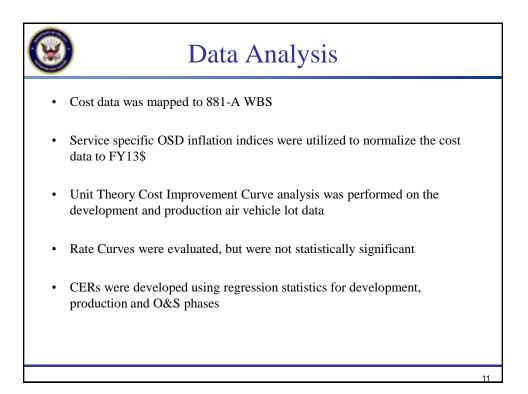
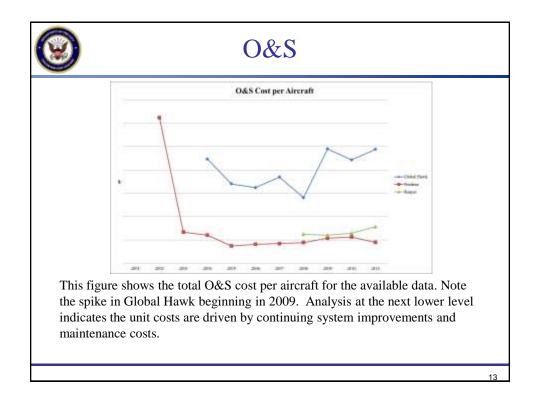
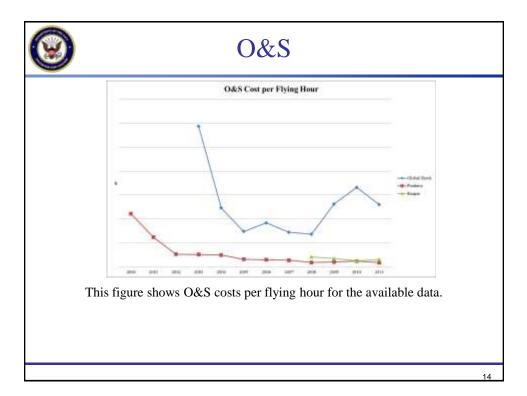

1



UAV Program	Data Book	Data books created
Navy/AF High Priority	· · · ·	by program
Global Hawk (RQ-4)	Data book-N01GH-RQ-4	Folders:
Predator-A (MQ-1)	Data book-N02-Predator-MQ-1	i olders.
VTUAV (Fire Scout) (MQ-8)	Data book-N03-VTUAV-MQ-8	🕌 ISARs & DAES
BAMS (MQ-4)	Data book-N04-BAMS-MQ-4	ICARD
Navy/AF Secondary		
Reaper (Predator-B) (MQ-9)	Data book-N05-Reaper-MQ-9	🍌 IIITechnical
Hunter (RQ-5)	Data book-N06-Hunter-RQ-5	퉬 IVSchedule
Shadow (RQ-7)	Data book-N07-Shadow-RQ-7	🛺 V. Budget
UCAS-D (X-47B)	Data book-N08-UCAS-D-X-47B	VI. Cost
STUAS (RQ-21A)	Data book-N09-STUAS-RQ-21A	
Army High Priority		🍌 VIIMiscellaneous
HALE-D	Data book-A01-HALE-D	
JLENS	Data book-A02-JLENS	
Army Secondary		
Gray Eagle (MQ-1C)	Data book-A03-GE-MQ-1C	
Hummingbird (A160) (YMQ-18)	Data book-A04-Hummingbird-A160	


Technica	al an			ollect	collected	as f	ollows:
Weight Data (lbs)	Geometry	/Structure	Propulsion	Characteristics	Perfo	rmance Characteristics
Air Vehicle Empty Weight Air Vehicle Empty Weight Air Vehicle Empty Weight Mission Payload Weight		Wingspan Hull Volume Fuselage Diameter Airframe Material ' Airframe Manufact	Гуре	Propulsion Mod Propulsion Thr Propulsion Hor Propulsion Mar	ust sepower	Service C Mission A Radius of Time on A Max End Take-off/	Cruise Fop ("Dash Speed") Ceiling Altitude f Action (Range)
	Total Weig Electronics Turret Wei Gimbal Wo Altitude EO Resolu IR Resolu Tracking First Year Power Rec	Unit Weight ight tion tion of Production uirement gefinder/Designator			Programmatic Contract start and en Quantities	Data	/ Laiking


