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 Use dummy variables (also referred to as indicator variables) to 
capture a “qualitative” characteristic of a underlying data set 

 This characteristic may have an important influence on the behavior of 
the dependent variable, but it is not directly quantifiable. For example, 
data may be classified into air launched or ground based, or collected 
from different factories, which cannot be quantifiable using continuous 
variables. 

 Use dummy variables in CERs mainly to conserve degrees of freedom 
(DF) when 

 The sample size is small and 

 Different populations share the same sensitivity for the ordinary 
predictors 

 

Introduction 

Use dummy variable to stratify data into distinct  

categories or classes 
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 Explain common errors when applying dummy variables in CER 
development 

 Many analysts tend to specify dummy variables in their CERs without 
properly analyzing the statistical validity of using them. Hence, the 
fitted equation may not be statistically sound. 

 Recommend general guidelines for adding dummy variables to an 
equation 

Objectives 



PA-2 - Using Dummy Variables in CER Development 

ICEAA 2014 Professional Development & Training Workshop 

3 

PRT- 168  10 June 2014 5 Approved for Public Release 

 Use one dummy variable to model two categories:  

 Linear: Y = a+b X+d D 

 Power: Y = aXb
 (d)D 

 Triad: Y = aXb(d)lD + f0 + f1*D
 

 Assume two categories react the same statistically toward the relative 
change in the predictor variable X 

 Use two dummy variables to model three categories: 

 Linear: Y = a+b X+d1D1+d2D2 

 Power: Y = aXb
 (d1)

D1(d2)
D2 

 Triad: Y = aXb
 (d1)

D1(d2)
D2 + f0 + f1D1+ f2 D2  

 Category #1: {D1,D2} = {1,0} 

     Category #2: {D1,D2} = {0,1} 

     Category #3: {D1,D2} = {0,0} 

 

 

One or Two Dummy Variables 






2#0

1#1

categoryfromisnobservatioanif

categoryfromisnobservatioanif
D
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 The basic allocation pattern for introducing m dummy variables is to 
write down a (m-1) x (m-1) identity matrix, Im-1, and then add a row of 
(m-1) zeros as a comparison baseline (see Reference 1 for details):  

 

 

 

 

 

 
 The dummy variable’s representation is not unique 

 There are different ways of choosing dummy variables for a given situation 

 Make sure the design matrix is not singular; e.g., an identity matrix not feasible  

 

 

Multiple Dummy Variables 

 

mcategoryfromisitemif

mcategoryfromisitemif

categoryfromisitemif

categoryfromisitemif

categoryfromisitemif

DDDD m

#0...000

1#1...000

......

3#0...100

2#0...010

1#0...001

... 1321





 

000

100

010

001
321 DDD

if m = 4:  

Im-1:  
I3:  

Use (m-1) dummy variables to represent m categories or classes. 

Note: # of dummy variables is one less than # of categories. 
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 Beware of over-specification; e.g., an identity matrix is not feasible 

 Beware of under-specification—let the regression equation decide the levels 

 a linear model: Y=a+bX+c(D1)+d(D2) 

 a log-linear model: Y=(aXb)c(D1)d(D2) 

 

 

 

 

 

 

Cautionary Notes 
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Tip: Add another dummy variable (e.g., D3) to capture the combined effect (Category 3) 

instead of using an implicit function (e.g., addition or multiplication) 













otherwiseCategory

guidanceMCandradaractiveforCategory

guidanceMCMidcourseforCategory

radaractiveforCategory

:4

:3

)(:2

:1





















00:4

11:3

10:2

01:1

:

21

21

21

21

DDCategory

DDCategory

DDCategory

DDCategory

specwrongA
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Given four categories: 

Using 2 dummy variables is under-specified 

Using 4 dummy variables is over-specified 
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Review: OLS Regression Analysis – F-test 

F-stat = MSR/MSE  ~ F
(k,n-k-1)

 under H
o 

Given: Y = a + b1X1 + b2X2 + …+ bkXk + e 

 F-test measures the significance of the CER. Use F-test to determine if 
the equation is statistically significant at a given confidence level 

