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Introduction 

• When I was in college, my mathematics and economics 
professors were adamant in telling me that I needed at 
least two data points to define a trend 
– It turns out this is wrong 
– You can define a trend with only one data point, and even 

without any data 

• A cost estimating relationship (CER), which is a 
mathematical equation that relates cost to one or more 
technical inputs, is a specific application of trend 
analysis which in cost estimating is called parametric 
analysis 

• The purpose of this presentation is to discuss methods 
for applying parametric analysis to small data sets, 
including the case of one data point, and no data 
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The Problem of Limited Data 

• A familiar theorem from statistics is the Law of Large 
Numbers 
– Sample mean converges to the expected value as the size of 

the sample increases 

• Less familiar is the Law of Small Numbers 
– There are never enough small numbers to meet all the 

demands placed upon them 

• Conducting statistical analysis with small data sets 
is difficult  
– However, such estimates have to be developed 
– For example NASA has not developed many launch 

vehicles, yet there is a need to understand how much a new 
launch vehicle will cost 

– There are few kill vehicles, but there is still a need to 
estimate the cost of developing a new kill vehicle 
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One Answer: Bayesian Analysis 

• One way to approach these problems is to use 
Bayesian statistics 
– Bayesian statistics combines prior experience with 

sample data 
• Bayesian statistics has been successfully 

applied to  numerous disciplines (McGrayne 
2011, Silver 2012) 
– In World War II to help crack the Enigma code used by 

the Germans, shortening the war 
– John Nash’s (of A Beautiful Mind fame) equilibrium for 

games with partial or incomplete information  
– Insurance premium setting for property and casualty 

for the past 100 years 
– Hedge fund management on Wall Street 
– Nate Silver’s election forecasts 
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Application to Cost Analysis 

5 

• Cost estimating relationships (CERs) are 
important tool for cost estimators 

• One limitation is that they require a 
significant amount of data 
– It is often the case that we have small amounts of 

data in cost estimating  

• In this presentation we show how to apply 
Bayes’ Theorem to regression-based CERs 

 
 
 
 
 

 

Small Data Sets 

• Small data sets are the ideal setting for the 
application of Bayesian techniques for cost 
analysis  
– Given large data sets that are directly applicable 

to the problem at hand a straightforward 
regression analysis is preferred  

• However when applicable data are limited, 
leveraging prior experience can aid in the 
development of accurate estimates 
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“Thin-Slicing”  

• The idea of applying significant prior experience with 
limited data has been termed “thin-slicing” by 
Malcolm Gladwell in his best-selling book Blink 
(Gladwell 2005)  

• In his book Gladwell presents several examples of 
how experts can make accurate predictions with 
limited data 

• For example, Gladwell presents the case of a 
marriage expert who can analyze a conversation 
between a husband and wife for an hour and can 
predict with 95% accuracy whether the couple will be 
married 15 years later 
– If the same expert analyzes a couple for 15 minutes he can 

predict the same result with 90% accuracy 
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Bayes’ Theorem 

• The distribution of the model given values for the 
parameters is called the model distribution  

• Prior probabilities are assigned to the model 
parameters 

• After observing data, a new distribution, called the 
posterior distribution, is developed for the 
parameters, using Bayes’ Theorem 

• The conditional probability of event A given event B 
is denoted by  

 
• In its discrete form Bayes’ Theorem states that 
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 B|APr

𝑷𝒓 𝑨 𝑩 =
𝑷𝒓 𝑨 𝑷𝒓 𝑩 𝑨 

𝑷𝒓⁡(𝑩)
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Example Application (1 of 2) 

• Testing for illegal drug use 
– Many of you have had to take such a test as a condition of 

employment with the federal government or with a 
government contractor 

• What is the probability that someone who fails a 
drug test is not a user of illegal drugs?  

• Suppose that 
– 95% of the population does not use illegal drugs 
– If someone is a drug user, it returns a positive result 99% of 

the time 
– If someone is not a drug user, the test returns a false 

positive only 2% of the time 
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Example Application (2 of 2) 

• In this case 
– A is the event that someone is not a user of illegal drugs 
– B is the event that someone test positive for illegal drugs 
– The complement of A, denoted A’, is the event that someone 

is a user of illegal drugs 
• From the law of total probability 

 
 

• Thus Bayes’ Theorem in this case is equivalent to 
 
 
 

• Plugging in the appropriate values  
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𝐏𝐫(𝐁) = 𝐏𝐫 𝑩 𝑨 𝐏𝐫 𝑨 + 𝐏𝐫 𝑩 𝑨′ 𝐏𝐫(𝑨′) 

𝐏𝐫 𝑨 𝑩 =
𝐏𝐫 𝑩 𝑨 𝐏𝐫⁡(𝑨)

𝐏𝐫 𝑩 𝑨 𝐏𝐫 𝑨 + 𝐏𝐫 𝑩 𝑨′ 𝐏𝐫(𝑨′)
 

𝐏𝐫 𝑨 𝑩 =
𝟎.𝟎𝟐(𝟎.𝟗𝟓)

𝟎.𝟎𝟐(𝟎.𝟗𝟓) + 𝟎.𝟗𝟗(𝟎.𝟎𝟓)
≈ 𝟐𝟕.𝟕% 
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Forward Estimation (1 of 2) 

• The previous example is a case of inverse 
probability 
– a kind of statistical detective work where we try to 

determine whether someone is innocent or guilty based on 
revealed evidence 

• More typical of the kind of problem that we want to 
solve is the following 
– We have some prior evidence or opinion about a subject, 

and we also have some direct empirical evidence 
– How do we take our prior evidence, and combine it with the 

current evidence to form an accurate estimate of a future 
event? 
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Forward Estimation (2 of 2) 

• It’s simply a matter of interpreting Baye’s Theorem 
• Pr(A) is the probability that we assign to an event 

before seeing the data 
– This is called the prior probability 

• Pr(A|B) is the probability after we see the data 
– This is called the posterior probability 

• Pr(B|A)/Pr(B) is the probability of the seeing these 
data given the hypothesis 
– This is the likelihood 

• Bayes’ Theorem can be re-stated as  
   Posterior       Prior*Likelihood 
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
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Example 2: Monty Hall Problem (1 of 5) 

• Based on the television show Let’s Make a Deal, 

whose original host was Monty Hall 
•  In this version of the problem, there are three doors 

– Behind one door is a car 
– Behind each of the other two doors is a goat 

• You pick a door and Monty, who knows what is 
behind the doors, then opens one of the other doors 
that has a goat behind it 

• Suppose you pick door #1 
– Monty then opens door #3, showing you the goat behind it, 

and ask you if you want to pick door #2 instead 
– Is it to your advantage to switch your choice?  

