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Using Dummy Variables in CER Development 

Dr. Shu-Ping Hu 
Alfred Smith 

ABSTRACT 

Dummy variables (also referred to as indicator variables) are commonly used in regression 
analysis to stratify data into distinct categories. However, many analysts specify dummy variables 
in their cost estimating relationships (CER) without properly analyzing the statistical validity of 
using them. For example, the dummy variable t-test should be applied to determine the relevance 
of using dummy variables, but this test is often neglected. Consequently, the fit statistics can be 
misleading. 

The dummy variable t-test is useful for determining whether the slope (or exponent) 
coefficients in different categories are significantly different. This is directly applicable to the 
dummy variable CER where we assume distinct categories in the data set share the same sensitivity 
for the ordinary independent variable, while the only difference is in the response levels. 

This paper explains when to use dummy variables and how to use them correctly when 
deriving CERs. Specific guidelines are proposed to help analysts determine if the application of 
dummy variables is appropriate for their data set. This paper also demonstrates some common 
errors when applying dummy variables to real examples and explains how to use the Chow test and 
dummy variable t-test to validate the CER. An application using dummy variables in splines (to 
derive the fitted equation as well as the intersection) is also discussed. 

OUTLINE 

The main objectives of this paper are threefold. First, we discuss the purpose of using 
dummy variables and their properties in a regression equation. We will then describe using the 
Chow test and t-test for checking the significance of the overall model and the individual dummy 
variables, respectively. General concerns/pitfalls of using dummy variables are also discussed. 
Finally, we describe a common application of using dummy variables in Spline. The following 
topics will be discussed: 

 Introduction 

 Model Form with a Single Dummy Variable 
 Linear model 
 Log-linear model 

 Model Form with Multiple Dummy Variables 

 Chow Test and Dummy Variable T-test 
 Define the Chow test (an F-test) for testing the significance of the overall model 

with all the dummy variables 

 Describe the dummy variable t-test for testing the significance of individual 
parameters (coefficients) 

 General Cautions and Statistical Tests When Using Dummy Variables 
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 Analyze separate groups first 

 Have at least three points in each category 

 Do not single out specific programs 

 Examine whether all groups have the same variance 

 Use of Dummy Variables in Spline  

 Example Section 

 Conclusions 

INTRODUCTION 
A dummy variable is used to capture a characteristic that is not directly quantifiable, but 

exerts an important influence on the behavior of the dependent variable.  For example, the cost of 
high power amplifiers may vary because some are airborne while others are ground based.  For 
another example, data may be collected by different analysts, or arise from different factories.  In 
such a case, we cannot assign a continuous scale to the qualitative variable “analyst” or “factory.”  
In other words, within a class of items there may be an attribute that explains the separate effects 
on the response.  These characteristics (or this attribute) can be represented in a regression model 
by the use of a dummy variable.  This variable is simply another variable in the regression except 
that it can only take on discrete values.  In the case of amplifiers that are either airborne or ground 
based, the values of the dummy variable would only take on one of two values: a zero for airborne 
amplifiers and a one for ground based amplifiers. 

Before specifying dummy variables in a regression model, we will first define additive and 
multiplicative error models. 

Additive Error Model. An additive error model is generally stated as follows: 

iii fY  ),( βx  = fi + i     for i = 1, …, n (1) 

where: 
 Yi = observed cost of the ith data point, i = 1 to n 
 f (xi,) = fi = the value of the hypothesized equation at the ith data point 
 xi = vector of the cost driver variables at the ith data point 
  = vector of coefficients to be estimated by the regression equation 
 i = error term (assumed to be independent of the cost drivers)   
 n = sample size 

Multiplicative Error Model. Similarly, a multiplicative error model is specified by 

iii fY *),( βx  = fi * i     for i = 1, …, n (2) 

The definitions of Yi, f (xi,), and i are the same as given in Equation 1. Unlike the additive error 
model (Equation 1), the standard deviation of the dependent variable in Equation 2 is proportional 
to the level of the hypothetical equation rather than some fixed amount across the entire data range. 
Both the Minimum-Unbiased-Percentage-Error (MUPE) and Minimum-Percentage Error 
Regression under Zero-Percentage Bias (ZMPE) methods are commonly used to model 
multiplicative error models when the error term  is assumed to have a mean of zero and variance, 


2. The MUPE method is an Iteratively Reweighted Least Squares (IRLS) regression technique 
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(see References 9, 12, and 13 for details). For a detailed explanation of the ZMPE method, see 
Reference 5. 

Log-Error Model.  If the multiplicative error term (i) in Equation 2 is further assumed to 
follow a log-normal distribution, then the error can be measured by the following: 

)),(ln()ln()ln( βxiiii fYe    (3) 

where “ln” stands for the natural logarithm function.  The objective is then to minimize the sum 

of squared eis (i.e., ((ln(i))
2).  If the transformed function is linear in log space, then ordinary 

least squares (OLS) can be applied in log space to derive a solution for . In this situation, the 
CER is termed a log space OLS equation (LOLS) or a log-linear CER. If not, we need to apply a 
non-linear regression technique to derive a solution. 