 Ho: b1 = b2 = … = bk = 0  vs. Ha: bi  0 for at least one (slope) coefficient 

 F-stat = [(SST-SSE)/k]/[SSE/(n-k-1)] = [(SSR)/k]/[SSE/(n-k-1)] = MSR/MSE 
 If the mean square due to regression (MSR) value is large relative to the mean 

square due to error (MSE) value, then a large portion of the variability is being 
explained by the regression (i.e., Ha is probably true when F-stat is big) 

 F-stat ~ F(k,n-k-1) if Ho is true  

 Reject Ho (accept Ha) if F-stat > Fa(k, n-k-1) 
 a is a given significance level of the test, e.g., 1%, 5%, 10%, etc. 

 The significance level of a test is the probability of rejecting the null hypothesis 
when it is true, i.e., Significance Level = a = P(Reject Ho/Ho is true) 

 Fa(k,n-k-1) is the upper 100a% cut off point of the F distribution, F(k,n-k-1) 

 P-value = P(F > F-stat), i.e., the probability of obtaining a value > F-stat 

F(k,n-k-1) is the F distribution with  
k and (n-k-1) degrees of freedom (DF) 

Type I Error 

SST = Si(yi -   )2 
SSE = Si(yi - ŷi)2 

 y

PRT- 168  10 June 2014 10 Approved for Public Release 

 Use the Chow test (i.e., an F-test) for testing the significance of the overall 
model with all the dummy variables 

 Given two groups A and B, we can analyze them together using one CER (M1, 
a restricted model) or analyze them separately (M2, an unrestricted model): 

 

 We are interested in testing the null hypothesis (Ho) vs. the alternative 
hypothesis (Ha): Ho: q = g  vs. Ha: q  g 

 If Ho is true, use Method 1. The restricted sum of squares due to error (RSSE) for Method 
1 has (n – p) DF and the sample size n = n1 + n2, given Group A has n1 observations 
while Group B has n2 observations. Note: p = # of estimated parameters; k = # of drivers. 

 If Ha is true, use Method 2. The individual error sum of squares are denoted by SSE1 and 
SSE2 for Groups A and B, respectively. The unrestricted sum of squares due to error 
(USSE) for Method 2 equals SSE1 + SSE2, which has (n1 – p) + (n2 – p) = (n – 2p) DF 

 Define an F statistic for the Chow test:  

 If Ha is true, USSE should be significantly less than RSSE and the F-stat should be big 

 FChowTest ~ F(p, n – 2p) if Ho is true 

 Reject Ho (accept Ha) if FChowTest > Fa(p, n – 2p) 

 

Chow Test 

)2/(

)/()(

pnUSSE

pUSSERSSE
FChowTest













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a

22

11:H)M2(
e

e
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XθY
points; data allfor:H)M1( 0 ε XβY



 


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interceptanisthereif1

k

k
p
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 Simple linear model:  

 Y = a+bX+dD+qDX 

 This is the same as fitting two separate lines to Groups A and B 

 Consider Y = a+bX+dD (a reduced model) if q is not significant  
 Combine two categories using the dummy variable D if two categories react 

the same statistically toward the relative change in the predictor variable X 

 Simple log-linear model:  

 Y = aXbdDXqD  = aXb(e)lDXDq   

 This is the same as fitting two separate curves to Groups A and B 

 Consider Y = aXb
 dD = aXb(e)lD (a reduced model) if q is not significant  

 Test q as well as d 

 Check the significance level of q before using the reduced model, but 
many only test if the coefficient d (or l) is sig in the reduced model 

 Analyze Groups A and B separately if the coefficient q is significant 

Dummy Variable T-Test (1/2) 

Y = a+bX+dD+qDX vs. Y = a+bX+dD or Y = aX
bdD

X
qD

 vs. Y = aX
b dD 

 










BGrouppointdataif0

AGrouppointdataif1
D










BGroupiifX

AGroupiifX
Y

ii

ii
i

e

e

γ

θ
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 Use Equation 1 or Equation 2 to model two groups: 

  

 

 

 Determine if there are any significant differences between  2 groups: 