13 

Monty Hall Problem (2 of 5) 

 
 
 
 

• To solve this problem, let 
– A1 denote the event that the car is behind door #1 
– A2 the event that the car is behind door #2 
– A3 the event that the car is behind door #3 

• Your original hypothesis is that there was an equally 
likely chance that the car was behind any one of the three 
doors 
– Prior probability, before the third door is opened, that the car 

was behind door #1, which we denote Pr(A1), is 1/3. Also, Pr(A2) 
and  Pr(A3) are also equal to 1/3. 
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Monty Hall Problem (3 of 5) 

• Once you picked door #1, you were given additional 
information 
– You were shown that a goat is behind door #3 

• Let B denote the event that you are shown that a goat is behind 
door #3 

• The probability that you are shown the goat is behind door #3 
is an impossible event is the car is behind door #3 
– Pr(B|A3) = 0 

• Since you picked door #1, Monty will open either door #2  or 
door #3, but not door #1  

• If the car is actually behind door #2, it is a certainty that Monty 
will open door #3 and show you a goat.  
– Pr(B|A2) = 1 

• If you have picked correctly and have chosen the right door, 
then there are goats behind both door #2 and door #3 
– In this case, there is a 50% chance that Monty will open door #2 and a 

50% chance that he will open door #3 
– Pr(B|A2) = 1/2 
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Monty Hall Problem (4 of 5) 

• By Baye’s Theorem 
 
 
 

• Plugging in the probabilities from the previous chart 
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𝑷𝒓 𝑨𝟑 𝑩 = 𝟎 

𝑷𝒓 𝑨𝟏 𝑩 =
𝑷𝒓⁡(𝑨𝟏)𝑷𝒓 𝑩 𝑨𝟏 

𝑷𝒓 𝑨𝟏 𝑷𝒓 𝑩 𝑨𝟏 + 𝑷𝒓 𝑨𝟐 𝑷𝒓 𝑩 𝑨𝟐 + 𝑷𝒓 𝑨𝟑 𝑷𝒓 𝑩 𝑨𝟑 
 

𝑷𝒓 𝑨𝟏 𝑩 =
 𝟏/𝟑  𝟏/𝟐 

 𝟏/𝟑  𝟏/𝟐 +  𝟏/𝟑  𝟏 +  𝟏/𝟑  𝟎 
=

𝟏/𝟔

𝟏/𝟔 + 𝟏/𝟑
= 𝟏/𝟑 

𝑷𝒓 𝑨𝟐 𝑩 =
 𝟏/𝟑  𝟏 

 𝟏/𝟑  𝟏/𝟐 +  𝟏/𝟑  𝟏 +  𝟏/𝟑  𝟎 
=

𝟏/𝟑

𝟏/𝟔 + 𝟏/𝟑
= 𝟐/𝟑 
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Monty Hall Problem (5 of 5) 

• Thus you have a 1/3 of picking the car if you stick 
with you initial choice of door #1, but a 2/3 chance of 
picking the car if you switch doors 
– You should switch doors! 

• Did you think there was no advantage to switching 
doors? If so you’re not alone 

• The Monty Hall problem created a flurry of 
controversy in the “Ask Marilyn” column in Parade 
Magazine in the early 1990s (Vos Savant 2012) 

• Even the mathematician Paul Erdos was confused by 
the problem (Hofmann 1998) 

17 

Continuous Version of Bayes’ Theorem      

(1 of 2) 

If the prior distribution is continuous, Bayes’ Theorem 

is written as 
 
 
 

where 
                is the prior density function 
                    is the conditional probability density 

function of the model 
                              is the conditional joint density 

function of the data given  
 
 18 

𝝅 𝜽 𝒙𝟏,… ,𝒙𝒏 =
𝝅 𝜽 𝒇(𝒙𝟏,… , 𝒙𝒏|𝜽)

𝒇(𝒙𝟏,… , 𝒙𝒏)
=

𝝅 𝜽 𝒇(𝒙𝟏,… ,𝒙𝒏|𝜽)

 𝝅 𝜽 𝒇 𝒙𝟏,… , 𝒙𝒏 𝜽 𝒅𝜽
 

 

 |xf

 |x,...,xf n1


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Continuous Version of Bayes’ Theorem      

(2 of 2) 

                         is the unconditional joint density 
function of the data 

 
 
                              is the posterior density function, the   

revised density based on the data 
                                  is the predictive density function, 

the revised unconditional density based on the 
sample data: 
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 n1 x,...,xf

𝒇 𝒙𝟏,… ,𝒙𝒏 =  𝝅 𝜽 𝒇 𝒙𝟏,… ,𝒙𝒏 𝜽 𝒅𝜽 

 n1 x,...,x|

 n11n x,...,x|xf 

𝒇 𝒙𝒏+𝟏|𝒙𝟏,… ,𝒙𝒏 =  𝒇 𝒙𝒏+𝟏|𝜽 𝝅 𝜽|𝒙𝟏,… ,𝒙𝒏 𝒅𝜽 

Application of Bayes’ Theorem to OLS: 

Background 

• Consider ordinary least squares (OLS) CERs of the 
form 
 

 where a and b are parameters, and e is the residual, 
or error, between the estimate and the actual 

• For the application of Baye’s Theorem, re-write this 
in mean deviation form 
 
 

• This form makes it easier to establish prior inputs for 
the intercept (it is now the average cost) 

 

 
20 

𝒀 = 𝒂 + 𝒃𝑿 + 𝜺 

𝒀 = 𝜶𝒙 + 𝜷 𝑿 − 𝑿  + 𝜺 
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Application of Bayes’ Theorem to OLS: 

Likelihood Function (1 of 6) 

• Given a sample of data points                                  the 
likelihood function can be written as 
 
 
 
 
 
 

• The expression                                      can be 
simplified as  
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    nn11 y,x,...,y,x

𝑳 𝜶𝒙 ,𝜷 ∝ 𝒆𝒙𝒑 −
𝟏

𝟐𝝈𝟐
 𝒀𝒊 −  𝜶𝒙 + 𝜷 𝑿𝒊 − 𝑿    

𝟐

 

𝒏

𝒊=𝟏

 

= 𝒆𝒙𝒑 −
𝟏

𝟐𝝈𝟐
  𝒀𝒊 −  𝜶𝒙 + 𝜷 𝑿𝒊 − 𝑿    

𝟐
𝒏

𝒊=𝟏

  

  𝒀𝒊 −  𝜶𝒙 + 𝜷 𝑿𝒊 − 𝑿    
𝟐

𝒏

𝒊=𝟏

 

  𝒀𝒊 − 𝒀 + 𝒀 −  𝜶𝒙 + 𝜷 𝑿𝒊 − 𝑿    
𝟐

𝒏

𝒊=𝟏

 

Application of Bayes’ Theorem to OLS: 

Likelihood Function (2 of 6) 

which is equivalent to 
 
 
 
which reduces to 
 
 
since                     
 
and 
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  𝒀𝒊 − 𝒀  𝟐 + 𝟐  𝒀𝒊 − 𝒀   𝒀 − (𝜶𝒙 + 𝜷 𝑿𝒊 − 𝑿  ) +   𝒀 −  𝜶𝒙 + 𝜷 𝑿𝒊 − 𝑿    
𝟐