MODEL FORM WITH A SINGLE DUMMY VARIABLE 

Linear Model.  Let us first consider a linear model using one ordinary predictor X and 
one dummy variable D, which does not tie to the same sensitivity to the driver variable: 

Y =  +  X +  D +  DX =  +  X + D ( +  X) (4) 

where: 

 





2#0

1#1

categoryfromisnobservatioanif

categoryfromisnobservatioanif
D  

  = coefficients to be estimated by the regression equation 

Using Equation 4 is equivalent to fitting two separate linear equations to two populations, because it 
lets the regression separate the sets by level and by sensitivity to the ordinary driver variable X.  The 
estimates of the coefficients derived by this model should be precisely the same as when the two 
equations are estimated separately.  If all the coefficients in Equation 4 are significant, then this 
simply implies that the behaviors of two populations (with and without the attribute D) are totally 
different and they should be estimated by two separate regression equations. 

If a regression analysis indicates the coefficient θ is insignificant, then a reduced model can 
be considered: 

Y =  + X + D (5) 

Equation 5 is the usual form of applying dummy variables.  It indicates that these two populations 
exhibit only a difference in the response levels, but share the same sensitivity for the ordinary 
predictor. 

However, if the coefficient  is insignificant in Equation 4, a reduced model is then given by 

Y =  + X +  DX =  + ( +  D)X (6) 

The above equation indicates that two populations have different sensitivity reaction toward the 
relative change in the independent variable, but share the same fixed cost, which would not be of 
great interest to us.  In other words, if θ  is significantly different from zero in Equation 4, we 
think the two populations are statistically different and should be treated differently. 
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Log-Linear Model. The respective log-linear equation form using one ordinary predictor 
X and one dummy variable D is given by 

θD(X)λD(e)βXαθD(X)D(δβXαY  ) =  X( D(X) D =  X(e D(X) D (7) 

Similarly, if a regression analysis indicates the coefficient θ is insignificant, then a reduced model 
can be considered: 

D)(δβXαY   (8) 

Similar to Equation 5, Equation 8 is the usual form of applying dummy variables for log-linear 
models.  It indicates that these two populations exhibit only a difference in the response levels, but 
share the same sensitivity in the exponent for the ordinary predictor.   

On the other hand, if the coefficient  is found to be insignificant in Equation 7 (i.e., δ  is not 
significantly different from one), a reduced model is then given by 

θD(X)αθD(X)βXαY 


  (9) 

The above equation indicates that two populations have different sensitivity reaction toward the 
relative change in the independent variable, but share the same cost at unit one. This is also not of 
great interest to us.  Similarly to Equation 4, if θ  is significantly different from zero in Equation 7, 
we think the two populations are statistically different and should be treated differently. 

MODEL FORM WITH MULTIPLE DUMMY VARIABLES 

The method of Equation 4, as well as Equation 7, can be extended to include more dummy 
variables.  We can deal with m different levels of responses by introducing (m-1) dummy variables.   
The basic allocation pattern for m dummy variables is obtained by writing down a (m-1) x (m-1) 
identity matrix, Im-1, and then adding a row of (m-1) zeros as a comparison baseline: 





















mcategoryfromisitemif

mcategoryfromisitemif

categoryfromisitemif

categoryfromisitemif

categoryfromisitemif

DDDD m

#0...000

1#1...000

......

3#0...100

2#0...010

1#0...001

... 1321

 (10) 

See Reference 6 for details. Note that the dummy variable’s representation is not unique; 

there are different ways of choosing dummy variables for a given regression situation.  However, 
an analyst must be careful that a chosen representation should  

 take into account the different levels of responses 

 let the regression equation find the separation 

 make sure the design matrix is not singular 
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One common mistake for specifying m different levels is specifying the relative distance 
between the levels using a discrete variable, e.g., D = 1, 2, …, m, rather than letting the 
regression equation estimate the separations. We use the following example to demonstrate this 
common error. 

Let us consider three stratification dummy variables to identify the different guidance 
mechanism in the missile programs: 

 





otherwise

guidanceMCmidcoursenobutradaractiveanhasitif
D

0

)(,1
1  

 





otherwise

radaractivenobutguidancemidcoursehasitif
D

0

,1
2  

 





otherwise

radaractiveguidanceMCbothhasitif
D

0

&1
3  

Listed below is a basic representation using the above-defined dummy variables: 





















otherwise

MCandradaractivebothfor

MCfor

radaractivefor

DDD

DDD

DDD

DDD

000

100

010

001

321

321

321

321

 (11) 

However, the following representation is not the same as the representation given above: 





















otherwise

guidanceMCandradaractivefor

guidanceMCfor

radaractivefor

DD

DD

DD

DD

00

11

10

01

21

21

21

21

 (12) 

Equation 12 does not let the regression equation estimate freely the true level of the response 
from the category D3 = 1 (both active radar and MC guidance).  It simply assumes the level of D3 
is the product of the levels of D1 and D2. This kind of assumption is quite common when 
deriving CERs using dummy variables. It is difficult to evaluate the validity of using dummy 
variables in Equation 12.  Also, the fit statistics could be misleadingly significant. Reference 10 
provides several illustrative examples using two dummy variables. 

