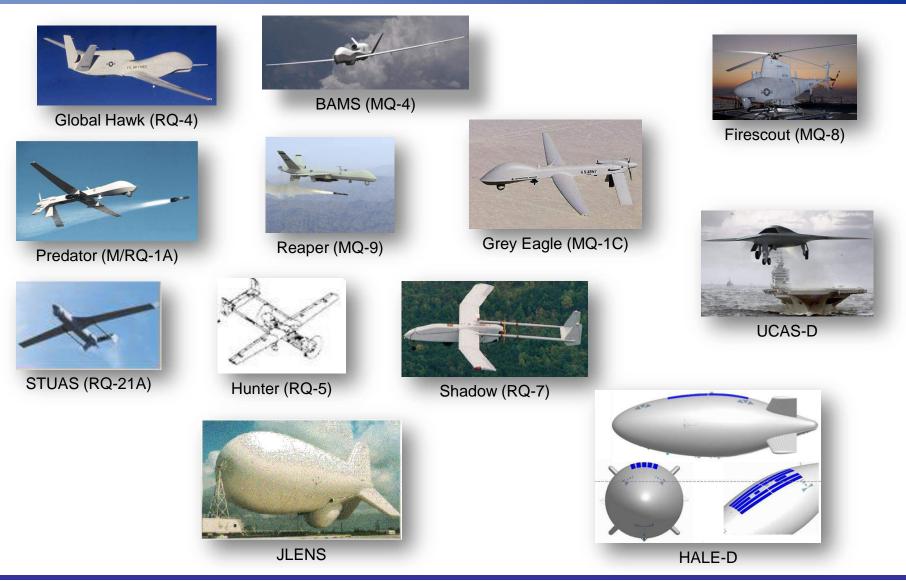
Naval Center for Cost Analysis (NCCA)

Unmanned Aerial Vehicle Systems Database and Parametric Model Research

Study Team: Bruce Parker, Praful Patel, Patrick Staley (NCCA) Rachel Cosgray, Anna Irvine, Brian Welsh (Technomics)

Outline of Presentation

- Objective
- Data collection
- UAV database
- Cost Estimating Relationship
 - Development
 - Procurement
 - O&S
- Summary
- Next steps



- Collect cost, technical and programmatic data for Army, Navy and Air Force UAS programs
- Develop Cost Estimating Relationships (CERs) for development, production and O&S cost elements
- Publish UAS data books and handbook w/ CERs

DoD Tri-service collaborative effort Sponsored by NCCA and ODASA-CE Data support from AFCAA, NAVAIR, ASC, and AMCOM

UAS Programs in Scope

- Data was collected for Unmanned Aerial Systems (UAS) that includes UAV, Ground Control Systems (GCS) and Payloads
- Data collection efforts included trips to NAVAIR, prime contractors
 - Data sources such as CSDRs, CPRs, contractor internal accounting documents, Electronic Document Archive (EDA), Aviation Cost IPT forum, fact sheets, interviews with SMEs and program offices in Navy, Army, and Air Force
- Payload data was collected from CARDs, ACDB database and C4ISR program offices with support from ODASA-CE
- Operating and Support (O&S) cost and technical data was collected from AFTOC (cost) and AFCAP (technical & programmatic) databases
 - Global Hawk, Predator and Reaper have actuals

- Acquisition cost data was collected and mapped using MIL-HDBK 881-A WBS
 - Many programs in the study were developed and produced before 2005 under 881-A
 - Airframe and Propulsion cost data was available to the WBS third level, other data only supported at the second level
- O&S cost data mapped using 2007 CAIG O&S Guide structure:
 - 1.0 Unit Level Manpower
 - 2.0 Unit Operations
 - 3.0 Maintenance
 - 4.0 Sustaining Support
 - 5.0 Continuing System Improvements
 - 6.0 Indirect Support