𝒏

𝒊=𝟏

𝒏

𝒊=𝟏

𝒏

𝒊=𝟏

 

𝑺𝑺𝒚 − 𝟐𝜷𝑺𝑺𝒙𝒚 + 𝒏 𝒀 − 𝜶𝒙  
𝟐 + 𝜷𝟐𝑺𝑺𝒙 

  𝒀𝒊 − 𝒀  = 𝟎 

𝒏

𝒊=𝟏

 

  𝑿𝒊 − 𝑿  = 𝟎

𝒏

𝒊=𝟏
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Application of Bayes’ Theorem to OLS: 

Likelihood Function (3 of 6) 

where 
 
 
 
 
 
 

23 

𝑺𝑺𝒚 =   𝒀𝒊 − 𝒀  𝟐
𝒏

𝒊=𝟏

 

𝑺𝑺𝒙 =   𝑿𝒊 − 𝑿  𝟐
𝒏

𝒊=𝟏

 

𝑺𝑺𝒙𝒚 =   𝑿𝒊 − 𝑿   𝒀𝒊 − 𝒀  

𝒏

𝒊=𝟏

 

Application of Bayes’ Theorem to OLS: 

Likelihood Function (4 of 6) 

The joint likelihood of        and b is proportional to  
 

24 

X


𝒆𝒙𝒑⁡(−
𝟏

𝟐𝝈𝟐
 𝑺𝑺𝒚 − 𝟐𝜷𝑺𝑺𝒙𝒚 + 𝜷𝟐𝑺𝑺𝒙 + 𝒏 𝜶𝑿 − 𝒀  𝟐 ) 

 

= 𝒆𝒙𝒑⁡ −
𝟏

𝟐𝝈𝟐
 𝑺𝑺𝒚 − 𝟐𝜷𝑺𝑺𝒙𝒚 + 𝜷𝟐𝑺𝑺𝒙  𝒆𝒙𝒑 −

𝟏

𝟐𝝈𝟐
 𝒏 𝜶𝑿 − 𝒀  𝟐   

 

= 𝒆𝒙𝒑⁡ −
𝟏

𝟐𝝈𝟐/𝑺𝑺𝒙
 𝜷𝟐 − 𝟐𝜷𝑺𝑺𝒙𝒚/𝑺𝑺𝒙 + 𝑺𝑺𝒚/𝑺𝑺𝒙  𝒆𝒙𝒑 −

𝟏

𝟐𝝈𝟐/𝒏
  𝜶𝑿 − 𝒀  𝟐   
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Application of Bayes’ Theorem to OLS: 

Likelihood Function (5 of 6) 

Completing the square on the innermost expression in 
the first term yields 
 
 
 
 
 
which means that likelihood is proportional to 
 
 
 
 

25 

𝜷𝟐 −
𝟐𝜷𝑺𝑺𝒙𝒚

𝑺𝑺𝒙
+
𝑺𝑺𝒚

𝑺𝑺𝒙
= 𝜷𝟐 −

𝟐𝜷𝑺𝑺𝒙𝒚

𝑺𝑺𝒙
+
𝑺𝑺𝒙𝒚

𝟐

𝑺𝑺𝒙𝟐
−
𝑺𝑺𝒙𝒚

𝟐

𝑺𝑺𝒙𝟐
+
𝑺𝑺𝒚

𝑺𝑺𝒙
 

 

= 𝜷𝟐 −
𝟐𝜷𝑺𝑺𝒙𝒚

𝑺𝑺𝒙
+
𝑺𝑺𝒙𝒚

𝟐

𝑺𝑺𝒙
𝟐
−
𝑺𝑺𝒙𝒚

𝟐

𝑺𝑺𝒙
𝟐

+
𝑺𝑺𝒚

𝑺𝑺𝒙
=  𝜷 −

𝑺𝑺𝒙𝒚

𝑺𝑺𝒙
 

𝟐

+ 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭 

𝒆𝒙𝒑⁡ −
𝟏

𝟐𝝈𝟐/𝑺𝑺𝒙
 𝜷 −

𝑺𝑺𝒙𝒚

𝑺𝑺𝒙
 

𝟐

 𝒆𝒙𝒑 −
𝟏

𝟐𝝈𝟐/𝒏
  𝜶𝑿 − 𝒀  𝟐   

 

= 𝑳 𝜷 𝑳 𝜶𝑿   

Application of Bayes’ Theorem to OLS: 

Likelihood Function (6 of 6) 

• Thus the likelihoods for         and b are independent 
 

• We have derived that              
   
                    , the least squares slope 
 
                    , the least squares estimate for the mean 
 
       The likelihood of the slope b  follows a normal 

distribution with mean B and variance 
 
 The likelihood of the average       follows a normal 

distribution with mean     and variance  
 
 
 

26 

X


𝑺𝑺𝒙𝒚

𝑺𝑺𝒙
= 𝑩 

𝒀 = 𝑨𝑿  

𝝈𝟐

𝑺𝑺𝒙
 

X


Y 𝝈𝟐

𝒏
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Application of Bayes’ Theorem to OLS: The 

Posterior (1 of 2) 

• By Bayes’ Theorem, the joint posterior density 

function is proportional to the joint prior times the 
joint likelihood 
 
 

• If the prior density for b is normal with mean        and   
variance       the posterior is normal with mean        
and variance       where 
 

 
    and 

 
 
 

27 

         bbb ,likelihoodsample,gy,x,....,y,x|,g
XXnn11X



bm
2sb

'mb
2'sb

𝒎𝜷
′ =

𝟏/𝒔𝜷
𝟐

𝟏/𝒔𝜷
′ 𝟐

𝒎𝜷 +
𝑺𝑺𝒙/𝝈𝟐

𝟏/𝒔𝜷
′ 𝟐

𝑩 

𝟏

𝒔𝜷
′ 𝟐

=
𝟏

𝒔𝜷
𝟐

+
𝑺𝑺𝒙
𝝈𝟐

 

Application of Bayes’ Theorem to OLS: The 

Posterior  (2 of 2) 

• If the prior density for       is normal with mean         
and  variance        the posterior is normal with mean                                                       
aaaa and variance        where 
 
 
 
 
 
 

28 

X


X
m

2

X
s

'

X
m

2'

X
s

𝒎𝜶𝑿 
′ =

𝟏/𝒔𝜶𝑿 
𝟐

𝟏/𝒔𝜶𝑿 
′ 𝟐

𝒎𝜶𝑿 
+

𝒏/𝝈𝟐

𝟏/𝒔𝜶𝑿 
′ 𝟐

𝑨𝑿  

𝟏

𝒔𝜶𝑿 
′ 𝟐

=
𝟏

𝒔𝜶𝑿 
𝟐

+
𝒏

𝝈𝟐
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Application of Bayes’ Theorem to OLS: The 