CHOW TEST AND DUMMY VARIABLE T-TEST 
Although most analysts are familiar with the F-test, the Chow test is not as well-known. 

The Chow test is used for testing the significance of the overall model that includes the dummy 
variables. Before explaining the Chow test, we first describe the F-test and the related F-Statistic.  

Consider a linear model with an intercept where the dependent variable Y can be 
estimated by k independent variables; namely, X1, X2, ..., Xk: 

iikkiii xxxY   ...22110  for i = 1,…,n 



Tecolote Research, Inc. PRT-168, Using Dummy Variables in CER Development 

Page 6 

This model can be written using the matrix notation: 

Y = X +   

where: 
 Y is the n by 1 vector of observations (i.e., the dependent variable), 
 X is the n by (k+1) design matrix, which consists of the independent variables, 
  is the (k+1) by 1 vector of unknown coefficients, i.e.,  = (0, 1, …, k)

t, 
  is the n-by-1 vector of error terms with a variance matrix V, i.e., Var() = V2,  

V is an n-by-n diagonal matrix with the non-negative value vi in the diagonals (for i = 1, 
…, n) and zeros elsewhere, and 

 n is the sample size. 

(Note that the variance matrix V is assumed to be an identity matrix I for OLS.)  

F-Statistic. The F-Statistic reported in the regression output is used in a hypothesis test to 
determine whether the overall regression model is significant.  It is based upon a comparison of 
how much variability is explained by the variables in the model with the unexplained variability.  
The F-Statistic (F-Stat) is defined as the ratio of the regression sum of squares to the error sum of 
squares adjusted by their own degrees of freedom (DF) in the fit space: 

F-Stat = [SSR/(k)] / [SSE/(n-k-1)] = MSR / MSE 

where SSR is the sum of squares due to regression, SSE is the error sum of squares ((yi – ŷi)
2), 

and k is the total number of independent variables, not including the intercept. Also, MSR stands 
for the mean squares due to regression, while MSE denotes the mean squares due to error. 

To check the significance of the overall model, we are actually testing the null hypothesis 
that all of the estimated regression coefficients are not significantly different from zero.  In 
statistical terms, we are testing the following null hypothesis (Ho) against the alternative 
hypothesis (Ha): 

Ho: 12 = k = 0 vs. Ha: i ≠ 0 for at least one slope parameter 

Using the vector notations, it is given by 

Ho:  = 0       vs.       Ha:  ≠ 0 (14)  

where ),...,,( 21 kβ , not including the intercept. 

If Ho is true, the two statistics SSR and SSE are independent and the F-Stat follows an F 
distribution with k and n-k-1 degrees of freedom, respectively, i.e., F-Stat ~ F(k, n-k-1). 
Intuitively, if the model is not adequate (i.e., Ho is true), SSE will be large (compared to SSR) 
and F-stat will be small.  On the other hand, if the model is correct (i.e., Ha is true), then SSE 
will be small and F-Stat will be large.  Therefore, we compare the F-Stat with the upper cut-off 
point of this F-distribution with k and n-k-1 degrees of freedom at a desired level of significance, 
 (which is usually less than 0.2). The upper cut-off point of the F distribution is commonly 
denoted by F(k, n-k-1). If F-Stat is greater than F(k, n-k-1), we conclude that there is a 
significant relationship between the dependent variable and independent variables at a (100)% 
significance level. For a no-intercept model, we will compare the F-Stat with F(k, n-k) instead 
of F(k, n-k-1).  The decision rules are summarized in Table 1. 
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Table 1: Decision Rule for F Test 
Model Decision Rule 
Intercept Reject Ho if F-Stat > F(k, n-k-1) 
No Intercept Reject Ho if F-Stat > F(k, n-k) 

 
Chow Test (F Test). Given a simple linear model Y = X +  (see Equation 13), if there 

are two groups, (A) and (B), in which the parameters are not necessarily the same, we should 
rewrite the linear model as follows: 









nsobservationwithBGroupfor

nsobservationwithAGroupfor

22

11

)(

)(





XγY

XθY
  

We are interested in testing the null hypothesis (Ho) versus the alternative hypothesis (Ha):  

Ho:  =  vs. Ha:  ≠  

If the null hypothesis Ho is false, then we should analyze two regression equations 
separately as given in Equation 15. Their error sums of squares are denoted by SSE1 and SSE2 
for Group (A) and Group (B), respectively. The “unrestricted” sum of squares due to error 
(USSE) for Equation 15 is then given by 

USSE = SSE1 + SSE2 

Let p denotes the total number of estimated parameters (coefficients) in the equation. If there are 
n1 observations in Group (A) and n2 observations in Group (B), then the total number of 
observations is n = n1 + n2 and USSE has (n1 – p) + (n2 – p) = (n –2p) DF.  

If the null hypothesis is true, then we should use a single equation (i.e., Equation 13) to 
model all the data points. In this case, the “restricted” sum of squares due to error (RSSE) should 
have (n – p) DF. 

