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Abstract

During college, my mathematics and economics professors were adamant in
telling me that I needed at least two data points to define a trend. You may have
been taught this same dogma. As it turns out, this is wrong. You can define
a trend with one data point, and even without any data at all. A cost estimating
relationship (CER), a mathematical equation that relates cost to one or more tech-
nical inputs, is a specific application of trend analysis. The purpose of this paper
is to introduce methods for applying CERs to small data sets, including the cases
of one data point and no data.

The only catch is that you need some prior information for one or more of
the CER’s parameters. For example, consider a linear CER with one explanatory
variable: ỹ = a + bX . The slope of the equation, b, can be interpreted as an
economies of scale factor. As such, it is typically between 0 and 1. When using
weight as the explanatory variable, rules of thumb are 0.5 for development cost
and 0.7 for production cost [4]. Bayes’ Theorem can be applied to combine prior
information with sample data to produce CERs using small data sets.

This paper discusses Bayes’ Theorem and applies it to linear and nonlinear
CERs, including ordinary least squares and log-transformed ordinary least squares.

Introduction

You may be familiar with the Law of Large Numbers (sample mean converges to the
expected value as the size of the sample increases), but you may not be familiar with
the Law of Small Numbers. The Law of Small Numbers, coined by the mathematician
Richard Guy [3], states that there are never enough small numbers to meet all the
demands placed upon them. This points out the difficulty in conducting statistical
analysis with small data sets. However, there is a need for developing cost estimates
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for programs that have limited prior experience. For example, NASA has not devel-
oped many launch vehicles, yet there is a need to understand how much a new launch
vehicle will cost. For insurance companies, there is a need to write policies for people
who have never been insured. In political polling, there is a need to forecast voter
turnout and election results for rural counties with low populations that report little
data. One way to approach these problems is to use Bayesian analysis. This is named
after the Rev. Thomas Bayes, who first developed this approach [8]. Bayesian anal-
ysis combines prior experience, or opinion, with sample data to conduct statistical
analysis. This prior experience can be subjective, or based on similar, more general
data, applied to a specific subset, as in a hierarchical model.

Bayesian analysis has proven to be successful in a multitude of applications. These
techniques were used in World War II to help crack the Enigma code used by the
Germans, thus helping to shorten the war. John Nash’s equilibrium for games with
incomplete or imperfect information is a form of Bayesian analysis. Actuaries have
used these technicques for over 100 years to set insurance premiums. Bayesian voice
recognition researchers applied their skills as leaders of the portfolio and technical
trading team for the Medallion Fund, a $5 billion hedge fund which has averaged
annual returns of 35% after fees since 1989 [8].

Recently, one of the most well-known recent examples of applying Bayesian meth-
ods is Nate Silver’s election predictions. In his 2012 book The Signal and the Noise,
advocates the use of Bayesian techniques in forecasting. Silver provides election fore-
casts via his blog, http://fivethirtyeight.blogs.nytimes.com. His recent results have
been extremely accurate. In 2008 he correctly predicted the winner of 49 of 50 states
in the presidential election. The only state Silver missed was Indiana, which went
to Barack Obama by one percentage point. He correctly predicted the winner of all
35 U.S. Senate races that year. In the 2012 United States presidential election be-
tween Barack Obama and Mitt Romney, Silver correctly predicted the winner of all
50 states and the District of Columbia. That same year, his predictions of U.S. Senate
races were correct in 31 of 33 states; he predicted Republican victory in North Dakota
and Montana, where Democrats won.

The Bayesian method can also be applied to cost analysis. Cost estimating re-
lationships (CERs) are important tools for cost estimators. The limitation is that
they require a significant amount of data. However, it is often the case that we have
small amounts of data in cost estimating. We show how to apply Bayes’ Theorem to
regression-based CERs, and in the process, leveraging prior experience and informa-
tion to be able to apply CERs to small data sets.

Indeed, small data sets are the ideal setting for the application of Bayesian tech-
niques for cost analysis. Given large data sets that are directly applicable to the
problem at hand, a straightforward regression analysis will likely be probably the
preferred method. However, when applicable data is limited, I suggest leveraging
prior experience to develop accurate estimates. The idea of applying significant prior
experience with limited data has been termed ”thin-slicing” by Malcolm Gladwell in
his best-selling book Blink [2]. In his book, Gladwell presents several examples of
how experts can make accurate predictions with limited data. One example is the
case of a marriage expert who can analyze a conversation between a husband and
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wife for an hour and can predict with 95% accuracy whether the couple will be mar-
ried 15 years later. If he analyzes a couple for 15 minutes he can predict the same
result with 90% accuracy.

Bayes’ Theorem

The conditional probability of event A given event B is denoted by Pr(A | B). In its
discrete form, Bayes’ Theorem states that

Pr(A | B) =
Pr(A)Pr(B | A)

Pr(B)
. (1)

Let’s consider the example of testing for the use of illegal drugs. Many have had to
take such a test as a condition of employment with the federal government. What is
the probability that someone who fails a drug test does not actually use illegal drugs?
Bayes’ Theorem can be used to answer such questions.

Suppose that 95% of the population does not use illegal drugs. Also suppose that
the drug test is highly accurate. If someone is a drug user, it returns a positive result
99% of the time. If someone is not a drug user, the test returns a false positive only
2% of the time.

In this case: A is the event that someone does not use illegal drugs, and B is the
event that someone tests positive for illegal drugs. The complement of A, denoted A′,
is the event that an individual is a user of illegal drugs.

