  

Max  $      4,110.91  

Range  $      2,584.25  

Standard Error  $            11.96  
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Summary 

Bayesian Belief Networks offer methodology for modeling inter relational 
complexity within a cost estimating model providing both qualitative and 
quantitative approaches to the problem 

BBNs can account for more risk factors and inter-relationships among them 

BBNs with Monte Carlo simulation modeling provide flexibility for cost 
estimating and risk analysis 

 BBNS are applicable for integrated cost, schedule and risk analysis 
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