Predictive Equation 

• In the case of a normal likelihood with a normal prior, 
the mean of the predictive equation is equal to the 
mean of the posterior distribution, i.e.,  
 

29 

𝝁𝒏+𝟏 = 𝒎𝜶𝑿 
′ + 𝒎𝜷

′  𝑿𝒏+𝟏 −𝑿   

Non-Informative Priors 

• For a non-informative improper prior such as                      
aaaaaa      for all   

• By independence, b  is calculated as in the normal 
distribution case, and        is calculated as 
 
 
 

• which follows a normal distribution with mean equal 
to      and variance equal to 
– This is equivalent to the sample mean of        and the 

variance of the sample mean  

• Thus in the case where we only information about 
the slope, the sample mean of actual data is used for  
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Estimating with Precisions 

• For each parameter, the updated estimate 
incorporating both prior information and sample 
data is weighted by the inverse of the variance of 
each estimate 

• The inverse of the variance is called the precision  
• We next generalize this result to the linear 

combination of any two estimates that are 
independent and unbiased 
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The Precision Theorem (1 of 4) 

• Theorem 
– If two estimators are unbiased and independent, then the 

minimum variance estimate is the weighted average of the 
two estimators with weights that are inversely proportional 
to the variance of the two 

• Proof 
– Let      and      be two independent, unbiased estimators of a 

random variable  
• By definition  

 
– Let  w and             denote the weights 

– The weighted average is unbiased since  
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


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w1

𝑬 𝒘𝜽 𝟏 +  𝟏 − 𝒘 𝜽 𝟐 = 𝒘𝑬 𝜽 𝟏 +  𝟏 − 𝒘 𝑬 𝜽 𝟐  

= 𝒘𝜽 +  𝟏 − 𝒘 𝜽 = 𝜽 
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The Precision Theorem (2 of 4) 

• Since the two estimators are independent the 
variance of the weighted average is 
 
 

• To determine the weights that minimize the variance, 
define 
 

• Take the first derivative of this function and set equal 
to zero 
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𝑽𝒂𝒓 𝒘𝜽 𝟏 +  𝟏 − 𝒘 𝜽 𝟐 = 𝒘𝟐𝑽𝒂𝒓 𝜽 𝟏 +  𝟏 − 𝒘 𝟐𝑽𝒂𝒓 𝜽 𝟐  

𝝓 𝒘 = 𝒘𝟐𝑽𝒂𝒓 𝜽 𝟏 +  𝟏 − 𝒘 𝟐𝑽𝒂𝒓 𝜽 𝟐  

𝝓′ 𝒘 = 𝟐𝒘𝑽𝒂𝒓 𝜽 𝟏 − 𝟐 𝟏 − 𝒘 𝑽𝒂𝒓 𝜽 𝟐  

= 𝟐𝒘𝑽𝒂𝒓 𝜽 𝟏 + 𝟐𝒘𝑽𝒂𝒓 𝜽 𝟐 − 𝟐𝑽𝒂𝒓 𝜽 𝟐 = 𝟎 

The Precision Theorem (3 of 4) 

• Note that the second derivative is 
 

  
 ensuring that the solution will be a minimum 

 
• The solution to this equation is  

 
 
 
 
 
 

34 

𝝓′′  𝒘 = 𝟐𝑽𝒂𝒓 𝜽 𝟏 + 𝟐𝑽𝒂𝒓 𝜽 𝟐  

𝒘 =
𝑽𝒂𝒓 𝜽 𝟐 

𝑽𝒂𝒓 𝜽 𝟏 + 𝑽𝒂𝒓 𝜽 𝟐 
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The Precision Theorem (4 of 4) 

• Multiplying both the numerator and the denominator 
by  
 
 

 yields 
 
 
 
 
 
which completes the proof 
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𝟏/  𝑽𝒂𝒓 𝜽 𝟏 ⋅ 𝑽𝒂𝒓 𝜽 𝟐   

𝒘 =
𝟏/𝑽𝒂𝒓 𝜽 𝟏 

𝟏/𝑽𝒂𝒓 𝜽 𝟏 + 𝟏/𝑽𝒂𝒓 𝜽 𝟐 
 

𝟏 − 𝒘 =
𝟏/𝑽𝒂𝒓 𝜽 𝟐 

𝟏/𝑽𝒂𝒓 𝜽 𝟏 + 𝟏/𝑽𝒂𝒓 𝜽 𝟐 
 

Precision-Weighting Rule 

• The Precision-Weighting Rule for combining two 
parametric estimates 
– Given two independent  and unbiased estimates      and       

with precisions                aaa       and                             the 
minimum variance estimate is provided by  
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Advantages of the Rule 

• The precision-weight approach has desirable 
properties 
– It is an uniformly minimum variance unbiased estimator 

(UMVUE) 
– This approach minimizes the mean squared error, which is 

defined as 
 
 

– In general, the lower the mean squared error, the better the 
estimator 
• The mean square error is widely accepted as a measure of 

accuracy  
• You may be familiar with this as the “least squares criterion” 

from linear regression 
– Thus the precision-weighted approach which minimizes the 

mean square error, has optimal properties 
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𝑴𝑺𝑬𝜽  𝜽 = 𝑬   𝜽 − 𝜽 
𝟐

|𝜽  

Examples 

• The remainder of this presentation focuses 
on two examples 
– One considers the hierarchical approach 

• Generic information is used as the prior, and 
specific information is used as the sample data 

– The second focuses on developing the 
prior based on experience and logic 

38 
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Example: Goddard’s RSDO 

• For an example based on real data, consider earth 
orbiting satellite cost and weight trends 

• Goddard Space Flight Center’s Rapid Spacecraft 

Development Office (RSDO) is designed to procure 
satellites cheaply and quickly 

• Their goal is to quickly acquire a spacecraft for 
launching already designed payloads using fixed-
price contracts 

• They claim that this approach mitigates cost risk 
– If this is the case their cost should be less than the average 

earth orbiting spacecraft 

• For more on RSDO see http://rsdo.gsfc.nasa.gov/ 
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Comparison to Other Spacecraft (1 of 2) 

• Data on earth orbiting spacecraft is plentiful while data for 
RSDO is a much smaller sample size 

• When I did some analysis in 2008 to compare the cost of non-
RSDO earth-orbiting satellites with RSDO missions I had a 
database with 72 non-RSDO missions from the NASA/Air Force 
Cost Model (NAFCOM) and 5 RSDO missions 

40 
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Comparison to Other Spacecraft (2 of 2) 

• Power equations of the form                 were fit to both 
data sets 

• The b-value which we mentioned is a measure of the 
economy of scale, is .89 for the NAFCOM data, and 0.81 
for the RSDO data This would seem to indicate greater 
economies of scale for the RSDO spacecraft. Even more 
significant is the difference in the magnitude of costs 
between the two data sets 

• The log scale graph understates the difference, so seeing 
a significant difference between two lines plotted on a 
log-scale graph is very telling  