- Technical and programmatic data sources included:
 - CARDs
 - Technical requirements Documents (TRDs)
 - Test and Evaluation Master Plans (TEMPs)
 - Integrated Master Schedules (IMSs)
 - SARs
 - Defense Acquisition Executive Summaries (DAESs)
 - Program Office Briefings
 - International Helicopter Society (IHS)
 - JANE'S Defense & Security Intelligence & Analysis
 - Payload data fact sheets from contractors


Data organized into summary spreadsheets and Data Books for each program

Data Books

UAV Program	Data Book
Navy/AF High Priority	
Global Hawk (RQ-4)	Data book-N01GH-RQ-4
Predator-A (MQ-1)	Data book-N02-Predator-MQ-1
VTUAV (Fire Scout) (MQ-8)	Data book-N03-VTUAV-MQ-8
BAMS (MQ-4)	Data book-N04-BAMS-MQ-4
Navy/AF Secondary	
Reaper (Predator-B) (MQ-9)	Data book-N05-Reaper-MQ-9
Hunter (RQ-5)	Data book-N06-Hunter-RQ-5
Shadow (RQ-7)	Data book-N07-Shadow-RQ-7
UCAS-D (X-47B)	Data book-N08-UCAS-D-X-47B
STUAS (RQ-21A)	Data book-N09-STUAS-RQ-21A
Army High Priority	
HALE-D	Data book-A01-HALE-D
JLENS	Data book-A02-JLENS
Army Secondary	
Gray Eagle (MQ-1C)	Data book-A03-GE-MQ-1C
Hummingbird (A160) (YMQ-18)	Data book-A04-Hummingbird-A160

- Data books created by program
 - Folders:

Technical and Programmatic data was collected as follows:

Weight Data (lbs) Geometry/Structure		Propulsion	Characteristics	Performance Characteristics			
Total Weight/Max Take-off	Fuselage Length	Fuselage Length F		Propulsion Type		Speed – Loiter	
Air Vehicle Empty Weight	Wingspan		Propulsion Mod	lel	Service	Ceiling	
Air Vehicle Empty Weight	Hull Volume		Propulsion Thru	ist	Speed -	Cruise	
Air Vehicle Empty Weight	Fuselage Diameter		Propulsion Hors	sepower	Speed -	Top ("Dash Speed")	
Mission Payload Weight	Airframe Material	Туре	Propulsion Man	ufacturer	Service	Ceiling	
	Airframe Manufac	turer			Mission	Altitude	
					Radius o	of Action (Range)	
					Time on	Stations	
					Max En	durance from T/O to Landing	
					Take-of	f/Launch Type	
					Recover	ry/Landing	
	Payload Data			Programmatic I	Data		
Total W	eight			Contract start and end	l dates		
Electror	ics Unit Weight			Quantities			
Turret V	Veight						
Gimbal	Weight						
Altitude							
EO Res							
IR Reso							
Trackin							
	ar of Production						
	Requirement						
	angefinder/Designator						
LOS St	abilization	J					

Summary of Cost Data Collection

Program	Development	Production	O&S	Payload		
Navy/AF High Priority						
Global Hawk (RQ-4)	Х	Х	Х	х		
Predator-A (MQ-1)	Х	Х	Х	х		
VTUAV (FireScout) (MQ-8)	Х	Х	Estimates	х		
BAMS (MQ-4)	Х		Estimates	х		
Navy/AF Secondary						
Reaper (Predator-B) (MQ-9)		Х	Х			
Hunter (RQ-5)		Х		х		
Shadow (RQ-7)	Х	Х				
UCAS-D (X-47B)	Х					
STUAS (RQ-21A)	Х					
Navy/AF Tertiary						
Avenger (Predator-C)	Excluded for lack of data					
J-UCAS (X-45)	Excluded for lack of data					
K-MAX	Excluded for lack of data					
Army High Priority						
LEMV		Excluded for la	ck of data	-		
HALE-D	Х					
JLENS	Х		Estimates	х		
Army Secondary						
Grey Eagle (MQ-1C)	Х	Х	Estimates	х		
Hummingbird (A160) (YMQ-18)	Х					
Army Tertiary						
Global Observer		Excluded for la	ck of data			