From the law of total probability,

Pr(B) = Pr(B | A)Pr(A) + Pr(B | A′)Pr(A′). (2)

Thus, substituting eq. 2 into eq. 1, Bayes’ Theorem is equivalent to:

Pr(A | B) =
Pr(B | A)Pr(A)

Pr(B | A)Pr(A) + Pr(B | A′)Pr(A′)
. (3)

We see that the probability of someone who fails a drug test but is not an illegal drug
user can be calculated by plugging in the appropriate values into eq. 3,

Pr(A | B) =
0.02(0.95)

0.02(0.95) + 0.99(0.05)
≈ 27.7%. (4)

Therefore, even with accurate drug tests, it is easy to obtain false positives. This
is a case of inverse probability, a kind of statistical detective work where we try to
determine whether someone is innocent or guilty based on revealed evidence.

More typical of the kind of problem that we want to solve is the following: We have
some prior evidence or opinion about a subject, and we also have some direct empirical
evidence. How do we take our prior evidence and combine it with the current evidence
to form an accurate estimate of a future event?

It’s simply a matter of interpreting Bayes’ Theorem. Let Pr(A) be the probability
that we assign to an event before seeing the data, the prior probability. Then let
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Pr(A | B) be the probability after we see the data, the posterior probability. Thus
Pr(B|A)
Pr(B)

is the probability of observing these data given the hypothesis, the likelihood.
Bayes’ Rule can be re-stated as

Posterior ∝ Prior × Likelihood. (5)

An example of this application of Bayes’ Theorem can be found in the Monty Hall
Problem. This is based on the television show Let’s Make a Deal, whose original host
was Monty Hall. In this version of the problem, there are three doors. Behind one
door is a car. Behind each of the other two doors is a goat. Suppose you pick door #1.
Monty, who knows what is behind each door, then opens door #3, showing you a goat
behind it. He then asks if you want to pick door #2 instead, see Figure 1. Is it to your
advantage to switch doors?

Figure 1: Monty Hall Problem.

To solve this problem, let A1 denote the event that the car is behind door #1, A2

the event that the car is behind door #2, and A3 the event that the car is behind door
#3. Your original hypothesis is that there was an equally likely chance that the car
was behind any one of the three doors. Thus the prior probability, before the third
door is opened, that the car was behind door #1, which we denote Pr(A1) = 1

3
. Also,

Pr(A2) = Pr(A3) = 1
3
.

Once you picked door #1, you were given additional information. You were shown
that a goat is behind door #3. Let B denote the event that you are shown that a goat is
behind door #3. The probability that there is a goat behind door #3 is best calculated
by considering three conditional probabilities.

The probability that you are shown the goat is behind door #3 is an impossible
event if the car is behind door #3. Thus Pr(B | A3) = 0. Since you picked door #1,
Monty will open either door #2 or door #3, but not door #1. Thus, if the car is actually
behind door #2, it is a certainty that Monty will open door #3 and show you a goat.
Thus Pr(B | A2) = 1. If you have picked correctly and have chosen the right door,
then there are goats behind both door #2 and door #3. In this case, there is a 50%
chance that Monty will open door #2 and a 50% chance that he will open door #3.
Thus Pr(B | A1) = 1

2
.
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By Bayes’ Theorem,

Pr(A1 | B) =
Pr(A1)Pr(B | A1)

Pr(A1)Pr(B | A1) + Pr(A2)Pr(B | A2) + Pr(A3)Pr(B | A3)
. (6)

Plugging in the probabilities that we have derived, we find that

Pr(A1 | B) =
1
3
· 1

2
1
3
· 1

2
+ 1

3
· 1 + 1

3
· 0

=
1
6

1
6

+ 1
3

=
1

3
, (7)

and

Pr(A2 | B) =
1
3
· 1

1
3
· 1

2
+ 1

3
· 1 + 1

3
· 0

=
1
3

1
6

+ 1
3

=
2

3
. (8)

And since you already know that the car is not behind door #3, Pr(B) = 0.
Thus you have a 1

3
chance of picking the car if you stick with you initial choice of

door #1, but a 2
3

chance of picking the car if you switch doors. It is in your interest to
switch doors.

Did you think there was no advantage to switching doors? You are not alone.
Marilyn Vos Savant, famous for having the world’s highest IQ at 228, wrote a column
for Parade magazine for many years about this same question. In 1990, a reader
posed the Monty Hall problem to her and she provided the correct answer. But many
people, including people with Ph.D.s, some mathematicians, derided Marilyn for being
wrong (see http://marilynvossavant.com/game-show-problem/ for more information).
Even the famous mathematician Paul Erdos found the problem to be counterintuitive
[5]. But the correct answer is that once door #3 is opened and revealed to have a
goat behind it, there is a two-thirds chance that the car is behind door #2. If you are
still not convinced, conduct a Monte Carlo simulation to see that this is the correct
answer.

For our application of Bayes’ Theorem to cost estimating we will need the continu-
ous form of eBayes’ Theorem. If the prior distribution is continuous, Bayes’ Theorem
is written as

π(θ | x1, . . . , xn) =
π(θ)f(x1, . . . , xn | θ)

f(x1, . . . , xn)
=

π(θ)f(x1, . . . , xn | θ)∫
π(θ)f(x1, . . . , xn | θ)dθ

(9)

where:
π(θ) is the prior density, the initial density function for the parameters that varies

in the model. It is possible to define an improper prior density, one which is nonnega-
tive but whose integral is infinite.

f(x | θ) is the conditional probability density function of the model. It defines the
model’s probability given the parameter θ;

f(x1, . . . , xn | θ) is the conditional joint probability density function of the data
given θ. Typically the observations are assumed to be independent given θ, and in
this case,

f(x1, . . . , xn | θ) =
n∏
i=1

f(xi | θ) (10)
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where f(x1, . . . , xn) is the unconditional joint density function of the data x1, . . . , xn.
It is calculated from the conditional joint density function by integrating over the
prior density function of θ:

f(x1, . . . , xn) =

∫
π(θ)f(x1, · · · , xn | θ)dθ. (11)

π(θ | x1, . . . , xn) is the posterior density function, the revised density function for
the parameter θ based on the observations x1, . . . , xn.

f(xn+1 | x1, . . . , xn) is the predictive density function, the revised unconditional
density based on the sample data. It is calculated by integrating the conditional
probability density function over the posterior density of θ:

f(xn+1 | x1, . . . , xn) =

∫
f(xn+1 | θ)π(θ | x1, . . . , xn)dθ. (12)

Application of Bayes’ Theorem to Ordinary Least squares CERs

In this section, we consider ordinary least squares (OLS) CERs of the form

Y = a+ bX + ε (13)

The application of Bayes’ Theorem involves prior distributions about a and b, as well
as ε.

