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Statement of the Problem 

Current Department of Defense acquisition policy guidance mandates funding at a 
set percentile of confidence level 

• The confidence level percentile estimate is typically derived from Cost Estimating 
Relationship (CERs), the CER prediction interval (PI), and associated S-curve 

Numerous studies by GAO and others have shown there is significant cost growth in 
many National Security Space (NSS) acquisition programs 
• The results from these studies suggest that the CERs and associated S-curves 

may be underestimating the true cost 
A more accurate and robust CER would allow decision-makers to be better informed 
on how much money is needed to fund a particular NSS acquisition program 
Our analysis results suggest the conventional Prediction Interval equation may be 
too optimistic 
We show in this presentation a practical method for improving the accuracy of the 
prediction interval estimate, thereby improving the accuracy of the resulting S-curve 
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Introduction 

In order to develop useful and predictive CER for NSS systems, it is necessary to develop a 
predictive CER for NSS software systems 

Software Permeates All Elements of National Security Space (NSS) 
Systems [Eslinger, 2010] 
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Basic Concepts and Terminology 
Used in Parametric Modeling 
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Introduction to CERs 
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Linear CER Model 

     : delta 
between  the   
data point and 
the linear 
regression line 

Figure 2     Linear CER Model 

Linear CER assumption:  
(1) An error around the regression line, ε, is 
distributed normally, and is symmetric; or 
(2) The number of an observation, N, is 
sufficiently large so that Central Limit 
Theorem is applicable 

//upload.wikimedia.org/wikipedia/commons/3/3a/Linear_regression.svg
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Common Measures of CER Uncertainty 

The Standard Error of the Estimate (SEE) is the standard deviation of the cost 
estimates from a CER 

• SEE is not the CER regression error 
The Confidence Interval (CI) is expressed as (1 - ) • 100% confident that the true 
mean value is contained within the calculated range; where α is the probability that 

the population mean for a parameter lies outside of the CI; ( 0    1 ) 

• e.g., An α of 0.20 represents a confidence level of 80% (i.e., there is 80% 

certainty that the true value of the mean lies within the CI) 
The Prediction Interval (PI) measures the range of uncertainty around the cost 
estimates from a CER  
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Prediction Interval Equation 
For single variate linear CER 

Where 
Ŷ is the CER prediction 

tα/2,df  is the upper α/2 cut-off point of the student’s t distribution (for the simple linear 

regression, df = n-2) 
n is the number of observations 

SEE is the Standard Error of the Estimate 
X is the value of the independent variable used in calculating the estimate 

(Eqn 1) 
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Basic Parametric Software Cost Model Equation 

Basic Parametric Software Cost Model:                                                           (Eqn 2) 

where 
Cost is the Development Effort in Person-months 
A is the proportionality constant calculated from the cost driver parameters 
ESLOC is the Equivalent Software Lines of Code which normalizes the amount of 
new, modified, and re-used code applied to calculate the effort to produce the total 
software product 
B is an exponent (depends on the specific software cost model used, but always > 1) 

Translate into linear CER by transforming into the natural log domain 
• Ln (Cost) = ln (A) + B * ln (ESLOC) 



Empirical Analysis Results 
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Linear Regression Model 
(Data Samples from NSS Software Systems) 
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Figure 3 
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Applying 95% Confidence Bands from PI Equation to Historical Data 
 

There are significant statistical variation in addition to the regression 
errors that the PI Equation is not accounting for 

Data Collection Samples from NSS Software Systems 
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Majority of historical data points from 
sample collection fall outside the 
95% Confidence Bands predicted 
by the PI Equation (Eqn 1) 

Prediction Interval for new 
data points is also likely 
to be optimistic and 
significantly 
underestimate the Cost 

Figure 4 
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Observation 

Empirical and historical data for ESLOC growth provides a definitive answer!! 
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Empirical Data on Uncertainties of ESLOC Estimates 

Based on Barry Holchin’s code growth algorithm for medium-to-high 
complexity software from: [Holchin, 2003] 

High degree of uncertainty and variation in ESLOC estimates! 

• Observations: 
– The uncertainty in ESLOC estimates 

decreases as the program progresses 
– ESLOC estimates have significant 

uncertainties at the early phases of a 
program 

Cost estimates based on early estimates 
of ESLOC will have significant 
deviations due to large ESLOC 
uncertainties 

Figure 5 
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Historical Data on ESLOC Growth 

Improving the prediction interval estimate requires a better statistical 
characterization of ESLOC growth 

Significant growth between initial ESLOC estimate and actual ESLOC 
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Note:  
1. Actual ESLOC counts are often significantly larger 

than initial ESLOC estimates 
2. Cost estimates based on regression model using 

initial ESLOC estimates will significantly 
underestimate the actual costs 

Figure 6 



Statistical Characterization of 
Normalized ESLOC 
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Basic Software Schedule and Software Cost Models 

Cost is the development effort (Person-months) 
T  is the development Time or Duration (Months) 
C  is a proportionality Constant 
D  is an exponent 
(where C and D depend on the specific software 

cost model used) 

BASIC PARAMETRIC SOFTWARE 
SCHEDULE MODEL EQUATION 

Cost is the development effort (Person-months) 
A is a proportionality constant calculated from 

cost driver parameters 
ESLOC is the Effective number of SLOC 
B is an exponent (depends on specific software 

cost model used, but always >1) 