• For example for a weight equal to 1,000 lbs., the estimate 
based on RSDO data is 70% less than the data based on 
earth-orbiting spacecraft data from NAFCOM 
 

41 

𝒀 = 𝒂𝑾𝒃 

Hierarchical Approach 

• The Bayesian approach allows us to combine the 
Earth-Orbiting Spacecraft data with the smaller data 
set  

• We use a hierarchical approach, treating the earth-
orbiting spacecraft data from NAFCOM as the prior, 
and the RSDO data as the sample 
– Nate Silver used this method to develop accurate election 

forecasts in small population areas and areas with little data 
– This is also the approach that actuaries use when setting 

premiums for insurances with little data 

 

42 
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Transforming the Data (1 of 2) 

• Because we have used log-transformed OLS to 
develop the regression equations, we are assuming 
that the residuals are lognormally distributed, and 
thus normally distributed in log space 

• We will thus use the approach for updating normally 
distributed priors with normally distributed data to 
estimate the precisions 
– These precisions will then determine the weights we assign 

the parameters 

• To apply LOLS, we transform the equation               to 
log space by applying the natural log function to 
each side, i.e. 
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baWY
~



𝒍𝒏𝒀 = 𝒍𝒏 𝒂𝑾𝒃 = 𝒍𝒏 𝒂 + 𝒃 ⋅ 𝒍𝒏 𝑾  

Transforming the Data (2 of 2) 

• In this case              and            
• The average Y-value is the average of the natural log of 

the cost values 
• Once the data are transformed, ordinary least squares 

regression is applied to both the NAFCOM data and to 
the RSDO data 

• Data are available for both data sets - opinion is not used 
• The precisions used in calculating the combined 

equation are calculated from the regression statistics 
• We regress the natural log of the cost against the 

difference between the natural log of the weight and the 
mean of the natural log of the weight. That is, the 
dependent variable is ln(Cost) and the independent 
variable is 
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Obtaining the Variances 

• From the regressions we need the values of the parameters as 
well as the variances of the parameters 

• Statistical software package provide both the parameter and 
their variances as outputs 

• Using the Data Analysis add-in in Excel, the Summary Output 
table provides these values 
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SUMMARY OUTPUT

Regression Statistics
Multiple R 0.79439689
R Square 0.63106642
Adjusted R Square 0.62579595
Standard Error 0.81114468
Observations 72

ANOVA
df SS MS F Significance F

Regression 1 78.78101763 78.78101763 119.7361 8.27045E-17
Residual 70 46.05689882 0.657955697
Total 71 124.8379164

Coefficients Standard Error t Stat P-value Lower 95%
Intercept 4.60873098 0.095594318 48.21134863 1.95E-55 4.418074125
X Variable 1 0.88578231 0.080949568 10.942397 8.27E-17 0.724333491

Mean and variance of 
the parameters 

Combining the Parameters (1 of 2) 

 
 
 

• The mean of each parameter is the value calculated by the 
regression  and the variance is the square of the standard error 

• The precision is the inverse of the variance  
• The combined mean is calculated by weighting each parameter 

by its relative precision 
• For the intercept the relative precision weights  for the intercept 

are 
 
 

  
 for the NAFCOM data, and                                     for the RSDO 

data 
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Parameter NAFCOM 
Mean 

NAFCOM 

Variance 

NAFCOM 
Precision 

RSDO 
Mean 

RSDO 

Variance 

RSDO 
Precision 

Combined 
Mean 

4.6087 0.0091 109.4297 4.1359 0.0201 49.8599 4.4607 
b 0.8858 0.0065 152.6058 0.8144 0.0670 14.9298 0.8794 

X


𝟏
𝟎.𝟎𝟎𝟗𝟏

𝟏
𝟎.𝟎𝟎𝟗𝟏

+
𝟏

𝟎.𝟎𝟐𝟎𝟏

=
𝟏𝟎𝟗.𝟒𝟐𝟗𝟕

𝟏𝟎𝟗.𝟒𝟐𝟗𝟕 + 𝟒𝟗.𝟖𝟓𝟗𝟗
≈ 𝟎.𝟔𝟖𝟕𝟎 

𝟏 − 𝟎.𝟔𝟖𝟕𝟎 = 𝟎.𝟑𝟏𝟑𝟎 
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Combining the Parameters (2 of 2) 

• For the slope the relative precision weights are 

 
 

 
 for the NAFCOM data, and                                          for the RSDO 

data 

• The combined intercept is 
 

• The combined slope is 
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𝟏
𝟎.𝟎𝟎𝟔𝟓

𝟏
𝟎.𝟎𝟎𝟔𝟓

+
𝟏

𝟎.𝟎𝟔𝟕𝟎

=
𝟏𝟓𝟐.𝟔𝟎𝟓𝟖

𝟏𝟓𝟐.𝟔𝟎𝟓𝟖 + 𝟏𝟒.𝟗𝟐𝟗𝟖
≈ 𝟎.𝟗𝟏𝟎𝟗 

𝟏 − 𝟎.𝟗𝟏𝟎𝟗 = 𝟎.𝟎𝟖𝟗𝟏 

𝟎.𝟔𝟖𝟕𝟎 ⋅ 𝟒.𝟔𝟎𝟖𝟕 + 𝟎.𝟑𝟏𝟑𝟎 ⋅ 𝟒.𝟏𝟑𝟓𝟗 ≈ 𝟒.𝟒𝟔𝟎𝟕 

𝟎.𝟗𝟏𝟎𝟗 ⋅ 𝟎.𝟖𝟖𝟓𝟖 + 𝟎.𝟎𝟖𝟗𝟏 ⋅ 𝟖𝟏𝟒𝟒 ≈ 𝟎.𝟖𝟕𝟗𝟒 

The Predictive Equation 

• The predictive equation in log-space is 
 

• The only remaining question is what to use for                   
• We have two data sets - but since we consider the 

first data set as the prior information, the mean is 
calculated from the second data set, that is, from the 
RSDO data 

• The log-space mean of the RSDO weights is 7.5161  
• Thus the log-space equation is  

 

48 

𝒀 = 𝟒.𝟒𝟔𝟎𝟕+ 𝟎.𝟖𝟕𝟗𝟒 𝑿 − 𝑿   

𝑋  

𝒀 = 𝟒.𝟒𝟔𝟎𝟕 + 𝟎.𝟖𝟕𝟗𝟒 𝑿 − 𝑿  = 𝟒.𝟒𝟔𝟎𝟕 + 𝟎.𝟖𝟕𝟗𝟒 𝑿 − 𝟕.𝟓𝟏𝟔𝟏  

                            = −𝟐.𝟏𝟒𝟗𝟏 + 𝟎.𝟖𝟕𝟗𝟒𝑿 
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Transforming the Equation 

• This equation is in log-space, that is 

 
• In linear space, this is equivalent to 
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𝒍𝒏 𝑪𝒐𝒔𝒕  = −𝟐.𝟏𝟒𝟗𝟏 + 𝟎.𝟖𝟕𝟗𝟒𝒍𝒏 𝑾𝒕  

𝑪𝒐𝒔𝒕 = 𝟎.𝟏𝟏𝟔𝟔 𝑾𝒕𝟎.𝟖𝟕𝟗𝟒 
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Applying the  Predictive Equation 

• One RSDO data point not in the data set that launched in 2011 
was the Landsat Data Continuity Mission (now Landsat 8) 

• The Landsat Program provides repetitive acquisition of high 
resolution multispectral data of the Earth's surface on a global 
basis. The Landsat satellite bus dry weight is 3,280 lbs. 