For the application of Bayes’ Theorem, we will write this in mean deviation form:

Y = αX̄ + β(X − X̄) + ε. (14)

This form makes it easier to establish prior inputs, since it is easier to think of an
average value for prior cost than it is for the intercept of the least-squares equation.

Given a sample of data points {(x1, y1), . . . , (xn, yn)}, the likelihood function can be
written as

L(αX̄ , β) ∝
n∏
i=1

e−
1

2σ2 (Yi−(αX̄+β(Xi−X̄)))2

(15)

= e−
1

2σ2

∑n
i=1(Yi−(αX̄+β(Xi−X̄)))2

. (16)

The expression
∑n

i=1(Yi − (αX̄ + β(Xi − X̄)))2 can be simplified as

n∑
i=1

(
Yi − Ȳ + Ȳ −

(
αX̄ + β

(
Xi − X̄

)))2 (17)

=
n∑
i=1

(
Yi − Ȳ

)2
+ 2

n∑
i=1

(
Yi − Ȳ

) (
Ȳ −

(
αX̄ + β

(
Xi − X̄

)))
+

n∑
i=1

(
Ȳ −

(
αX̄ + β

(
Xi − X̄

)))2
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which reduces to
SSy − 2βSSxy + n

(
Ȳ − αX̄

)2
+ β2SSx (18)

since
∑n

i=1

(
Yi − Ȳ

)
= 0 and

∑n
i=1

(
Xi − X̄

)
= 0, where

SSy =
n∑
i=1

(
Yi − Ȳ

)2 (19)

SSx =
n∑
i=1

(
Xi − X̄

)2 (20)

SSxy =
n∑
i=1

(
Yi − Ȳ

) (
Xi − X̄

)
. (21)

Thus, the joint likelihood of αX̄ and β is proportional to

e
− 1

2σ2

(
SSy−2βSSxy+β2SSx+n(αX̄−Ȳ )

2
)

= e−
1

2σ2 (SSy−2βSSxy+β2SSx)e
− 1

2σ2

(
n(αX̄−Ȳ )

2
)

(22)

= e
− 1

2 σ2
SSx

(
SSy
SSx
− 2βSSxy

SSx
+β2

)
e
− 1

2σ
2
n

(αX̄−Ȳ )
2

Completing the square on the innermost expression in the first term yields

β2 − 2β
SSxy
SSx

+
SSy
SSx

= β2 − 2β
SSxy
SSx

+
SS2

xy

SS2
x

−
SS2

xy

SS2
x

+
SSy
SSx

(23)

=

(
β − SSxy

SSx

)2

+ constant.

This means that likelihood is proportional to

e
− 1

2 σ2
SSx

(
β−SSxy

SSx

)2

e
− 1

2σ
2
n

(αX̄−Ȳ )
2

= L (β)L (αX̄) (24)

so the likelihoods are independent.
Note SSxy

SSx
= B, the least squares slope, and Ȳ = AX̄ , the least squares estimate

of the average. The likelihood of the slope β follows a normal distribution with mean
B and variance σ2

SSx
. The likelihood of the average αX̄ follows a normal distribution

with mean, AX̄ , and variance, σ2

n
.

The joint prior for β and αX̄ , g(αX̄ , β), has the property that

g(αX̄ , β) = g(αX̄)g(β) (25)

By Bayes’ Theorem, the joint posterior density function is proportional to the joint
prior times the joint likelihood:

g(αX̄ , β | {(x1, y1), . . . , (xn, yn)}) = g(αX̄ , β) sample likelihood (αX̄ , β). (26)

If the prior density for β is normal with mean mβ and variance s2
β, we obtain a

normal posterior with mean m′β and variance s′2β , where

m′β =

1
s2β
1
s′2β

mβ +
SSx
σ2

1
s′2β

B (27)
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and
1

s′2β
=

1

s2
β

+
SSx
σ2

. (28)

If the prior density for αX̄ is normal with mean mαX̄
and variance s2

αX̄
, then we

obtain a normal posterior with mean m′αX̄ and variance s′2αX̄ where

m′αX̄ =

1
s2αX̄

1
s′2αX̄

mαX̄
+

n
σ2

1
s′2αX̄

AX̄ (29)

and
1

s′2αX̄
=

1

s2
αX̄

+
n

σ2
. (30)

What we really need is the predictive equation, not just the posterior values of the
parameters. But in this case the predictive mean is equal to the posterior mean, i.e.,

µn+1 = m′αX̄ +m′β(Xn+1 − X̄). (31)

This result follows from the fact that the prior distribution is normal, and the likeli-
hood is normal, resulting in a predictive distribution that is normal as well. This is
the case of a conjugate prior.

Consider the case of a non-informative improper prior such as π(αX̄) = 1 for all
αX̄ . By independence, β is calculated as before and αX̄ is calculated as

L(αX̄) = e
−1

2σ
2
n

(αX̄−Ȳ )2

(32)

which follows a normal distribution with mean Ȳ and variance σ2

n
. This is equivalent

to the sample mean of αX̄ and the variance of the sample mean s2
αX̄

. Thus in the case
where we only have information about the slope, the sample mean of actual data is
used for αX̄ .