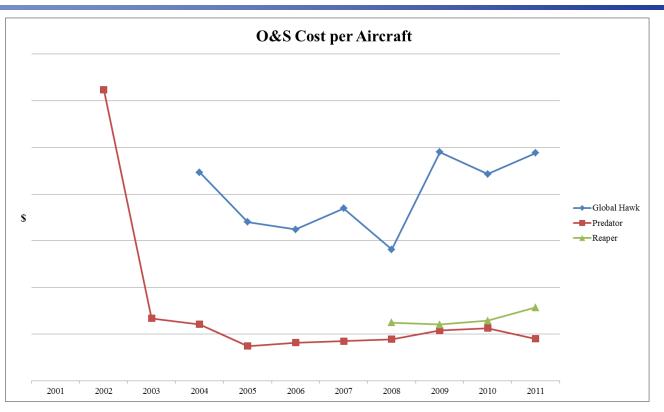
- UAS Vehicle Data set includes:
 - 11 Development
 - 7 Production
 - 3 O&S Programs
- Payload Data set includes:
 - 2 Development
 - 7 Production programs

Data Analysis

- Cost data was mapped to 881-A WBS
- Service specific OSD inflation indices were utilized to normalize the cost data to FY13\$
- Unit Theory Cost Improvement Curve analysis was performed on the development and production air vehicle lot data
- Rate Curves were evaluated, but were not statistically significant
- CERs were developed using regression statistics for development, production and O&S phases

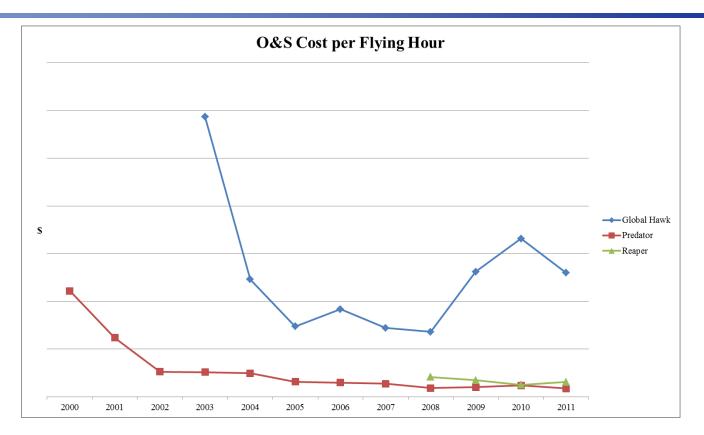
Cost Improvement Curve Analysis

Air Vehicle Production


		Programs							
Statistics	UAS #1	UAS #2	UAS #3	UAS #4	UAS #5	UAS #6			
Unit Curve Slope	91.7%	98.4%	110.4%	86.4%	111.6%	87.7%			
R Square	88.6%	15.0%	44.9%	100%	61.8%	89.6%			
Adjusted R Square	82.9%		17.4%		23.5%	87.5%			
Standard Error	0.051	0.062	0.229		0.169	0.071			
Observations	4	3	4	2	3	7			
F	15.58	0.16	1.63		1.61	43.05			
Significance F	0.059	0.755	0.330		0.424	0.001			

Program	Confidence Interval (CI) for cost improvement
UAS #1	75% CI for the exponent translates to a slope between 88.6% and 95.0%
UAS #2	75% CI for the exponent translates to a slope between $89.4%$ and $108.3%$
UAS #3	75% CI for the exponent translates to a slope between 97.5% and 125.1%
UAS #4	N/A
UAS #5	75% CI for the exponent translates to a slope between 90.6% and 137.4%
UAS #6	75% CI for the exponent translates to a slope between $85.5%$ and $90.0%$

UAV programs often receive continuous in-line improvements



This figure shows the total O&S cost per aircraft for the available data. Note the spike in Global Hawk beginning in 2009. Analysis at the next lower level indicates the unit costs are driven by continuing system improvements and maintenance costs.

This figure shows O&S costs per flying hour for the available data.