• Using the Bayesian equation the predicted cost is 
 

      which is 20% below the actual cost, which is approximately 
$180 million in normalized $ 

• The RSDO data alone predicts a cost equal to $100 Million  
– 44% below the actual cost 

• The Earth-Orbiting data alone predicts a cost equal to $368 
million  
– more than double the actual cost 

• While this is only one data point, this seems promising 
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𝑪𝒐𝒔𝒕 = 𝟎.𝟏𝟏𝟔𝟔 ⋅ 𝟑𝟐𝟖𝟎𝟎.𝟖𝟕𝟗𝟒 ≈ $𝟏𝟒𝟒 𝑴𝒊𝒍𝒍𝒊𝒐𝒏 
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Range of the Data 

• Note that the range of the RSDO data is narrow 
compared to the larger NAFCOM data set. The 
weights of the missions in the NAFCOM data set 
range from 57 lbs. to 13,448 lbs. 

• The range of the missions in the RSDO data set 
range from 780 lbs. to 4,000 lbs. 

• One issue with using the RSDO data alone is that it 
is likely you will need to estimate outside the range 
of the data, which is problematic for a small data set 

• Combining the RSDO data with a larger date set with 
a wider range provides confidence in estimating 
outside the limited range of a small data set 
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Summary of the Hierarchical Approach 

• Begin by regressing the prior data 
– Record the parameters of the prior regression 
– Calculate the precisions of the parameters of the 

prior 

• Next regress the sample data 
– Record the parameters of the sample regression 
– Calculate the precisions of the parameters 

• Once these two steps are complete, combine 
the two regression equations by precision 
weighting the means of the parameters 
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NAFCOM’s First Pound Methodology          

(1 of 2) 

• The NASA/Air Force Cost Model includes a method called 
“First Pound” CERs 

• These equations have the power form 
 where     is the estimate of cost and W is dry spacecraft 

mass in pounds 
• The “First Pound” method is used for developing CERs 

with limited data 
– A slope b that varies by subsystem is based on prior 

experience 
– As documented in NAFCOM v2012 (NASA, 2012), “NAFCOM 

subsystem hardware and instrument b-values were derived 
from analyses of some 100 weight-driven CERs taken from 
parametric models produced for MSFC, GSFC, JPL, and NASA 
HQ. Further, actual regression  historical models. In depth 
analyses also revealed that error bands for analogous 
estimating are very tight when NAFCOM b-values are used.”  
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NAFCOM’s First Pound Methodology           

(2 of 2) 

• The slope is assumed, and then the a parameter is calculated 
by calibrating the data to one data point or to a collection of 
data points (Hamaker 2008) 

• As explained by Joe Hamaker (Hamaker 2008), “The 
engineering judgment aspect of NAFCOM assumed slopes is 
based on the structural/mechanical content of the system 
versus the electronics/software content of the system.  
Systems that are more structural/mechanical are expected to 
demonstrate more economies of scale (i.e. have a lower slope) 
than systems with more electronics and software content.  
Software for example, is well known in the cost community to 
show diseconomies of scale (i.e. a CER slope of b > 1.0)—the 
larger the software project (in for example, lines of code) the 
more the cost per line of code.  Larger weights in electronics 
systems implies more complexity generally, more software per 
unit of weight and more cross strapping and integration 
costs—all of which dampens out the economies of scale as the 
systems get larger. The assumed slopes are driven by 
considerations of how much structural/mechanical content 
each system has as compared to the system’s 
electronics/software content.”. 
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NAFCOM’s First Pound Slopes (1 of 2) 

55 

Subsystem/Group DDT &E Flight Unit
Antenna  Subsystem 0.85 0.80
Aerospace  Support Equipment 0.55 0.70
Attitude  Control/Guidance  and Naviga tion Subsystem 0.75 0.85
Avionics Group 0.90 0.80
Communica tions and Command and Data  Handling Group 0.85 0.80
Communica tions Subsystem 0.85 0.80
Crew Accommodations Subsystem 0.55 0.70
Data  Management Subsystem 0.85 0.80
Environmenta l Control and Life  Support Subsystem 0.50 0.80
Electrica l Power and Distribution Group 0.65 0.75
Electrica l Power Subsystem 0.65 0.75
Instrumenta tion Display and Control Subsystem 0.85 0.80
Launch and Landing Sa fe ty 0.55 0.70
Liquid Rocke t Engines Subsystem 0.30 0.50
Mechanisms Subsystem 0.55 0.70
Misce llaneous 0.50 0.70
Power Distribution and Control Subsystem 0.65 0.75
Propulsion Subsystem 0.55 0.60
Range  Sa fe ty Subsystem 0.65 0.75
Reaction Control Subsystem 0.55 0.60
Separa tion Subsystem 0.50 0.85
Solid/Kick Motor Subsystem 0.50 0.30
Structures Subsystem 0.55 0.70
Structures/Mechanica l Group 0.55 0.70
T hermal Control Subsystem 0.50 0.80
T hrust Vector Control Subsystem 0.55 0.60

NAFCOM’s First Pound Slopes (2 of 2) 

• In the table, DDT&E is an acronym for Design, 
Development, Test, and Evaluation  
– Same as RDT&E or Non-recurring 

• The table includes group and subsystem information 
– The spacecraft is the system 
– Major sub elements are called subsystems, and include 

elements such as structures, reaction control, etc.  
– A group is a collection of  subsystems  

• For example the Avionics group is a collection of 
Command and Data Handling, Attitude Control, Range 
Safety, Electrical Power, and the Electrical Power 
Distribution, Regulation, and Control subsystems 
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First-Pound Methodology Example 

• As a notional example, suppose that you have one 
environmental control and life support (ECLS) data point, with 
dry weight equal to 7,000 pounds, and development cost equal 
to $500 million. In the table the b-value is equal to 0.65, which 
means that 
 

• Solving this equation for a we find that 
 
 
 

• The resulting CER is 
 
 
 
 

 
 

57 

𝟓𝟎𝟎 = 𝒂 𝟕𝟎𝟎𝟎𝟎.𝟔𝟓  

𝒂 =
𝟓𝟎𝟎

𝟕𝟎𝟎𝟎𝟎.𝟔𝟓
≈ 𝟏.𝟓𝟖 

𝑪𝒐𝒔𝒕 = 𝟏.𝟓𝟖 ⋅ 𝑾𝒆𝒊𝒈𝒉𝒕𝟎.𝟔𝟓 

“No Pound” Methodology (1 of 3) 

• If we can develop a CER with only one data point, 
can we go one step further and develop a CER based 
on no data at all?  
– The answer if yes we can! 