For each parameter, the updated estimate incorporating both prior information
and sample data is weighted by the inverse of the variance of each estimate. The
inverse of the variance is called the precision. This result can be generalized to the
linear combination of any two estimates that are independent and unbiased.

Theorem: If two estimators are unbiased and independent, then the minimum
variance estimate is the weighted average of the two estimators with weights that
are inversely proportional to the variance of the two estimators.

Proof : Let θ̃1 and θ̃2 be two independent, unbiased estimators of a random variable
θ, where E(θ̃1) = E(θ̃2) = θ. Since both are unbiased, the weighted average of the two
is also unbiased. In order to confirm this, let w and 1 − w be the weights used in
the weighted average of θ̃1 and θ̃2, respectively. Then the weighted average is also an
unbiased estimator of θ since

E(wθ̃1 + (1− w)θ̃2) = wE(θ̃1) + (1− w)E(θ̃2) = wθ + (1− w)θ = θ, (33)
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θ̃1 and θ̃2 are independent. Thus, the variance of the weighted average is

V ar(wθ̃1 + (1− w)θ̃2) = w2V ar(θ̃1) + (1− w)2V ar(θ̃2). (34)

To determine the weights that minimize the variance, define φ to be a function of w,
that is,

φ(w) = w2V ar(θ̃1) + (1− w)2V ar(θ̃2) (35)

Now take the first derivative of φ with respect to w and set it equal to zero:

φ′(w) = 2wV ar(θ̃1)− 2(1− w)V ar(θ̃2) = 2wV ar(θ̃1) + 2wV ar(θ̃2)− 2V ar(θ̃2) = 0. (36)

Note the second derivative is φ′′(w) = 2V ar(θ̃1) + 2V ar(θ̃2), confirming the value of w
which satisfies the equation φ′(w) = 0 will be a minimum.

Solving for w, we find that

w =
V ar(θ̃2)

V ar(θ̃1) + V ar(θ̃2)
. (37)

Multiplying both the numerator and the denominator by 1
V ar(θ̃1)V ar(θ̃2)

yields

w =

1
V ar(θ̃1)

1
V ar(θ̃1)

+ 1
V ar(θ̃2)

. (38)

It immediately follows that

1− w =

1
V ar(θ̃2)

1
V ar(θ̃1)

+ 1
V ar(θ̃2)

. (39)

Note this rule extends to more than two estimates.
This leads to the Precision-Weighting Rule for combining prior experience and

sample data:

Precision-Weighting Rule for Combining Two Parametric Estimates

Given two independent, unbiased parametric estimates θ̃1 and θ̃2 with pre-
cisions ρ1 = 1

V ar(θ̃1)
and ρ2 = 1

˜V ar(θ2)
, respectively, the minimum variance

estimate of weighted average is given by
ρ1

ρ1+ρ2
θ̃1 + ρ2

ρ1+ρ2
θ̃2.

The precision-weight approach has desirable properties. It is an uniformly min-
imum variance unbiased estimator (UMVUE). This approach minimizes the mean
squared error, which is defined as

MSEθ̃(θ) = E
[
(θ̃ − θ)2 | θ

]
. (40)
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In general, the lower the mean squared error, the better the estimator. The mean
squared error is widely accepted as a measure of accuracy [7]. Thus, the precision-
weighted approach which minimizes the mean squared error, has optimal properties.
You may be familiar with this as the ”least squares criterion” from linear regression.
We provide examples of applying this method to updating the parameters in the next
section.

Application to Log-Transformed Ordinary Least Squares CERs

For an example based on real data, consider earth-orbiting satellite cost and weight
trends. Goddard Space Flight Center’s Rapid Spacecraft Development Office (RSDO)
is designed to procure satellites cheaply and quickly. Their goal is to quickly ac-
quire a spacecraft for launching already designed payloads using fixed-price con-
tracts. They claim that this approach mitigates cost risk. If this is the case their
cost should be less than the average earth-orbiting spacecraft. For more on RSDO see
http://rsdo.gsfc.nasa.gov/.

Data on earth-orbiting spacecrafts is plentiful, while data for RSDO has a much
smaller sample size. When I did some analysis in 2008 to compare the cost of non-
RSDO earth-orbiting satellites with RSDO missions, I had a database with 72 non-
RSDO missions from NAFCOM and 5 RSDO missions. Figure 2 is a scatter plot
showing cost vs. weight for these two data sets, along with best-fit LOLS trend lines.

Figure 2: Earth-orbiting and RSDO Spacecraft Cost and Weight Trends.

Note Figure 2 is a log-scale graph. Power equations of the form Ỹ = aW b were fit to
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both data sets using log-transformed ordinary least squares. The b-value previously
mentioned is a measure of the economy of scale. For NAFCOM the value is 0.89 and
for RSDO it is 0.81. This would seem to indicate greater economies of scale for the
RSDO spacecraft. Even more significant is the difference in the magnitude of costs
between the two data sets. The log-scale graph understates the difference, so seeing
a significant difference between two lines plotted on a log-scale graph is very telling.
For example, for a weight equal to 1,000 lbs. the estimate based on RSDO data is 70%
less than the data based on earth-orbiting spacecraft data from NAFCOM.

Since we have five data points, why not just use the regression analysis from the
RSDO data? Because the RSDO data set consists of only five data points! However,
the Bayesian approach allows us to combine the Earth-Orbiting Spacecraft data with
the smaller data set. We use a hierarchical approach, treating the earth-orbiting
spacecraft data from NAFCOM as the prior, and the RSDO data as the sample. This is
exactly the type of approach that Nate Silver uses to develop highly accurate elections
forecasts in small population areas and areas with little reported data. This is also
the approach that actuaries use when setting premiums for insurances with little
data.

Because we have used log-transformed OLS to develop the regression equations,
we are assuming that the residuals are lognormally distributed, and thus normally
distributed in log-space. We will use the approach for updating normally distributed
priors with normally distributed data to estimate the precisions. These precisions
will then determine the weights we assign the parameters.