		-			t Data Collection
Program	Development	Production	oas	Payload	
Nerv(AF High Priority					
Global Hawk (NO-4)	x	x	x	x	
Predator-A (MQ-1)	x	X	x	X	
VTUAV (FireScort) (MQ-8)	x	x	Estimates	x	
BAMS (MQ-4)	x		Estimates	x	
Navy:AF Secondary					• UAS Vehicle Data set includes:
Reaper (Predator-B) (MQ-9)		x	x		 11 Development
Hunter (RQ-5)		x		x	• 7 Production
ikadow (RQ-7)	x	x			, 11000000
UCAS-D (X-47B)	x				 3 O&S Programs
STUAS (RQ-21A)	x				
Navy/AF Tertiary					• Deviload Data set includes
Avenger (Predator-C)		Excluded for la	ck of data		 Payload Data set includes:
J-UCAS (X-45)		Excluded for la	ck of fata		 2 Development
K-MAX		Excluded for la	ck of data		• 7 Production programs
Army High Priority					7 Troduction programs
LEMV		Excluded for la	ck of data		
HALE-D	x				
ILENS	x		Estimates	х	
Army Secondary					
Grey Eagle (MQ-IC)	х	х	Detimates	х	
Bummingbird (A160) (YMQ-18)	x				
Army Tertiary					
Global Observer		Excluded for la	ck of data		

	Air	· Vehi	<u>cle Pr</u>	oducti	ion	
		1	Pr	ograms		
Statistics	UAS #1	UAS #2	UAS #3	UAS #4	UAS #5	UAS #6
Unit Curve Slope	91.7%	98.4%	110.4%	86.4%	111.6%	87.7%
R Square	88.6%	15.0%	44.9%	100%	61.8%	89.6%
Adjusted R Square	82.9%		17.4%		23.5%	87.5%
Standard Error	0.051	0.062	0.229		0.169	0.071
Observations	4	3	4	2	3	7
F	15.58	0.16	1.63		1.61	43.05
Significance F	0.059	0.755	0.330		0.424	0.001
Program	Confidence I	nterval (CI)	for cost impr	ovement		
UAS #1	75% CI for th	he exponent	translates to	a slope betwe	een 88.6% and	95.0%
UAS #2	75% CI for th	ne exponent	translates to	a slope betwe	een 89.4% and	108.3%
UAS #3	75% CI for th	he exponent	translates to	a slope betwe	een 97.5% and	125.1%
UAS #4	N/A					
UAS #5	75% CI for th	he exponent	translates to	a slope betwe	een 90.6% and	137.4%
UAS #6	75% CI for th	ne exponent	translates to	a slope betwe	een 85.5% and	90.0%

6

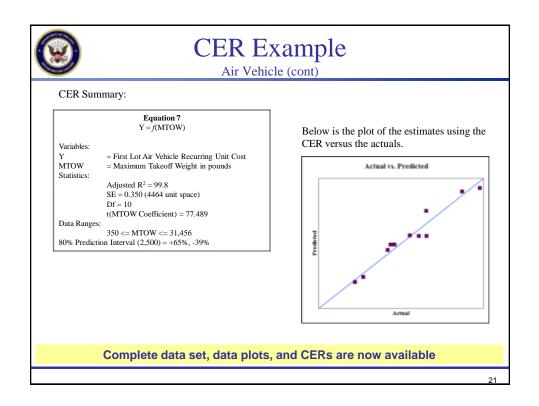
7

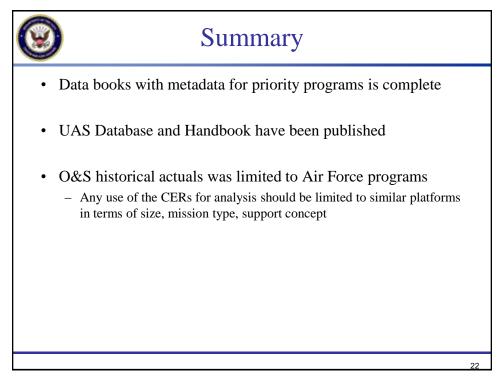
UAS System WBS Structure	CER
Total Development	No Recommendation
1 0 Air Vehicle	First Lot Air Vehicle Recurring Unit Cost =
1.0 Ali Vellicie	f(Maximum Take Off Weight)
	First Lot Air Vehicle Recurring Unit Cost =
	f(Service Ceiling)
1.1 Airframe	First Lot Air Frame Recurring Unit Cost =
1.17 Millance	f(Payload)
1.2 Propulsion	First Lot Propulsion Recurring Unit Cost =
1.2 1 10puision	f(Engine Weight)
2.0 Payload	First Lot Payload Average Unit Cost =
-	f(Weight, whether Radar or not)
3.0 Ground/Host Segment	
3.1 Ground Control Station	No Recommendation
4.0 UAV System Integration,	Air Vehicle, Payload, and Ground/Host Segment CERs
Assembly, Test and Checkout	Include this element.