Intuitively, if the null hypothesis is true, there should not be any significant difference between 
USSE and RSSE. Consequently, an F statistic for the Chow test is formulated below: 

)2,(~
)2/(

)/()(
pnpF

pnUSSE

pUSSERSSE
FChowTest 




       if Ho is true. (16) 

The decision rule is as follows: if FChowTest ≤ F(p, n – 2p), then we do not have sample evidence 
to reject the null hypothesis. On the other hand, if FChowTest > F(p, n – 2p), then we conclude that 
Groups (A) and (B) respond differently toward the relative change in the independent variable X 
at a (100)% significance level. Note that p = k + 1 if there is an intercept in the model; 
otherwise, p = k, where k stands for the number of independent variables. 

Dummy Variable T-Test. An alternative approach is to test the following model: 

iiiii XDXY  δβ   

where the dummy variable D is given by 










)(0

)(1

BGroupiif

AGroupiif
Di   
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The hypothesis Ho:  =  for Equation 15 is obviously the same as the hypothesis Ho:  = 0 for 
Equation 17. Both tests should lead to the same conclusion; we can use either Equation 15 or 
Equation 17 to test the validity of pooling data from various categories to analyze them together. 
However, the Chow test (an F-test) is used for testing the significance of the overall model. If the 
Chow test result is significant, it does not indicate which parameters between the two groups are 
significantly different. On the other hand, the dummy variable t-test can be used to further 
examine whether specific parameters in both groups are statistically different. As a result, the 
dummy variable t-test (e.g., Equation 17) provides more detailed information than the Chow test. 

If there are m different groups in the data set, we can use the F-stat given by Equation 16 
to test the null hypothesis with the following: 





m

i
inn

1

  





m

i
iSSEUSSE

1

 (19) 

DF for USSE = n – m*(k+1) 

DF for RSSE = n – (k+1) 

where ni is the sample size and SSEi is the error sum of squares for each group, respectively (i = 
1, …, m).   

As shown by Equations 16 and 19, the Chow test can be easily implemented. 

The alternative approach (t-test) can also be applied to test m different groups in a given 
data set by including (m – 1) dummy variables. The process is a generalization of Equation 18.  

GENERAL CAUTIONS AND STATISTICAL TESTS WHEN USING 
DUMMY VARIABLES 

Analysts should consider general guidelines before adding dummy variables to an equation. 
A few cautionary notes are listed below. 

Analyze individual groups first. First, examine whether we should analyze different 
categories (or groups) by separate regression equations before pooling them together using dummy 
variables. To be more specific, we should analyze separate regression equations (by Equation 4 or 
7) before choosing a parallel relationship (e.g., Equation 5).   

Have at least three points in each category. If there are only one or two data points left in 
a particular category (indicated by a dummy variable, D), the t-statistic associated with the dummy 
variable D tends to be artificially large and hence misleading.  The general rule is to have at least 
three data points in a particular category before using a dummy variable.   

Do not single out specific programs. Dummy variables should not be abused.  There can 
be temptations to use several dummy variables to account for various aspects of a class of systems 
to the point where there are no (or few) degrees of freedom left in the overall regression equation. 
If a dummy variable is used to capture a single data point in a different level, the regression result 
is the same as when that point is left out. Hence, a category of one point is the same as eliminating 
the point. The general rule is to do data plotting and data analyses before using dummy variables.   
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Check whether all groups have the same variance. The last caution is to ensure that data 
associated with a particular attribute act no differently from those without it.  In other words, the 
noise term associated with the dependent variable (i.e., cost) should be the same for all items with 
or without the attributes.  F and χ2 tests can be used for testing the equality of the variances of 
different categories. 

If there is only one dummy variable hypothesized in the model, then a simple F-test 
comparing the mean squared errors (MSE) of these two separate regression lines will be adequate. 

Test Ho: σ1 = σ2 vs. Ha: σ1 ≠ σ2 

Test Stat: F = MSE1/MSE2 if MSE1 > MSE2 

Decision Rule: Reject Ho if F > Fα(df1, df2) (20) 

where Fα(df1, df2) indicates the upper (100α)% cut-off point of an F distribution with degrees of 
freedom df1 and df2, respectively, while df1 and df2 are the degrees of freedom associated with the 
corresponding MSE. 

If several dummy variables are used in a regression model, a joint hypothesis of the equality 
of several variances ought to be considered in addition to the simple F-test (see Reference 11 for 
details).  Dummy variable analysis will be valid when these tests are insignificant.  

USE OF DUMMY VARIABLES IN SPLINE 
In many practical situations, dummy variables can be used to account for two distinct 

trends occurring in the response data, i.e., segmented lines and splines.  The occurrences of 
splines can be classified into two categories: (1) it is known which data points lie on which 
trends and (2) it is not known. 

(1) It is known which data points lie on which trends.  If data points (x1,y1), (x2,y2), ..., 
and (xm,ym) are in one straight line, while data points (xm+1,ym+1), ..., and (xn,yn) are in another, 
we can discuss two subcases: (1a) the intersection of these two lines is a given number between 
xm and xm+1, say xo, and (1b) the intersection of the two lines is not known and the regression is 
used to estimate the intersection. 