To apply LOLS, we transform the equation Ỹ = aW b to log-space by applying the
natural log function to each side, i.e.

ln(Ỹ ) = ln(aW b) = ln(a) + b ˙ln(W ). (41)

Once the data are transformed, ordinary least squares regression is applied to both
the NAFCOM data and to the RSDO data.

As data are available for both data sets, opinion is not used. The precisions used
in evaluating the combined equations are calculated from the regression statistics. In
keeping with the model,

ln(Cost) = ln(X)−
n∑
i=1

lnXi

n
. (42)

From the regressions we need the values of the parameters as well as the variances
of the parameters. Statistical software packages provide both the parameters and
their variances as outputs. Using the Data Analysis add-in in Excel, the Summary
Output table provides these values. Table 1 is the output of the regression for the
NAFCOM data. Note the ”Coefficients” and ”Standard Errors” for Intercept and X
Variable 1 are the mean and variance of the parameters.

In Table 1, ”Intercept” is αX̃ and ”X Variable 1” is the slope parameter β. The
”Standard Error” is the standard deviation of the respective parameter. We square
this value to obtain the variance. Table 2 contains the values for the means, variances,
precisions, and combined values for the parameters.
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SUMMARY OUTPUT
Regression Statistics
Multiple R 0.79439689
R Square 0.63106642
Adjusted R2 0.62579595
Standard Error 0.81114468
Observations 72
ANOVA

df SS MS F Significance F
Regression 1 78.78101763 78.78101763 119.7361 8.27045E-17
Residual 70 46.05689882 0.657955697
Total 71 124.8379164

Coefficients Standard Error t-Stat P-value Lower 95%
Intercept 4.60873098 0.095594318 48.1134863 1.95E-55 4.418074125
X Variable 1 0.88578231 0.080949568 10.942397 8.27E-17 0.724333491

Table 1: Regression Statistics Summary for the NAFCOM Data.

Parameter NAFCOM NAFCOM NAFCOM RSDO RSDO RSDO Combined
Mean Variance Precision Mean Variance Precision Mean

αX̄ 4.6087 0.0091 109.4297 4.1359 0.0201 49.8599 4.4607
β 0.8858 0.0065 152.6058 0.8144 0.0670 14.9298 0.8794

Table 2: Combining the Parameters.

In Table 2, the mean of each parameter is the value calculated by the regression.
The variance is the square of the standard error. The precision is the inverse of
the variance. The combined mean is calculated by weighting each parameter by its
relative precision. Using eq.38, for the intercept the relative precision weights are

1
0.0091

1
0.0091

+ 1
0.0201

=
109.4297

109.4297 + 49.8599
≈ 0.6870 (43)

for the NAFCOM data, and 1− 0.6870 = 0.3130 for the RSDO data. Likewise if we use
eq. 38 to calculate the slope the relative precision weights, we obtain

1
0.0065

1
0.0065

+ 1
0.0670

=
152.6058

152.6058 + 14.9298
≈ 0.9109 (44)

for the NAFCOM data, and 1 − 0.9109 = 0.0891 for the RSDO data. The combined
intercept is 0.6870 · 4.6087 + 0.3130 · 4.1359 ≈ 4.4607 and the combined slope is 0.9109 ·
0.8858 + 0.0891 · 8144 ≈ 0.8794.

The log-space equation is Ỹ = αX̄ + β(X − X̄), thus the combined equation in log-
space is Ỹ = 4.4607 + 0.8794(X − X̄). The only remaining question is what value to
use for X̄. We have two data sets. But since we consider the first data set as the prior
information, the mean is calculated from the second data set, that is, from the RSDO
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data. The log-space mean of the RSDO weights is 7.5161. Thus the log-space equation
is

(̃Y ) = 4.4607 + 0.8794(X − X̄) (45)
= 4.4607 + 0.8794(X − 7.5161) (46)
= −2.1491 + 0.8794X. (47)

This equation is in log-space, that is,

ln(C̃ost) = −2.1491 + 0.8794 ln(Wt). (48)

In linear space, this is equivalent to

C̃ost = 0.1166Wt0.8794. (49)

See Figure 3 for a comparison of all three trendlines: the solid line based on NAFCOM
earth-orbiting Spacecraft (EO) data, the dashed line based only on RSDO data, and
the dotted line is the Bayesian combination of the two estimates.

One RSDO data point not in the data set that launched in 2011 was the Landsat
Data Continuity Mission (now Landsat 8). The Landsat Program provides repetitive
acquisition of high resolution multispectral data of the Earth’s surface on a global
basis. The Landsat satellite bus weighs 4, 566 lbs. Using the Bayesian equation,
eq.49, the predicted cost is

C̃ost = 0.1166 · 45660.8794 ≈ $192Million (50)

which is equal to the actual cost for the spacecraft bus! The RSDO data alone predicts
a cost equal to $131 Million 31% below the actual cost), while the earth-orbiting data
alone predicts a cost equal to $492 million (156% higher than the actual cost). While
this is only one data point, this seems promising. It is significantly more accurate
than using regression analysis on the earth-orbiting NAFCOM data or regression
analysis on the RSDO data alone.

Note that the range of the RSDO data is narrow compared to the larger NAFCOM
data set. The weights of the missions in the NAFCOM data set range from 57 lbs.
to 13,448 lbs. The range of the missions in the RSDO data set range from 780 lbs.
to 4,000 lbs. One issue with using the RSDO data alone is that it is likely you will
need to estimate outside the range of the data, which is problematic for a small data
set. Combining the RSDO data with a larger date set with a wider range provides
confidence in estimating outside the limited range of a small data set.

To summarize the hierarchical approach we begin by regressing the prior data.
Record the parameters of the prior regression. Calculate the precisions of the pa-
rameters of the prior. Next regress the sample data. Record the parameters of the
sample regression. Calculate the precisions of the parameters. Once these two re-
gressions are complete, combine the two regression equations by precision weighting
the means.
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Figure 3: Comparison of Three Trendlines.