CER Summary

UAS System WBS Structure	CER			
Total Development	No Recommendation			
1.0 Air Vahiala	First Lot Air Vehicle Recurring Unit Cost =			
1.0 Air Vehicle	f(Maximum Take Off Weight)			
	First Lot Air Vehicle Recurring Unit Cost =			
	f(Service Ceiling)			
1.1 Airframe	First Lot Air Frame Recurring Unit Cost =			
1.1 Alffanie	f(Payload)			
1.2 Propulsion	First Lot Propulsion Recurring Unit Cost =			
1.2 Propulsion	f(Engine Weight)			
2.0 Payload	First Lot Payload Average Unit Cost =			
2.0 Payload	f(Weight, whether Radar or not)			
3.0 Ground/Host Segment				
3.1 Ground Control Station	No Recommendation			
4.0 UAV System Integration,	Air Vehicle, Payload, and Ground/Host Segment CERs			
Assembly, Test and Checkout	Include this element.			

CER Summary

UAS System WBS Structure	CER
5.0 System	
Engineering/Program	
Management	
Development	Total SEPM cost =
Development	f(Total Hardware \$)
Production	Total SEPM cost =
Production	f(Total Hardware \$)
6.0 Test & Evaluation	
Development	Development System Test and Evaluation =
Development	f(Total Hardware \$)
Production	Production System Test and Evaluation =
Production	f(Total Hardware \$)
7.0 Training	
	Total Training Costs as a % of Total Recurring
Development Training	Hardware \$
	Mean , Median, Standard Deviation
Production Training	No Recommendation
8.0 Data	
Development Data	Total Data = f(Total Recurring Hardware \$)
	Total Production Data =
Production Data	f(Total Recurring Hardware \$)

CER Summary

UAS System WBS Structure	CER
9.0 Peculiar Support Equipment	
	Non-recurring Tooling Costs as a % of Total Recurring
Development Tooling	Hardware \$
	Mean , Median, Standard Deviation also provided
	Non-recurring Tooling Costs as a % of Total Recurring
Production Tooling	Hardware \$
	Mean , Median, Standard Deviation also provided
10.0 Common Support	Total Common Support Equipment Costs as a % of Total
	Recurring Hardware \$
Equipment	Mean , Median, Standard Deviation also provided
	Total Operational/Site Activation Costs as a % of Total
11.0 Operational/Site Activation	Recurring Hardware \$
	Mean , Median, Standard Deviation also provided
12.0 Industrial Facilities	No Recommendation
12.0 Initial Sparse and Bangir	Total Initial Spares and Repair Parts Cost as a % of Total
13.0 Initial Spares and Repair	Recurring Hardware \$
Parts	Mean , Median, Standard Deviation also provided

O&S CERs

CAIG O&S CES Structure	CER
1.0 Unit-Level Manpower	Unit Level Manpower Cost =
	f(Civilian, Officer, Enlisted Headcounts)
	Unit Level Manpower Cost =
	f(Total Aircraft Inventory)
2.0 Unit Operations	Unit Operations Cost =
	f(Operating Hours)
	Operating Hours = f(TAI)
3.0 Maintenance	Maintenance Unit Cost in =
3.0 Maintenance	f(MTOW, Age, TAI)
4.0 Sustaining Support	Sustaining Support Cost =
4.0 Sustaining Support	f(Total Hours)
5.0 Continuing System Improvements	No Recommendation
6.0 In direct Super out	Indirect Support Costs =
6.0 Indirect Support	f(Number of Systems)