(1a) The intersection of the two lines is at x0 (xm < x0 < xm+1).  We need to set up two 
dummy variables Z1 and Z2 to take account of the specifications under (1a). 

Table 2: Dummy Variables Z1 and Z2 for Spline (Case 1a) 

Observations Y X Z1 Z2 
1 y1 x1 x1 0 
2 y2 x2 x2 0 
… . . . . 
m ym xm xm 0 
m+1 ym+1 xm+1 x0 xm+1 – x0 
m+2 ym+2 xm+2 x0 xm+2 – x0 
… . . . . 
n-1 yn-1 xn-1 x0 xn-1 – x0 
n yn xn x0 xn – x0 
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Graph 1: Intersection of two lines is at x0 where xm < x0 < xm+1 (Case 1a) 

 

Consider the following equation: 

Y = βo + β1Z1 + β2Z2 (21) 

The regressed estimates should have the following properties: 

0̂  = intercept of line 1 

1̂  = slope of line 1 

2̂  = slope of line 2 

(1b) The intersection of the two lines is somewhere between xm and xm+1.  In this 
situation, we need a third dummy variable D (in addition to Z1 and Z2) to take care of the 
unknown point of intersection. 

Table 3: Dummy Variables Z1, Z2 and D for Spline (Case 1b) 

Observations Y X Z1 Z2 D 
1 y1 x1 x1 0 0 
2 y2 x2 x2 0 0 
… . . . . . 
m ym xm xm 0 0 
m+1 ym+1 xm+1 xm+1 xm+1 – xm+1 1 
m+2 ym+2 xm+2 xm+1 xm+2 – xm+1 1 
… . . . . 1 
n-1 yn-1 xn-1 xm+1 xn-1 – xm+1 1 
n yn xn xm+1 xn – xm+1 1 

 

Given a regression line as follows: 

Y = βo + β1Z1 + β2Z2 + β3D (22) 

   xm    x0   xm+1 
 

x1 … 

Y 

xn 
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The estimated parameters will have the following interpretations: 

0̂  = intercept of line 1 (same as above) 

1̂  = slope of line 1 (same as above) 

2̂  = slope of line 2 (same as above) 

3̂  = the vertical distance between line 1 and line 2 at the (m+1)th observation 

The point of intersection can be found by writing both lines in terms of the Z1 scale.  The first 
fitted line is given by 

110
ˆˆˆ ZY     

The second fitted line is given by 

322110
ˆˆ)(ˆˆˆ    ZxY m   

Since Z2 = 0 when Z1 = xm+1, we can substitute Z2 = Z1 – xm+1 into Equation (24): 

)(ˆˆ)(ˆˆˆ
1123110   mm xZxY    

The intersection of the x-axis is then derived using both Equations 23 and 25: 

)ˆˆ/(ˆ)( 21311   mxZ  

(2) It is unknown which data points lie on which trends.  In this situation, the solution 
could be obtained by an iterative process.  The selection procedure is as follows: 

 Look at every possible division of the points to the first and second lines 

 Evaluate sum of squares due to error (SSE) for each division using the OLS method 

 Choose a division that corresponds to the smallest SSE 

For more information about splines, see the listed references. 

EXAMPLE SECTION 
In this section, we use examples to demonstrate some common errors when applying 

dummy variables in CER development and will start with a rocket propulsion CER. 

Rocket Propulsion CER. The database is given as follows: 

Table 4: Solid Rocket Motor Database 

Data Point CAC$K  Quantity Nozzle 
Weight 

Number 
of Nozzles 

D1 D2 

Obs 1  1,411.7   2,249   948.0  4 0 0 
Obs 2  951.7   925   390.0  4 0 0 
Obs 3  1,025.4   1,324   350.0  4 0 1 
Obs 4  670.7   1,547   169.0  4 0 1 
Obs 5  520.0   698   227.0  1 0 1 
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Data Point CAC$K  Quantity Nozzle 
Weight 

Number 
of Nozzles 

D1 D2 

Obs 6  1,241.8   350   604.0  4 0 0 
Obs 7  1,077.5   350   309.0  4 0 1 
Obs 8  1,802.6   667   1,440.0  4 0 1 
Obs 9  901.9   667   172.0  4 0 1 
Obs 10  993.6   547   761.0  1 0 1 
Obs 11  957.4   547   424.0  1 0 1 
Obs 12  4,248.1   71   1,535.0  1 1 0 
Obs 13  5,084.4   103   1,485.0  2 1 0 
Obs 14  3,693.8   71   479.0  2 1 0 
Obs 15  635.6   85   176.0  1 0 1 
Obs 16  209.4   524   92.5  1 0 0 
Obs 17  286.2   546   114.0  1 0 0 
Obs 18  733.7   184   157.2  1 1 0 
Obs 19  603.0   184   151.0  1 1 0 
Obs 20  734.1   1500  520.0  2 0 0 
Obs 21 1,112.5 1230 750.0 3 0 0 
Obs 22 536.6 1680 256.0 2 0 0 

 

Below is a log-linear CER to predict the cumulative average cost for a solid rocket motor: 
 