NAFCOM’s First Pound Methodology

The NASA/Air Force Cost Model includes a method called ”First Pound” CERs. These
equations have the power form

Ỹ = aW b, (51)

where Ỹ is the estimate of cost and W is dry spacecraft mass in pounds. The ”First
Pound” method is used for developing CERs with limited data. A slope b that varies by
subsystem is based on prior experience. As documented in NAFCOM v2012, ”NAF-
COM subsystem hardware and instrument b-values were derived from analyses of
some 100 weight-driven CERs taken from parametric models produced for MSFC,
GSFC, JPL, and NASA HQ. In depth analyses also revealed that error bands for
analogous estimating are very tight when NAFCOM b-values are used” [9].

As explained by Hamaker, the slope is assumed, then the a parameter is cal-
culated by calibrating the data to one data point or to a collection of data points.
Hamaker credits Frank Freiman with the inspiration for this approach, who imple-
mented something similar in an early version of the PRICE cost model [4].

The slope values are provided in Table 3 by group and subsystem. In the table
DDT&E is an acronym for Design, Development, Test and Evaluation, which is the
nonrecurring cost. Flight Unit is the recurring cost.

The slope parameter in a power equation represents the economies of scale expe-
rienced. If there are no economies of scale, as the size of a project grows, the cost
increases at a linear rate and b = 1. If there are diseconomies of scale then b > 1. In
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most cases, however, there are economies of scale and b < 1. The lower the value of b,
the greater the economies of scale.

AsJoe Hamaker explained,
”The engineering judgment aspect of NAFCOM assumed slopes is based on the

structural/mechanical content of the system versus the electronics/software content
of the system. Systems that are more structural/mechanical are expected to demon-
strate more economies of scale (i.e. have a lower slope) than systems with more elec-
tronics and software content. Software for example, is well known in the cost com-
munity to show diseconomies of scale (i.e. a CER slope of b > 1.0); that the larger
the software project (in for example, lines of code) the more the cost per line of code.
Larger weights in electronics systems implies more complexity generally, more soft-
ware per unit of weight and more cross strapping and integration costs-all of which
dampens out the economies of scale as the systems get larger. The assumed slopes
are driven by considerations of how much structural/mechanical content each system
has as compared to the system’s electronics/software content” [4].

Among hardware item structural elements exhibit the greatest economies of scale
while electronic elements exhibit the least. Propulsion elements, which are a mix of
structures and electronics have economies of scale between these two extremes.

The data in Table 3 includes group and subsystem information. The spacecraft is
the system. Major sub-elements are called subsystems, and include elements such as
structures, reaction control, etc. A group is a collection of subsystems. For example
the Avionics group is a collection of Command and Data Handling, Attitude Control,
Range Safety, Electrical Power, and the Electrical Power Distribution, Regulation,
and Control subsystems.

Some of these values come in handy when estimating cost for launch vehicles. For
example, in 2007-2009, when I was developing cost estimates for the planned Ares
launch vehicles, I had to develop estimates for range safety, crew accommodations,
and environmental control and life support (ECLS) subsystems, among others. NASA
has only developed a few launch vehicles, and very few human-rated systems that
have required subsystems like crew accommodations and ECLS subsystems. The last
of these was the International Space Station, and prior to that, the Space Shuttle.

As a notional example, suppose that you have one ECLS data point, with a dry
weight equal to 7,000 pounds, and development cost equal to $500 million. In Table
3, the b-value is equal to 0.65, plugging into the equation below, we have

500 = a(70000.65). (52)

Solving this equation for a we find that

a =
500

70000.65
≈ 1.58 (53)

Note that the slopes in Table 3 were verified based on log-transformed ordinary
least squares regressions. The resulting CER is C̃ost = 1.58 · Weight0.65. Thus as
mentioned at the beginning of this paper, you only need one point to determine a
trend line. Can we do even better? Can we develop a CER without any data at all?
Yes we can! Consider the following which I called the ”No Pound Methodology.”
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Subsystem/Group DDT&E Flight Unit
Antenna Subsystem 0.85 0.80
Aerospace Support Equipment 0.55 0.70
Attitude Control/Guidance and Navigation Subsystem 0.75 0.85
Avionics Group 0.90 0.80
Communications and Command and Data Handling Group 0.85 0.80
Communications Subsystem 0.85 0.80
Crew Accommodations Subsystem 0.55 0.70
Data Management Subsystem 0.85 0.80
Environmental Control and Life Support Subsystem 0.50 0.80
Electrical Power and Distribution Group 0.65 0.75
Electrical Power Subsystem 0.65 0.75
Instrumentation Display and Control Subsystem 0.85 0.80
Launch and Landing Safety 0.55 0.70
Liquid Rocket Engines Subsystem 0.30 0.50
Mechanisms Subsystem 0.55 0.70
Miscellaneous 0.50 0.70
Power Distribution and Control Subsystem 0.65 0.75
Propulsion Subsystem 0.55 0.60
Range Safety Subsystem 0.65 0.75
Reaction Control Subsystem 0.55 0.60
Separation Subsystem 0.50 0.85
Solid/Kick Motor Subsystem 0.50 0.30
Structures Subsystem 0.55 0.70
Structures/Mechanical Group 0.55 0.70
Thermal Control Subsystem 0.50 0.80
Thrust Vector Control Subsystem 0.55 0.60

Table 3: First Pound Slopes from NAFCOM.