BASIC PARAMETRIC SOFTWARE COST 
MODEL EQUATION 

Alternate Formulation of Parametric Software 
Schedule Model Equation 

• ESLOC is the independent variable  
• ESLOC is assumed to be a known 

value 
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Known Results from Prior Studies 

Schedule delays exhibit fat-tail behaviors [Wang, 2013], [Smart, 2013], [Wang, 2012] 

• Schedule delays extreme statistics can be approximated by Extreme Value 
distribution or Log Normal distribution 

Cost growths exhibit fat-tail behaviors [Smart, 2013], [Smart, 2011] 
• Cost growth extreme statistics can be approximated by Log Normal distribution 
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Fundamental Theorem 
[Papoulis] “Probability, Random Variables, and Stochastic Processes” 

Conclusion: Normalized ESLOC is characterized by Extreme Value 
distribution or Log Normal distribution 
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Normal) distributed 
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21 

Empirical Data on Normalized ESLOC Statistics 
Empirical Data confirmed that Normalized ESLOC statistics are 
approximated by Extreme Value distribution or Log Normal distribution 
 

Large Variability of ESLOC violates key assumption in PI Equation 
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Effect of Normalized ESLOC Statistical Analysis Results  

The PI equation (Eqn 1) will significantly underestimate the prediction interval range 
for a given α, and thus overestimate the confidence level of a cost estimate or 

schedule estimate, because: 
• Empirical and historical data show clearly that the key assumption of a regression 

model’s SEE  is not applicable for  NSS software systems 
• Normalized ESLOC (i.e., ESLOC Growth) can be approximated by fat-tail 

distributions (e.g., Extreme Value distribution or Log Normal distribution) 
• the variation of Normalized ESLOC is significantly larger relative to the 

regression error ε 
Adjustment to the Prediction Interval equation is needed to account for the large 
variability of Normalized ESLOC 



The Proposed Solution 
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Proposed Adjustment to the PI Equation 



Empirical Results from Applying 
Modified PI Equation 
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Modified PI Equation Confidence Level Bands 
(in natural log space) 

Empirical results show clearly that the modified PI Equation Confidence 
Level Bands are more accurate than the original PI Equation’s 

8.00 

9.00 

10.00 

11.00 

12.00 

13.00 

14.00 

15.00 

16.00 

6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 

ln
 (

C
o

st
) 

ln (ESLOC) 

Upper Bound of 95% 
Confidence Band using 

Original PI Equation 

Upper Bound of 95% 
Confidence Band using 
Modified PI Equation 

Lower Bound of 95% 
Confidence Band using 

Original PI Equation 

Lower Bound of 95% 
Confidence Band using 
Modified PI Equation 

Figure 10 
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Modified PI Equation Confidence Level Bands 
(in ESLOC, Cost space) 

Empirical results show clearly that the modified PI Equation Confidence 
Level Bands are more accurate than the original PI Equation’s 
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S-Curve Generation 
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Generating an S-Curve from a Set of PI Curves 
Notional Example 

Generating an S-Curve by varying α from 0 to 1 

Weight Cost 

The upper PI bound corresponds to (1 - α/2) percentile on the cumulative distribution 

The lower PI bound corresponds to α/2 percentile on the cumulative distribution 

A Set of PI Curves 
Cumulative Distribution 

Figure 12 

Note: the S-Curve will overestimate the cumulative probability, if the Prediction 
Interval is underestimating the true variation of CER prediction 
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Empirical S-Curves vs S-Curves from CER 
Predictions 

S-curves from the CER predictions shift to the right as the program 
progresses 
Empirical S-curves show a more accurate description of the actual 
cost behaviors 

Notional Example 

CER 
Predictions at 

Different 
Phase of a 
Program 
Lifecycle 

Figure 13 

Conjecture: If we improve the accuracy of the Prediction Interval, then the 
resulting S-curve should better approximate the actual cost behavior 
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S-Curves for NSS Software Systems 
The modified PI equation results in S-Curves that approximate the 
actual cost behavior 

Most recent actual program experience confirms the prediction from 
the modified PI equation 
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Application to Cost Prediction 
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Cost Prediction Example 

S-Curves based on modified PI Equation predicts there will be 38% ESLOC Growth 
on average for a Cumulative Probability of 85-90% 

• Actual program data: 39% ESLOC Growth 
Apply regression model derived from historical data, CER (with modified PI eqn) 
predicts a 43% Cost Growth 
• Detailed SEER-SEM model with 39% ESLOC Growth predicts a 47% Cost 

Growth 

The Modified PI Equation produces a more realistic forecast of ESLOC 
Growth and Cost Growth than unmodified PI Equation 
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Summary 

In this presentation, we presented analytical analysis as well as empirical data that the 
existing well-known PI equation consistently underestimates the prediction interval.   

• This underestimation of the prediction interval results in an inflated S-curve 
confidence level. 

We presented results that show the cause of the PI equation underestimating the 
prediction interval. 
We presented a proposed modification to the PI equation to account for the variability of 
the independent cost driver, ESLOC. 
We applied the proposed modification to the PI equation, and showed that the 
prediction of the modified PI equation is more accurate. 
We generated S-Curves based on the modified PI equation. 

• Our S-Curves better approximate the S-Curve derived from empirical data. 
• Our S-Curve prediction was confirmed by actual program experience. 
Cost Prediction based on our modified PI equation is a close approximation of the Cost 
Prediction using a detailed SEER-SEM model. 
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