CAC(Q) = 53.27 Q-0.1908 NW_LBS0.5978 NNZ0.4139 (2.091D1) (1.261D2) (27) 
 
where: 
 CAC(Q) = cumulative average unit cost of Q units, FY13$K, no fee 
 NW_LBS = weight of nozzles and thrust vector control hardware 
 NNZ  = number of nozzles 
 D1 and D2 = stratification dummy variables for motor case material, where 















steelismaterialcaseifDD
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00

10

01

21
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Note that Equation 27 is fit in log space. Equation 27 can be interpreted as a cost 
improvement curve (CIC) under the disjoint theory. It can also be viewed as a rate curve using 
the production quantity as the surrogate for rate. The cost improvement (CI) slope (or the rate 
slope) for Equation 27 is 87.6% (i.e., 2^-0.1908), which is very significant (see the CO$TAT 
report below for details).   

Since there are three levels of the motor case material, two dummy variables (D1 and D2) will be 
adequate to account for the different levels of response.  From the above CER, we can see that a 
solid rocket motor made of glass at a given specification (quantity, nozzle weight, number of 
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nozzles) will cost 26% more than a rocket motor made of steel at the same specification.  
Similarly, a rocket motor made of Kevlar on the average will cost 109% more than a rocket 
motor made of steel.  These factors seem reasonable.  

Detailed regression outputs (using CO$TAT) for the fit measures, along with the 
summary predictive measures, are given below. 

Table 5: CO$TAT Fit Measures for Equation 27 
Coefficients Statistics Summary 

Variable Coefficient 
Std Dev of 

Coef Beta Value 
T-Statistic 
(Coef/SD) P-Value 

Prob Not 
Zero 

Intercept 3.9753 0.5413   7.3436 0.0000 1.0000 
Qty -0.1908 0.0654 -0.2636 -2.9152 0.0101 0.9899 
NZ_Wt 0.5978 0.0538 0.6553 11.1215 0.0000 1.0000 
NNZ 0.4139 0.0811 0.3363 5.1020 0.0001 0.9999 
EXP_D1 0.7377 0.1719 0.4083 4.2912 0.0006 0.9994 
EXP_D2 0.2320 0.0980 0.1506 2.3668 0.0308 0.9692 
              
Goodness-of-Fit Statistics           

Std Error (SE) R-Squared 
R-Squared 

(Adj) 
Pearson's 
Corr Coef       

0.1901 95.42% 93.98% 0.9768       
 
Analysis of Variance           

Due To DF 
Sum of Sqr 

(SS) 
Mean SQ 
= SS/DF F-Stat P-Value 

Prob Not 
Zero 

Regression 5 12.0355 2.4071 66.6130 0.0000 1.0000 
Residual (Error) 16 0.5782 0.0361       
Total 21 12.6137         

 
Table 6: Summary of Predictive Measures for Equation 27 

Average Actual (Avg Act) 1337.8027 
Standard Error (SE) 372.2712 
Root Mean Square (RMS) of % Errors 17.18% 
Mean Absolute Deviation (Mad) of % Errors 12.39% 
Coef of Variation based on Std Error (SE/Avg Act) 27.83% 
Coef of Variation based on MAD Res (MAD Res/Avg Act) 13.28% 
Pearson's Correlation Coefficient between Act & Pred 96.97% 
Adjusted R-Squared in Unit Space 91.69% 

Based upon the fit measures, all the regressed coefficients are significant at the 5% 
significance level. This equation does not have the problem of multicollinearity; no outliers are 
identified in the report either.  The regressed coefficients are also reasonable by engineer’s logic. 

All in all, this CER appears to be a very solid and useful equation.   

However, there is a downside of using dummy variables in this CER. If we analyze the 
data points separately by their individual material types, we will find that the motors made of 
steel have very little CI and their CI slope is at the 97% level. The motors made of glass have a 
moderate cost improvement, with a slope of 93%. Most of the learning is, in fact, coming from 
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the five motors made of Kevlar and their CI slope is at 61%. Further scrutiny is required for this 
kind of steep slope. I would recommend validating this CER using more data points when they 
become available. (Note: we use this example to point out the danger of combining different 
categories by dummy variables without analyzing their separate regression equations.) 

Receiver CER. This “hypothetical” CER is derived from a suite-level Unmanned Space 
Vehicle Cost Model, Version 9 (USCM9) database. This example is only used for illustration 
purposes. To avoid disclosing the proprietary nature of the data, the data set has been modified. 
(See Appendix A for a “fake” data set.) 

Listed below is a suite-level recurring CER for receivers using two dummy variables: 

T1 = 80.69 * X ^ 0.8153 * 1.46 ^ EHF * 1.953 ^ Gov (28) 

where: 
T1 = first unit cost 
X = receiver suite weight in pounds 
EHF = a dummy variable to indicate whether the receiver is operating at Ka-band 
(EHF) or higher 
Gov = 1 for government programs, 0 for commercial programs  

At first glance, this CER appears to be a solid equation because it is derived by 51 data points 
with a standard error (SE) of 34%. All the regressed coefficients are significant and the factors 
for the two dummy variables are also reasonable. Additionally, it has good predictive measures: 
its MUPE’s R

2 is 74%, while the Pearson’s correlation coefficient between the actual and the 
predicted value is 0.87.  