To see this, we start in log-space, where we use the log-transformed OLS equation
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in mean difference form, i.e.,

l̃n(Y ) = αX̃ + β
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Exponentiating both sides, we find

Ỹ =
(
∏n

i=1 Yi)
1
n

(
∏n

i=1Xi)
β
n

Xβ. (55)

Recall that (
∏n

i=1 ai)
1/n is the geometric mean. Therefore the term in the numerator

is the geometric mean of the cost, and the term in the denominator is the geometric
mean of the independent variable (such as weight) raised to the β. The geometric
mean is distinct from the arithmetic mean, and is always less than or equal to the
arithmetic mean. To apply this ”No-Pound” methodology you would need to apply
insight or opinion to find the geometric mean of the cost, the geometric mean of the
cost driver, and the economy of scale parameter, the slope.

We mention the ”No Pound” methodology as an aside, and now return to a descrip-
tion of the first-pound methodology and applying Bayes’ Theorem to it.

The first-pound methodology bases the b-value entirely on the prior experience,
and the a-value entirely on the sample data. No prior assumption for the a-value
is applied. Denote the prior parameters by aPrior, bPrior, the sample parameters by
aSample, bSample, and the posterior values by aPosterior, bPosterior. The first-pound method-
ology calculates the posterior values as

aPosterior = aSample (56)
bPosterior = bPrior. (57)
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This is equivalent to a weighted average of the prior and sample information with
a weight equal to 1.0 applied to the sample data for the a-value and a weight equal to
1.0 applied to the prior information for the b-value. The first-pound method in NAF-
COM is not exactly the same as the approach we have derived but it is a Bayesian
framework. Prior values for the slope are derived from experience and data, and
this information is combined with sample data to provide an estimate based on ex-
perience and data. The first electronic version of NAFCOM in 1994 included the
first-pound CER methodology. Thus, NAFCOM has included Bayesian statistical es-
timating methods for almost 20 years.

NAFCOM’s calibration module is similar to the first pound method, but is an ex-
tension for multi-variable equations. Instead of assuming a b-value, the parameters
for the built-in NAFCOM multi-variable CERs are used, but the intercept parameter
(a-value) is calculated from the data, as with the first-pound method. The multi-
variable CERs in NAFCOM have the form

C̃ost = a ·Weightb1 ·New Designb2 · Technicalb3 ·Managementb4 · Classb5 (58)

In this equation, New Design is the percentage of new design for the subsystem
(0−100%). Technical cost drivers are determined for each subsystem and are weighted
based upon their impact on the development or unit cost. Management cost drivers
are based on new ways of doing business survey sponsored by the Space Systems
Cost Analysis Group (SSCAG). The Class variable is a set of attribute (dummy) vari-
ables that are used to delineate data across mission classes: earth-orbiting, Planetary,
Launch Vehicles, and Manned Launch Vehicles. See Smart’s presentation on NAF-
COM multivariate CERs for more information [10].

To apply the precision-weighted method to the first-pound CERs, we need an es-
timate of the variances of the b-values. Based on data from NAFCOM, these can be
obtained by calculating average a-values for each mission class earth-orbiting, plan-
etary, launch vehicle, or crewed system and then calculating the standard error and
the sum of squares of the natural log of the weights. The results of these calculations
are displayed in Table 4. Note that there is not enough data to calculate b-values for
Range Safety or Separations subsystems.

In the absence of data, one way to calculate the standard deviation of the slopes
is to estimate your confidence and express it in those terms. For example, if you are
highly confident in your estimate of the slope parameter you may decide that means
you are 90% confident that the actual slope will be within 5% of your estimate. For
a normal distribution with mean µ and standard deviation σ the upper limit of a
symmetric two-tailed 90% confidence interval is 20% higher than the mean, that is,

µ+ 1.645σ = 1.20µ (59)

from which it follows that
σ =

0.20

1.645µ
≈ 0.12µ. (60)

Thus the coefficient of variation, which is the ratio of the standard deviation to the
mean, is 12% in this case. See Table 5 for a list of suggested values for the coefficients

18



Subsystem/Group DDT&E Flight Unit
Antenna Subsystem 0.0338 0.0161
Aerospace Support Equipment 0.0698 0.0982
Attitude Control/Guidance and Navigation Subsystem 0.0120 0.0059
Avionics Group 0.0055 0.0044
Communications and Command and Data Handling Group 0.0053 0.0003
Communications Subsystem 0.0208 0.0141
Crew Accommodations Subsystem 0.0826 0.0565
Data Management Subsystem 0.0048 0.0025
Environmental Control and Life Support Subsystem 0.0439 0.2662
Electrical Power and Distribution Group 0.0064 0.0043
Electrical Power Subsystem 0.0878 0.0161
Instrumentation Display and Control Subsystem 0.1009 0.0665
Launch and Landing Safety 0.0960 0.0371
Liquid Rocket Engines Subsystem 0.1234 0.0483
Mechanisms Subsystem 0.0050 0.0167
Miscellaneous 0.0686 0.0784
Power Distribution and Control Subsystem 0.0106 0.0053
Propulsion Subsystem 0.2656 0.1730
Range Safety Subsystem - -
Reaction Control Subsystem 0.0144 0.0092
Separation Subsystem - -
Solid/Kick Motor Subsystem 0.0302 0.0105
Structures Subsystem 0.0064 0.0038
Structures/Mechanical Group 0.0029 0.0023
Thermal Control Subsystem 0.0055 0.0045
Thrust Vector Control Subsystem 0.7981 0.0234

Table 4: Calculate b-Value Variances for NAFCOM Data.

of variation based on the true mean being within 20% of the estimate with the stated
confidence level.

Confidence Coefficient of
Level Variation
90% 12%
80% 16%
70% 19%
50% 30%
30% 52%
10% 159%

Table 5: Coefficient of variations for the confidence that the true mean is within 20%
of the estimated mean.