	R Summary
UAS System WBS Structure	CER
5.0 System Engineering/Program Management	
Development	Total SEPM cost = f(Total Hardware \$)
Production	Total SEPM cost = f(Total Hardware \$)
6.0 Test & Evaluation	
Development	Development System Test and Evaluation = f(Total Hardware \$)
Production	Production System Test and Evaluation = f(Total Hardware \$)
7.0 Training	
Development Training	Total Training Costs as a % of Total Recurring Hardware \$ Mean , Median, Standard Deviation
Production Training	No Recommendation
8.0 Data	
Development Data	Total Data = f(Total Recurring Hardware \$)
Production Data	Total Production Data = f(Total Recurring Hardware \$)

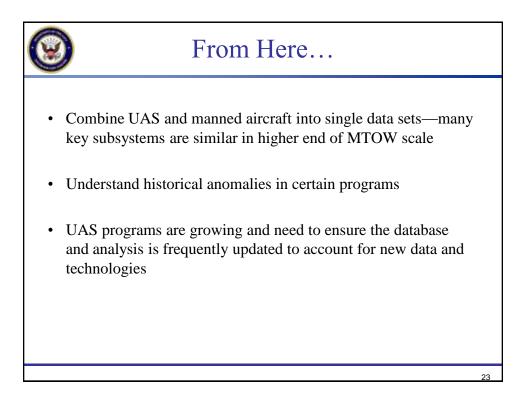
8

UAS System WBS Structure	CER
9.0 Peculiar Support Equipment	
	Non-recurring Tooling Costs as a % of Total Recurring
Development Tooling	Hardware \$
	Mean , Median, Standard Deviation also provided
	Non-recurring Tooling Costs as a % of Total Recurring
Production Tooling	Hardware \$
	Mean , Median, Standard Deviation also provided
10.0 Common Sumport	Total Common Support Equipment Costs as a % of Total
10.0 Common Support	Recurring Hardware \$
Equipment	Mean , Median, Standard Deviation also provided
	Total Operational/Site Activation Costs as a % of Total
11.0 Operational/Site Activation	Recurring Hardware \$
	Mean , Median, Standard Deviation also provided
12.0 Industrial Facilities	No Recommendation
12.0 Initial Courses and Demain	Total Initial Spares and Repair Parts Cost as a % of Total
13.0 Initial Spares and Repair	Recurring Hardware \$
Parts	Mean, Median, Standard Deviation also provided


CAIG O&S CES Structure	CER
.0 Unit-Level Manpower	Unit Level Manpower Cost =
	f(Civilian, Officer, Enlisted Headcounts)
	Unit Level Manpower Cost =
	f(Total Aircraft Inventory)
.0 Unit Operations	Unit Operations Cost =
	f(Operating Hours)
	Operating Hours = f(TAI)
.0 Maintenance	Maintenance Unit Cost in =
	f(MTOW, Age, TAI)
.0 Sustaining Support	Sustaining Support Cost =
	f(Total Hours)
5.0 Continuing System Improvements	No Recommendation
	Indirect Support Costs =
5.0 Indirect Support	f(Number of Systems)


9

Program	Development	MTOW (lbs)	Rotary	Air Vehicle Recurring Unit Cost (FY13\$K)
BAMS MQ-4C	1	32,250	0	
Fire Scout MQ-8B	1	3,150	1	
Gray Eagle MQ-1C	1	3,283	0	
Predator RQ-1A	1	2,120	0	
Shadow RQ-7A	1	350	0	
Fire Scout MQ-8B	0	3,150	1	
Global Hawk RQ-4B (Block 20)	0	31,456	0	
Global Hawk RQ-4A (Block 10)	0	26,700	0	
Hunter RQ-5	0	1,620	0	
Pioneer RQ-2B	0	447	0	
Predator RQ-1A	0	2,120	0	
Reaper MQ-9A	0	10,500	0	
Development = Dummy variable de 0 = Production 1 = Developmen MTOW = Maximum Takeoff ' Rotary = Dummy Variable de 0 = Fixed Wing 1 = Rotary Wing Air Vehicle Recurring Unit Cost = Ret as identified in the cost report.	t Weight in pounds enoting rotary wing	ing phase g aircraft	opment or p	production contract