As shown by Appendix A, however, there are four categories in this data set: Gov = 1, 
EHF = 1; Gov = 1, EHF = 0; Gov = 0, EHF = 1; Gov = 0, EHF = 0. We should use three (not 
two) dummy variables to identify these four categories. Furthermore, four different CERs are 
given below if we analyze this data set by the individual categories: 
 

Gov = 1, EHF = 1: T1 = 620.2 * (X)(0.6616) (N = 9; SE = 0.23) (29) 

Gov = 0, EHF = 1: T1 = 258.5 * (X)(0.6718) (N = 11; SE = 0.15) (30) 

Gov = 1, EHF = 0: T1 = 64.39 * (X)(0.9620) (N = 13; SE = 0.31) (31) 

Gov = 0, EHF = 0: T1 = 42.12 * (X)(0.9262) (N = 18; SE = 0.31) (32) 

According to the above equations, there seem to be two different levels of the weight exponent 
for these four categories: one is at 0.66, vs. the other at around 0.94. (The weight exponent 
0.8153 in Equation 28 behaves like an average of these weight exponents.) In fact, using either 
the Chow test or t-test shows these two weight exponents to be significantly different. 
Consequently, we should group the data set by the EHF dummy variable: one group for EHF = 
0; the other for EHF = 1. In each group, the Gov dummy variable is significant and the CER 
meets the requirement of using a dummy variable by the t-test. 

EHF = 1: T1 = 273.7 * (X)(0.6633) * (2.245)Gov (SE = 0.18; MUPE’s R2 = 90%) (33) 

EHF = 0: T1 = 34.48 * (X)(0.9559) * (1.926)Gov (SE = 0.30; MUPE’s R2 = 82%) (34) 
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Chow test and Dummy Variable t-test. We now use the receiver data set to explain 
how to use the Chow test and dummy variable t-test. For illustration purposes, we use the LOLS 
method to generate the equations below, so the test results can be easily verified in Excel.  

There are two unrestricted CERs for receivers operating at ka-band or higher: 

Gov = 1, EHF = 1: T1 = 609.93 * (X)(0.66) (USSE1 = 0.5395, n1 = 9) (35) 

Gov = 0, EHF = 1: T1 = 245.30 * (X)(0.678) (USSE2 = 0.1953, n2 = 11) (36) 

If we combine these two equations into a restricted model, we derive the following CER: 

T1 = 1642.54 * (X)(0.4275) (RSSE = 2.5145, r2 = 0.43) (37) 

If we pool Equations 35 and 36 together using the Gov dummy variable, we generate this CER: 

EHF = 1: T1 = 271.16 * (X)(0.663) * (2.206)Gov (SEE = 0.7355, r2 = 0.91) (38) 

The test statistic for the Chow test is then given by 

4.19
)2*220/()1953.05395.0(

2/)1953.05395.05145.2(

)2/(

)/()(












pnUSSE

pUSSERSSE
FChowTest  (39) 

Since the test statistic FChowTest is greater than F(0.01, 2, 16) = 6.23, we conclude that there is a 
significant difference between the government and commercial programs. However, the Chow 
test (an F-test) does not indicate which parameters (slope, scale, or both) are significantly 
different between these two groups.  

On the other hand, the dummy variable t-test can be used to further examine whether 
some specific parameters (coefficients) in both groups are statistically different. Given below is a 
full model using the dummy variable on both the scale and exponent coefficients: 

EHF = 1: T1 = 245.3 * (X)(0.678) *(X)(-0.018*Gov)(2.482)Gov (40) 

Based upon the dummy variable t-test, the exponent -0.018, which captures the weight difference 
between the government and commercial programs is not significant at all. Since no significant 
difference is found between the weight exponents of these two groups, we can use the Gov 
dummy variable to combine Equations 35 and 36 into one equation (i.e., Equation 38). Note that 
the Coefficient 2.206 in Equation 38 is significant. 

Similarly, for the government programs (Gov = 1), we can show that both the exponent 
and scale parameters associated with the EHF variable are significant using the dummy variable 
t-test: 

Gov = 1: T1 = 69.43 * (X)(0.938) *(X)(-0.278*EHF)(8.77)EHF (41) 

Consequently, the two groups, EHF = 1 and EHF = 0, should be analyzed separately; namely, 
they should not be pooled together using a dummy variable. 

CONCLUSIONS 
Use dummy variables to conserve DF. In cost analysis, small data sets are the rule and 

proper use of dummy variables can conserve degrees of freedom.  However, the full model 
hypothesis, i.e., fitting regression equations separately, should be tested before using the reduced 
models (e.g., Equations 5 and 8).   
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Follow the general guidelines for using dummy variables in CER development. 
Analysts should consider general guidelines before adding dummy variables to an equation; they 
should not simply examine the regressed coefficients in the CER, along with their fit measures 
(e.g., t-ratios) to conclude the equation is logical and statistically sound. Listed below are a few 
basic rules:  

1. Analyze individual groups first. First, examine whether we should analyze different 
groups (or categories) by separate regression equations before pooling them together using 
dummy variables. To be more specific, we should analyze separate regression equations 
(e.g., Equations 4 and 7) before choosing a reduced model (e.g., Equation 5). 

