

To drive standardization, integration, implementation, and optimization of SAS processes, measures, and resources to achieve proven Mission Assurance.

Introduction: An Erector Set Analogy

Challenges of Product Level Cost Model Development

- A. Government DOD Contractor Challenge (Cost)
 - Customer expects WBS
 - 2. Engineering works to PBS
 - 3. Must untangle cost relationship between WBS and PBS
- B. Internal Organizational Challenge (Cost)
 - 1. Matrix organizations make collecting product level costs problematic
 - 2. Matrix organizations in flux are even more problematic
 - 3. Must <u>unmix</u> organizational data from product data
- C. Must Get Agreement on Cost Drivers (Size)
 - Costs are causal
 - 2. Key size and scaling factors are causing factors

Challenge of Bidding Work With Commercial Cost Models

- A. Strengths of Commercial Cost Models
 - 1. Great at getting the bid in the ballpark
 - 2. Great for tops down, reduced cost, bidding
 - 3. Great for organizing bid into PBS
 - 4. Great for remembering the hidden costs that are often forgotten
- B. Weaknesses of Commercial Cost Models
 - 1. Strong matrix organizations argue over allotment
 - 2. Tend to not have a good grasp on todays technology (maybe a few years old technology)
 - 3. No flags for items with wide variance in costs tasks such as a performance threshold for ASIC
 - 4. Jobs are performed bottoms up
- C. Observations of Commercial Cost Models
 - Great for ROMs!
 - 2. Should be calibrated for actual bids
 - 3. Possible disconnect between bid and performance

Connecting Tops Down With Bottoms Up

- A. Cost Model Connecting Gate 3 (ROM) to Gate 4 (actual bid)
 - 1. Gate 3 ROM is organizational independent
 - 2. Gate 4 is organizational and execution dependent
 - 3. Cost Model must bridge this gap
 - 4. Cost Model must also provide flags for high cost variance items that can drive architectural and performance trade offs
 - 5. Cost and size must be based on historical actuals

- B. Cost Model Connecting Gate 4 (actual bid) to Gate 5 (plan after win)
 - 1. Must be detailed enough to provide cost details for execution plan
 - 2. Must be flexible enough to account for organizational changes
- C. Cost Connecting Gate 5 (plan after win) to Execution
 - 1. Must apply to EACs also!
 - 2. Must have standardized cost and size collection forms
 - 3. Must be able to rapidly evolve with technology

Synergistic "Bottoms Up" Cost Estimation Approach

Beginning With a Standard Reference Architecture

Radar Functional Block Diagram – Generic and applicable to any Program

Consistent Product Structure

Overall Antenna Cost Estimation Process

Getting to a ROM Architecture

Architectural Trade-offs

Flexible Reference Architecture Key to Result

Specific antenna architecture with specific sub products related to that architecture with average cost driving parameters

Still Top Down Cost Estimation

Result of the ROM Bidding Process

Moving to the Final Cost Estimate

Expert Review of the ROM Cost Estimate

Final Basis Of Estimate is Based on Historical Actuals

Final Cost Totals

Final Cost Subproduct Allocations

Final Architecture With Sizing Parameters

Review Tops Down, Bottoms Up Approach

Cost Models – Tops Down, Model Based bidding

Cost Models - Tops Down, Model Based bidding

Cost Models – Tops Down, Model Based bidding

Cost Models - Tops Down, Model Based bidding

Cost Models - Tops Down, Model Based bidding

Cost Models – Tops Down, Model Based bidding

Concluding Comments

Strengths

- Integraded ROM/Final Bid/Execution planning
- Historical Actuals based
- Organizational roles accounted
- Quantitative complexity factors
- Very fast
- Accuracy

Weaknesses

- Data collection burdensome
- What is easy to use is also easy to abuse

Backup and alternative slides