#	Equation	R ² adj %	n	t-value > 90%	MAD (%) (unit)	CV (%) (unit)	3 < 30%	SE (unit)	Comments
1	f(MTOW, Dev, Rotary)	97	12	Y	17	19	10	6087	All Data points
2	f(MTOW, Dev, Rotary)	96	11	Ν	18	25	9	6634	Less BAMS
3	f(MTOW, Dev, Rotary)	96	11	Y	18	25	9	6196	Less BAMS
4	f(MTOW)	92	12	Ν	41	24	6	4204	All Data points
5	f(MTOW)	89	11	Ν	50	30	5	4319	Less BAMS
	f(MTOW)	94	11	Ν	28	30	7	5137	Less BAMS
6)(())))))))))))))))))))))))))))))))))))	× ·		11	20			5157	
7	f(MTOW)	99.8	11	Y	28	29	8	4464	Less BAMS
	f(MTOW) Equations 1 through 3 are log-linear platform is rotary or not. Good statist With Equation 1, 10 of the 12 observ	99.8 and include du	11 mmy varia ved in Equ	Y ables to adju- ation 1.	28 ust for a pr	ogram in c	8 levelopmen	4464 at and when	ther the
•	f(MTOW) Equations 1 through 3 are log-linear platform is rotary or not. Good statist	99.8 and include du ics were obser ations were pre- 5 data point due	11 mmy varia ved in Equ edicted wi	Y ables to adju- action 1. thin 30% of	28 ust for a pr f the actual	ogram in c	8 levelopmen he remainir	4464 at and when ag 2 data p	ther the oints were
7 •	f(MTOW) Equations 1 through 3 are log-linear platform is rotary or not. Good statist With Equation 1, 10 of the 12 observ within 60%. Equations 2 and 3 remove the BAMS	99.8 and include du ics were obser ations were pre- 5 data point due rept. cions 1 through	11 mmy varia ved in Equ edicted wi e to it bein 3 may be	Y ables to adjutation 1. thin 30% of g less than in regard t	28 ust for a pr f the actual 50% comp o rotary w	ogram in c l values. Tl olete. Equa	8 levelopment the remaining ation 3 is th	4464 ht and whet ng 2 data p he same fun	ther the oints were
7 • •	f(MTOW) Equations 1 through 3 are log-linear a platform is rotary or not. Good statist With Equation 1, 10 of the 12 observ within 60%. Equations 2 and 3 remove the BAMS form as Equation 2 without the interc The limitations with models in Equat	99.8 and include du ics were obser ations were pro 6 data point due rept. ions 1 through otary wing, Fir	11 mmy varia ved in Equ edicted wi e to it bein 3 may be e Scout, a	Y ables to adjutation 1. thin 30% of g less than in regard t	28 ust for a pr f the actual 50% comp o rotary w	ogram in c l values. Tl olete. Equa	8 levelopment the remaining ation 3 is th	4464 ht and whet ng 2 data p he same fun	ther the oints were
7	f(MTOW) Equations 1 through 3 are log-linear i platform is rotary or not. Good statist With Equation 1, 10 of the 12 observ within 60%. Equations 2 and 3 remove the BAMS form as Equation 2 without the interc The limitations with models in Equat program in the dataset representing re-	99.8 and include du ics were obser ations were pro 6 data point due rept. ions 1 through otary wing, Fir	11 mmy varia ved in Equ edicted wi e to it bein 3 may be e Scout, a	Y ables to adjutation 1. thin 30% of g less than in regard t	28 ust for a pr f the actual 50% comp o rotary w	ogram in c l values. Tl olete. Equa	8 levelopment the remaining ation 3 is th	4464 ht and whet ng 2 data p he same fun	ther the oints were
7 • • •	f(MTOW) Equations 1 through 3 are log-linear platform is rotary or not. Good statist With Equation 1, 10 of the 12 observ within 60%. Equations 2 and 3 remove the BAMS form as Equation 2 without the interc The limitations with models in Equat program in the dataset representing r Equations 4 through 7 analyzed a MT	99.8 and include du tics were obser ations were pro- data point due rept. toons 1 through otary wing, Fir FOW relationsh	11 mmy varia ved in Equ edicted wi e to it bein 3 may be e Scout, a	Y ables to adjutation 1. thin 30% of g less than in regard t	28 ust for a pr f the actual 50% comp o rotary w	ogram in c l values. Tl olete. Equa	8 levelopment the remaining ation 3 is th	4464 ht and whet ng 2 data p he same fun	ther the oints were
7	f(MTOW) Equations 1 through 3 are log-linear platform is rotary or not. Good statist With Equation 1, 10 of the 12 observ within 60%. Equations 2 and 3 remove the BAMS form as Equation 2 without the interc The limitations with models in Equat program in the dataset representing re Equations 4 through 7 analyzed a MT Equations 4 and 5 are linear.	99.8 and include du ics were obser ations were pre 6 data point due rept. ions 1 through otary wing, Fir COW relationsh 1S.	11 mmy varia ved in Equ edicted wi e to it bein 3 may be e Scout, a	Y ables to adjutation 1. thin 30% of g less than in regard t	28 ust for a pr f the actual 50% comp o rotary w	ogram in c l values. Tl olete. Equa	8 levelopment the remaining ation 3 is th	4464 ht and whet ng 2 data p he same fun	ther the oints were

10

11