 

• To see what information we need to apply this 
method, start with the first pound methodology, and 
assume we have a prior value for b 

• We start in log space 
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𝒍𝒏 𝒀  = 𝜶𝑿 + 𝜷 𝒍𝒏 𝑿 −
 𝒍𝒏 𝑿𝒊 
𝒏
𝒊=𝟏

𝒏
  

=
 𝒍𝒏 𝒀𝒊 
𝒏
𝒊=𝟏

𝒏
+ 𝜷 𝒍𝒏 𝑿 −

 𝒍𝒏 𝑿𝒊 
𝒏
𝒊=𝟏

𝒏
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“No Pound” Methodology (2 of 3) 
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=
𝟏

𝒏
𝒍𝒏   𝒀𝒊

𝒏

𝒊=𝟏
 + 𝜷 𝒍𝒏 𝑿 −

𝟏

𝒏
𝒍𝒏   𝑿𝒊

𝒏

𝒊=𝟏
   

= 𝒍𝒏   𝒀𝒊
𝒏

𝒊=𝟏
 
𝟏/𝒏

+ 𝜷 𝒍𝒏 𝑿 − 𝒍𝒏   𝑿𝒊

𝒏

𝒊=𝟏
 
𝟏/𝒏

  

= 𝒍𝒏   𝒀𝒊
𝒏

𝒊=𝟏
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− 𝜷𝒍𝒏  𝑿𝒊

𝒏

𝒊=𝟏
 
𝟏/𝒏

+ 𝜷 ⋅ 𝒍𝒏 𝑿  

= 𝒍𝒏   𝒀𝒊
𝒏

𝒊=𝟏
 
𝟏/𝒏

− 𝒍𝒏   𝑿𝒊

𝒏

𝒊=𝟏
 
𝜷/𝒏

+ 𝒍𝒏 𝑿𝜷  

 
= 𝒍𝒏 

  𝒀𝒊
𝒏
𝒊=𝟏  𝟏/𝒏

  𝑿𝒊
𝒏
𝒊=𝟏  𝜷/𝒏

 + 𝒍𝒏 𝑿𝜷  

= 𝒍𝒏 
  𝒀𝒊

𝒏
𝒊=𝟏  𝟏/𝒏

  𝑿𝒊
𝒏
𝒊=𝟏  𝜷/𝒏

𝑿𝜷  

“No Pound” Methodology (3 of 3) 

• Exponentiating both sides yields 
 
 

• The term 
 

  
   is the geometric mean of the cost, and the term in the 

denominator is the geometric mean of the independent variable 
(such as weight) raised to the b 

• The geometric mean is distinct from the arithmetic mean, and is 
always less than or equal to the arithmetic mean  

• To apply this no-pound methodology you would need to apply 
insight or opinion to find the geometric mean of the cost, the 
geometric mean of the cost driver, and the economy-of-scale 
parameter, the slope 
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  𝒀𝒊
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𝒊=𝟏  𝟏/𝒏
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𝒏
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First-Pound Methodology and Bayes  
(1 of 2) 

• The first-pound methodology bases the b-value entirely 
on the prior experience, and the a-value entirely on the 
sample data. No prior assumption for the a-value is 
applied. Denote the prior parameters by aprior , bprior , the 
sample parameters by asample , bsample and the posterior 
parameters by aposterior , bposterior  

• The first-pound methodology calculates the posterior 
values as 

    aposterior = asample 
    bposterior = bprior 

 
• This is equivalent to a weighted average of the prior and 

sample information with a weight equal to 1 applied to 
the sample data for the a-value, and a weight equal to 1 
applied to the prior information for the b-value 
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First-Pound Methodology and Bayes  
(2 of 2) 

• The first-pound method in NAFCOM is not exactly 
the same as the approach we have derived but it is a 
Bayesian framework 
– Prior values for the slope are derived from experience and 

data, and this information is combined with sample data to 
provide an estimate based on experience and data 

• The first electronic version of NAFCOM in 1994 
included the first-pound CER methodology 
– NAFCOM has included Bayesian statistical estimating 

methods for almost 20 years 
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NAFCOM’s Calibration Module 

• NAFCOM’s calibration module is similar to the first pound method, 
but is an extension for multi-variable equations 

• Instead of assuming a value for the b-value, the parameters for the 
built-in NAFCOM multivariable CERs are used, but the intercept 
parameter (a-value) is calculated from the data, as with the first-
pound method 

• The multi-variable CERs in NAFCOM have the form 
 
 

• “New Design” is the percentage of new design for the subsystem 
(0-100%)  

• “Technical” cost drivers were determined for each subsystem and 
were weighted based upon their impact on the development or unit 
cost 

• “Management” cost drivers based on a new ways of doing 
business survey sponsored by the Space Systems Cost Analysis 
Group (SSCAG) 

•  The “class” variable is a set of attribute (“dummy”) variables that 
are used to delineate data across mission classes: Earth Orbiting, 
Planetary, Launch Vehicles, and Manned Launch Vehicles 
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𝑪𝒐𝒔𝒕 = 𝒂 ⋅𝑾𝒆𝒊𝒈𝒉𝒕𝒃𝟏𝑵𝒆𝒘 𝑫𝒆𝒔𝒊𝒈𝒏𝒃𝟐𝑻𝒆𝒄𝒉𝒏𝒊𝒄𝒂𝒍𝒃𝟑𝑴𝒂𝒏𝒂𝒈𝒆𝒎𝒆𝒏𝒕𝒃𝟒𝑪𝒍𝒂𝒔𝒔𝒃𝟒 

Precision-Weighting First Pound CERs 

• To apply the precision-weighted method to the first-
pound CERs, we need an estimate of the variances 
of the b-values 

• Based on data from NAFCOM, these can be 
calculated by calculating average a-values for each 
mission class – earth-orbiting, planetary, launch 
vehicle, or crewed system and then calculating the 
standard error and the sum of squares of the natural 
log of the weights 

• See the table on the next page for these data 
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Variances of the b-Values 

65 
* There is not enough data for Range Safety or Separation to calculate variance 

Subjective Method for b-Value Variance 

• One way to calculate the standard deviation of the slopes 
without data is to estimate your confidence and express it in 
those terms 
– For example, if you are highly confident in your estimate of 

the slope parameter you may decide that means you are 
90% confident that the actual slope will be within 5% of your 
estimate 

– For a normal distribution with mean  m and standard 
deviation s, the upper limit of a symmetric two-tailed 90% 
confidence interval is 20% higher than the mean, that is,  
 

 from which it follows that 
 
 