2. Use either Chow test or t-test to determine whether a reduced model is appropriate. 

3. Use (m-1) dummy variables to specify m different groups. In addition, do not specify 
the relative distance between the group levels using a discrete variable, e.g., D = 1, 2,…, m. 
Instead, we should let the regression equation estimate the separations. 

4. Use the rule of three points. If there are only one or two data points left in a particular 
category (indicated by a dummy variable, D), the t-statistic on the slope or exponent 
coefficient of the dummy variable D tends to be artificially large and hence misleading.  
The general rule is to have at least three data points in a particular category before using a 
dummy variable.   

5. Do not single out a specific program. Dummy variables should not be abused.  There can 
be temptations to use several dummy variables to account for various aspects of a class of 
systems to the point where there are no (or few) degrees of freedom left in the overall 
regression equation. If a dummy variable is used to capture a single data point at a different 
level, the regression result is the same as when that point is left out.  

6. Check whether all groups have the same variance. We should also ensure that data 
associated with a particular attribute act no differently from those without it.  In other 
words, the noise term associated with the dependent variable (i.e., cost) should be the same 
for all items with or without the attributes.  F and χ2 tests can be used to check the equality 

of the noise band (i.e., variance) of the dependent variable. 

Select dummy variables by engineer’s logic. If dummy variables are founded on good 
logic and solid technical grounds, then the use of them will be of merit. For example, the dummy 
variables chosen in USCM9, such as "communication mission" (yes or no), "agency type" (1 = 
government program, 0 = commercial program), etc. are based upon engineer's logic, so they 
have practical meaning. Therefore, we recommend that the selection of dummy variables should 
be guided by engineer's judgment. We also believe a CER’s hypothesis in choosing reasonable 
dummy variables should be as important as the statistical consideration.  Once the dummy 
variables are identified, statistical tests should be rendered as suggested above. 

Use dummy variables in spline. Dummy variables can be used to find the intersection 
between two lines (spines). We may find this a useful application in CIC analysis. For example, in 
a learning curve data set, if the first few data points appear to follow one CIC slope, while the 
remainder follows another CIC slope, we can use dummy variables to model the two distinct 
trends. This may be a useful addition to CO$TAT’s learning curve tool.  
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APPENDIX A – DATA SET 

 

Observation T1 X (Weight) EHF Gov

Obs 1 6,600.21           254.37             0 1
Obs 2 1,424.00           28.26               0 1
Obs 3 25,364.46         782.09             0 0
Obs 4 28,902.57         685.42             0 0
Obs 5 11,084.69         737.25             0 0
Obs 6 17,456.22         628.53             0 0
Obs 7 18,174.66         791.46             0 0
Obs 8 24,701.53         358.18             0 1
Obs 9 5,320.50           122.18             0 1

Obs 10 7,826.23           204.68             0 1
Obs 11 2,764.87           43.69               0 1
Obs 12 45,021.55         1,184.43           0 0
Obs 13 19,083.38         652.19             0 0
Obs 35 8,172.09           39.39               1 1
Obs 36 57,801.60         621.18             1 1
Obs 16 1,957.13           29.80               0 1
Obs 17 23,130.17         359.39             0 1
Obs 18 18,262.27         345.47             0 1
Obs 19 26,415.75         348.59             0 1
Obs 20 7,993.50           120.96             0 1
Obs 21 16,727.47         791.46             0 0
Obs 22 63,784.22         2,410.84           0 0
Obs 23 9,289.77           654.11             0 0
Obs 24 25,737.49         1,162.01           0 0
Obs 25 17,697.46         1,067.34           0 0
Obs 26 15,631.43         934.49             0 0
Obs 27 2,251.56           49.04               0 1
Obs 28 20,497.51         637.93             0 1
Obs 29 22,645.97         888.16             0 0
Obs 30 25,812.86         920.00             0 0
Obs 31 16,975.38         533.64             1 0
Obs 32 36,001.45         1,676.22           1 0
Obs 33 21,145.31         618.80             1 0
Obs 34 7,677.11           38.36               1 1
Obs 14 12,051.18         359.50             0 0
Obs 15 15,607.81         737.75             0 0
Obs 37 11,138.75         209.80             1 1
Obs 38 38,767.66         548.44             1 1
Obs 39 41,176.09         566.80             1 1
Obs 40 11,228.76         93.08               1 1
Obs 41 33,248.99         1,228.50           1 0
Obs 42 28,903.69         1,035.00           0 0
Obs 43 20,381.97         957.30             1 0
Obs 44 50,546.40         2,539.59           1 0
Obs 45 27,160.39         713.67             1 0
Obs 46 13,891.36         522.49             1 0
Obs 47 20,687.47         680.32             1 0
Obs 48 18,438.14         173.89             1 1
Obs 49 51,652.59         752.67             1 1
Obs 50 20,834.76         752.22             1 0
Obs 51 22,756.41         678.87             1 0