For example, the Structures Subsystem in NAFCOM has a mean value equal to
0.55 for the b-value parameter of DDT&E, see Table 3. The calculated variance for 37
data points is 0.0064 found in Table 4. The standard deviation is the square root of
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this value, which is approximately 0.08. The calculated coefficient of variation is thus
equal to

0.08

0.55
≈ 14.5%. (61)

If I were 80% confident that the true value of the structures b-value is within 20% of
0.55 (i.e., between 0.44 and 0.66), then the coefficient of variation will equal 16% (see
Table 5). This is similar to the calculated value.

As an example of applying the first pound priors to actual data, suppose we re-
visit the environmental control and life support (ECLS) subsystem. See Figure 4 for
a scatter plot of the theoretical first unit cost and weight for six data points. The
log-transformed ordinary least squares best fit is provided by the equation

C̃ost = 0.4070Wt0.6300. (62)

The prior b-value for ECLS flight unit cost provided in Table 3 is 0.80. The first-
pound methodology provides no prior for the a-value. Given no prior, the Bayesian
method uses the calculated value as the a-value, and combines the b-values. The
variance of the b-value from the regression is 0.1694 and thus the precision is 1

0.1694
≈

5.9032. For the prior, the ECLS 0.8 b-value is based largely on electrical systems.
The environmental control system is highly electrical, so I subjectively place high
confidence in this value. I have 80% confidence that the true slope parameter is
within 10% of the true value. From Table 5 this implies a coefficient of variation
equal to 16%. Thus, the standard deviation of the b-value prior is 0.80 · 0.16 = 0.128
and the variance is the square of this value, i.e., 0.1282 ≈ 0.01638. The precision is
then 1

0.01638
≈ 61.0352. Therefore the precision-weighted b-value is

0.80 · 61.0352

61.0352 + 5.9032
+ 0.63 · 5.9032

61.0352 + 5.9032
= 0.7850. (63)

Thus, the adjusted equation combining prior experience and data is

C̃ost = 0.4070Wt0.7850. (64)

The predictive equation, eq.(64) produced by the Bayesian analysis is very similar
to the NAFCOM first-pound method. Recall that the first-pound methodology pro-
duces an a-value that is equal to the average a-value (in log-space). This is the same
as the a-value produced by the regression since

ln(Ỹ ) = ln(a) + b ln(X). (65)

For each of the n data points, the a-value is calculated in log-space as

ln(a) = ln(Ỹ )− b ln(X). (66)

The overall log-space a-value is the average of these a-values, i.e.,

1

n

n∑
i=1

ln(ai) =
1

n

n∑
i=1

ln(Yi)−
b

n

n∑
i=1

ln(Xi). (67)
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Figure 4: Environmental Control and Life Support Subsystem Data.

In the case b = β, this is the same as the calculation of the a-value from the normal
equations in the regression. For small data sets we expect the overall b-value to be
similar to the prior b-value. Thus, NAFCOM’s first-pound methodology is very similar
to the Bayesian approach.

However, the NAFCOM first-pound methodology and calibration modules can be
enhanced by incorporating more aspects of the Bayesian approach. The first-pound
methodology can be extended to incorporate prior information about the a-value as
well. Neal Hulkower describes how Malcolm Gladwell’s ”thin-slicing” can be applied
to cost estimating [2]. Hulkower suggests that experienced cost estimates can use
prior experience to develop accurate cost estimates with limited information. I at-
tended his presentation in 2008 where Dr. Hulkower asked the audience to provide
estimates for a 300 kg small satellite, 10,000 lines of equivalent source lines of code
for military mobile software in C++, a recent model F16, and an aircraft carrier. All
audience responses were with 25% of the actual costs for the systems. Even with lim-
ited information it is possible to provide accurate estimates with limited information.
Dr. Hulkower’s experiment was an expert solicitation for the prior average cost of
such a system. Providing prior information on average cost to develop a prior a-value
can also be useful. And if a large data set is available, the average cost of a mission
can be calculated from data to be used for the prior value [6].

Conclusion

The Bayesian framework involves taking prior experience, combining it with sample
data, sometimes a small sample of data, and uses it to make accurate predictions of
future events. Examples of successful applications in real world scenarios involved
predicting election results, setting insurance premiums, and decoding encrypted mes-

21



sages, to name just a few.
This paper introduced Bayes’ Theorem, and demonstrated how to apply it to re-

gression analysis. An example of applying this method to prior experience with data,
termed the hierarchical approach, was demonstrated. The idea of developing CER
parameters based on logic and experience was discussed. A method for applying the
Bayesian approach to this situation was presented, and an example of this approach
to actual data was examined.

There are advantages to using this approach. This method enhances estimating
costs when there is limited data. We showed one method for developing a CER with
one data point, and introduced another for developing a CER without any data what-
soever! One particular advantage is that a small data set can have a narrow range,
like we saw with the RSDO data. Estimating outside the range of the data is prob-
lematic for a small data set. For a small data set you have little confidence that the
trend will hold outside the range of the data, or even that the trend itself will be valid.
Combining a small data set with prior experience provides confidence in estimating
outside the limited range of that set.

However, this method has some challenges. You must have some prior experi-
ence or information that can be applied to the problem. Without this you are left to
frequency-based approaches. Nonetheless, there are ways to derive this information
from logic, as discussed by Hamaker [4].

The examples in this paper have focused on log-transformed ordinary least squares.
We did not discuss how to apply this method to other CER methods, such as the
general error regression model (GERM), the interactively reweighted least squares
(IRLS), or minimum unbiased percentage error (MUPE) approaches. The precision-
weight approach does not depend on any particular underlying assumption. The only
requirement is that the variance of the parameters are needed. The variances re-
quired for the GERM approach can be derived from a bootstrap approximation, as
proposed by Book [1], the details are left for a future paper.

We did not discuss how to incorporate risk analysis in the Bayesian approach to
parameters. The formula for the posterior variance was calculated for the ordinary
least squares case, and this can also be applied to the log-transformed ordinary least
squares method as well. We leave the details of this approach to a future paper as
well.
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