– Thus the coefficient of variation, which is the ratio of the 
standard deviation to the mean, is 12%  
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𝝁 + 𝟏.𝟔𝟒𝟓𝝈 = 𝟏.𝟐𝟎𝝁 

𝝈 =
𝟎.𝟐𝟎

𝟏.𝟔𝟒𝟓
𝝁 ≈ 𝟎.𝟏𝟐𝝁 
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Coefficient of Variations Based on Opinion 

 
 
 
 
 

• The structures subsystem in NAFCOM has a mean value equal 
to 0.55 for the b-value parameter of DDT&E 

• The calculated variance for 37 data points is 0.0064, so the 
standard deviation is approximately 0.08 

• The calculated coefficient of variation is thus equal to 
 
 
 

• If I were 80% confident that the true value of the structures b-
value is within 20% of 0.55 (i.e., between 0.44 and 0.66), then 
the coefficient of variation will equal 16% 
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Confidence 

Level

Coefficient of 

Variation

90% 12%

80% 16%

70% 19%

50% 30%

30% 52%

10% 159%

𝟎.𝟎𝟖

𝟎.𝟓𝟓
≈ 𝟏𝟒.𝟓% 

Example 

• As an example of applying the first pound priors to 
actual data, suppose we re-visit the environmental 
control and life support (ECLS) subsystem 

• The log-transformed ordinary least squares best fit 
is provided by the equation 
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Precision-Weighting the Means (1 of 2) 

• The prior b-value for ECLS flight unit cost provided is 
0.80 

• The first-pound methodology provides no prior for the a-
value 
– Given no prior, the Bayesian method uses the calculated 

value as the a-value, and combines the b-values 

• The variance of the b-value from the regression is 
0.1694 and thus the precision is  
 
 

• For the prior, the ECLS  0.8 b-value is based largely 
on electrical systems 

• The environmental control system is highly 
electrical, so I subjectively place high confidence in 
this value 
 69 

𝟏

𝟎.𝟏𝟔𝟗𝟒
≈ 𝟓.𝟗𝟎𝟑𝟐 

Precision-Weighting the Means (2 of 2) 

• I have 80% confidence that the true slope parameter is within 
10% of the true value which implies a coefficient of variation 
equal to 16% 

• Thus the standard deviation of the b-value prior is equal to                             
                                         and the variance is approximately 0.01638, 

which means the precision is  
 
 

• The precision-weighted b-value is thus 
 
 

• Thus the adjusted equation combining prior 
experience and data is   
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128.016.080.0 

𝟏

𝟎.𝟎𝟏𝟔𝟑𝟖
≈ 𝟔𝟏.𝟎𝟑𝟓𝟐 

𝟎.𝟖𝟎 ⋅
𝟔𝟏.𝟎𝟑𝟓𝟐

𝟔𝟏.𝟎𝟑𝟓𝟐 + 𝟓.𝟗𝟎𝟑𝟐
+ 𝟎.𝟔𝟑 ⋅

𝟓.𝟗𝟎𝟑𝟐

𝟔𝟏.𝟎𝟑𝟓𝟐 + 𝟓.𝟗𝟎𝟑𝟐
= 𝟎.𝟕𝟖𝟓𝟎 

𝑪𝒐𝒔𝒕 = 𝟎.𝟒𝟎𝟕𝟎 𝑾𝒕𝟎.𝟕𝟖𝟓𝟎 
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Similarity Between Bayesian and First 
Pound Methods (1 of 2) 

• The predictive equation produced by the Bayesian analysis is 
very similar to the NAFCOM first-pound method 

• The first-pound methodology produces an a-value that is equal 
to the average a-value (in log space) This is the same as the a-
value produced by the regression since  
 
 

• For each of the n data points the a-value is calculated in log-
space as 

 
• The overall log-space a-value is the average of these 

a-values 
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𝒍𝒏 𝒀  = 𝒍𝒏 𝒂 + 𝒃 ⋅ 𝒍𝒏 𝑿  

𝒍𝒏 𝒂 = 𝒍𝒏 𝒀  − 𝒃 ⋅ 𝒍𝒏 𝑿  

 𝒍𝒏 𝒂𝒊 
𝒏
𝒊=𝟏

𝒏
=
 𝒍𝒏 𝒀𝒊 
𝒏
𝒊=𝟏

𝒏
− 𝒃

 𝒍𝒏 𝑿𝒊 
𝒏
𝒊=𝟏

𝒏
 

Similarity Between Bayesian and First 
Pound Methods (2 of 2) 

• In the case this is the same as the calculation of the 
a-value from the normal equations in the regression 

• For small data sets we expect the overall b-value to 
be similar to the prior b-value 

• Thus NAFCOM’s first-pound methodology is very 
similar to the Bayesian approach 

• Not only is the first-pound method a Bayesian 
framework but it can be considered as an 
approximation of the Bayesian method 
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Enhancing the First-Pound Methodology 

• However the NAFCOM first-pound methodology and 
calibration modules can be enhanced by 
incorporating more aspects of the Bayesian 
approach 

• The first-pound methodology can be extended to 
incorporate prior information about the a-value as 
well 

• Neal Hulkower describes how Malcolm Gladwell’s 
“thin-slicing” can be applied to cost estimating 

(Gladwell 2005, Hulkower 2008) 
– Hulkower suggests that experienced cost estimates can use 

prior experience to develop accurate cost estimates with 
limited information 
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Summary (1 of 2) 

• The Bayesian framework involves taking prior 
experience, combining it with sample data, and uses 
it to make accurate predictions of future events 
– Examples include predicting election results, 

setting insurance premiums, and decoding 
encrypted messages 

• This presentation introduced Bayes’ Theorem, and 
demonstrated how to apply it to regression analysis 
– An example of applying this method to prior 

experience with data, termed the hierarchical 
approach, was presented 

– The idea of developing CER parameters based on 
logic and experience was discussed 

– Method for applying the Bayesian approach to 
this situation was presented, and an example of 
this approach to actual data was discussed 
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Summary (2 of 2) 

• Advantages to using this approach 
– Enhances the ability to estimate costs for small 

data sets 
– Combining a small data set with prior experience 

provides confidence in estimating outside the 
limited range of a small data set 

•  Challenge 
– You must have some prior experience or 

information that can be applied to the problem 
• Without this you are left to frequency-based 

approaches 
• However, there are ways to derive this information 

from logic, as discussed by Hamaker (2008) 
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Future Work 

• We only discussed the application to ordinary least 
squares and log-transformed ordinary least squares 
– We did not discuss other methods, such as MUPE or the 

General Error Regression Model (GERM) framework 
– Can apply the precision-weighting rule to any CERs, just 

need to be able to calculate the variance 
– For GERM can calculate the variance of the parameters 

using the bootstrap method 

• We did not explicitly address risk analysis, although 
we did derive the posteriors for the variances of the 
parameters, which can be used to derived prediction 
intervals 
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