CER Example

Air Vehicle

Program	Development	MTOW (lbs)	Rotary	Air Vehicle Recurring Unit Cost (FY13\$K)		
BAMS MQ-4C	1	32,250	0			
Fire Scout MQ-8B	1	3,150	1			
Gray Eagle MQ-1C	1	3,283	0			
Predator RQ-1A	1	2,120	0			
Shadow RQ-7A	1	350	0			
Fire Scout MQ-8B	0	3,150	1			
Global Hawk RQ-4B (Block 20)	0	31,456	0			
Global Hawk RQ-4A (Block 10)	0	26,700	0			
Hunter RQ-5	0	1,620	0			
Pioneer RQ-2B	0	447	0			
Predator RQ-1A	0	2,120	0			
Reaper MQ-9A	0	10,500	0			
12 data points Development = Dummy variable denoting manufacturing phase 0 = Production 1 = Development						
MTOW = Maximum Takeoff	Weight in pounds					
Rotary = Dummy Variable denoting rotary wing aircraft 0 = Fixed Wing 1 = Rotary Wing						
Air Vehicle Recurring Unit Cost = Reas identified in the cost report.	curring cost for the	e applicable develo	opment or p	production contract		

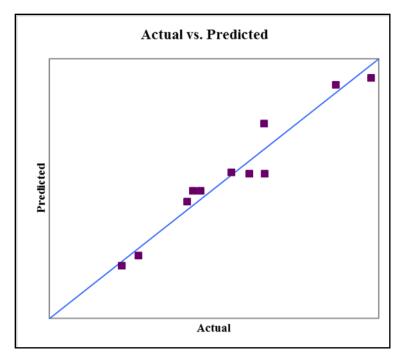
CER Example

Air Vehicle

#	Equation	R ² adj %	n	t-value > 90%	MAD (%) (unit)	CV (%) (unit)	3 < 30%	SE (unit)	Comments
1	f(MTOW, Dev, Rotary)	97	12	Y	17	19	10	6087	All Data points
2	f(MTOW, Dev, Rotary)	96	11	Ν	18	25	9	6634	Less BAMS
3	f(MTOW, Dev, Rotary)	96	11	Y	18	25	9	6196	Less BAMS
4	f(MTOW)	92	12	N	41	24	6	4204	All Data points
5	f(MTOW)	89	11	Ν	50	30	5	4319	Less BAMS
6	f(MTOW)	94	11	Ν	28	30	7	5137	Less BAMS
7	f(MTOW)	99.8	11	Y	28	29	8	4464	Less BAMS

• Equations 1 through 3 are log-linear and include dummy variables to adjust for a program in development and whether the platform is rotary or not. Good statistics were observed in Equation 1.

- With Equation 1, 10 of the 12 observations were predicted within 30% of the actual values. The remaining 2 data points were within 60%.
- Equations 2 and 3 remove the BAMS data point due to it being less than 50% complete. Equation 3 is the same function form as Equation 2 without the intercept.
- The limitations with models in Equations 1 through 3 may be in regard to rotary wing UAVs: the model only has one program in the dataset representing rotary wing, Fire Scout, and was removed
- Equations 4 through 7 analyzed a MTOW relationship only.
- Equations 4 and 5 are linear.
- Equations 5 through 7 removed BAMS.
- Equations 6 and 7 are log-log relationships.
- Equation 7 removes the intercept due to being insignificant.



Air Vehicle (cont)

CER Summary:

	Equation 7 Y = f(MTOW)
Variables: Y MTOW	 = First Lot Air Vehicle Recurring Unit Cost = Maximum Takeoff Weight in pounds
Statistics:	
	Adjusted $R^2 = 99.8$
	SE = 0.350 (4464 unit space)
	Df = 10
	t(MTOW Coefficient) = 77.489
Data Ranges:	
	350 <= MTOW <= 31,456
80% Predictio	on Interval $(2,500) = +65\%, -39\%$

Below is the plot of the estimates using the CER versus the actuals.

Complete data set, data plots, and CERs are now available

- Data books with metadata for priority programs is complete
- UAS Database and Handbook have been published
- O&S historical actuals was limited to Air Force programs
 - Any use of the CERs for analysis should be limited to similar platforms in terms of size, mission type, support concept

- Combine UAS and manned aircraft into single data sets—many key subsystems are similar in higher end of MTOW scale
- Understand historical anomalies in certain programs
- UAS programs are growing and need to ensure the database and analysis is frequently updated to account for new data and technologies