 Ho: q = g  vs. Ha: q  g  Chow Test 

 Ho: d = 0  vs. Ha: d  0  T Test 

 Both Chow test and dummy variable t-test can work with multiple 
groups and they should lead to the same conclusion 

 Dummy variable t-test provides more detailed info than Chow test 
since Chow test is an F-test for the significance of the overall model 

Dummy Variable T-Test (2/2) 

Tip: Use Dummy variable t-test to check the significance of  

of each parameter/variable in Equation 2 










BGroupiif

AGroupiif
Di 0

1










BGroupiifX

AGroupiifX
Y

ii

ii
i

e

e

γ

θ
:)1(

 
iiiii XDXY e δβ:)2(

 Xi is a row vector of the 
independent variables for 
the ith observation 

 a, q, g, b, and d are unknown 
vectors of parameters 

iii XYvs e α.
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 Analyze individual groups first before adding dummy variables to an 
equation 

 Check if we should analyze different groups by separate regression 
equations before pooling them together using dummy variables  

 Do not single out specific programs  

 Analyze/Graph the data before using dummy variables 

 There should be more than one data point in a category: if a dummy 
variable is used to capture a single data point in a different level, the 
regression result is the same as when that point is left out 

 Have at least three points in each category (use the 3-points rule) 

 If there are only one or two data points left in a particular category 
(indicated by a dummy variable, D), the t-statistic associated with the 
dummy variable D tends to be artificially large and hence misleading 

 Have at least three data points in a particular category before using a 
dummy variable 

General Cautions and Statistical Tests (1/2) 
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 Check whether all groups or categories have the same variance 

 The variance associated with the dependent variable should be the 
same for all items across different categories.  F and χ2 tests can be 
used to check the equality of the variances of different categories. 

 For one dummy variable: 

 Test Ho: σ1 = σ2 vs. Ha: σ1 ≠ σ2 

 Test Stat: F = MSE1/MSE2 if MSE1 > MSE2 

 Decision Rule: Reject Ho if F > Fα(df1, df2) 

 For multiple dummy variables: 
 A joint hypothesis of the equality of several variances should be considered 

(see Reference 11 on slide #29 for details) 

 

General Cautions and Statistical Tests (2/2) 

Fa(df1,df2) is the upper 100a% cut off 
point of an F distribution, F(df1,df2), 
with df1 and df2 degrees of freedom 

11. Mood, A. M., F. A. Graybill, and D. C. Boes, “Introduction to the Theory of Statistics” 

McGraw-Hill (1974). 
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Generate the example CERs by two methods: 

 

MUPE (Minimum-Unbiased-Percentage-Error) 

 LOLS (OLS in Log Space) 
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 Log-Error:  e ~ LN(0, s2)      Least squares in log space 

 Error = Log (Y) - Log f(X) 

 Minimize the sum of squared errors; process is done in log space 

 If f(X) is linear in log space, it is termed log-linear or LOLS CER 

 MUPE: E(e ) = 1, V(e ) = s2   Least squares in weighted space 

 Error = (Y-f(X))/f(X) 

 Minimize the sum of squared (%) errors 

iteratively (i.e., minimize Si {(yi-f(xi))/fk-1(xi)}2, k is the iteration number) 

 MUPE is an iterative, weighted least squares (WLS) 

 ZMPE: E(e ) = 1, V(e ) = s2   Least squares in weighted space 

 Error = (Y-f(X))/f(X) 

 Minimize the sum of squared (percentage) errors with a constraint:      
Si (yi-f(xi))/f(xi) = 0 

 ZMPE is a constrained minimization process 

 
 

Note: E((Y-f(X))/f(X)) = 0 

          V((Y-f(X))/f(X)) = s2 

Multiplicative Error Model: Y = f(X)*e  
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 Listed above is a hypothetical suite-level T1 (first unit cost) CER for 
receivers using two dummy variables, EHF and Gov 

 X  stands for receiver suite weight in pounds 

 EHF is used to indicate whether the receiver is operating at Ka-band 
(EHF) or higher (1 = Yes; 0 = No) 

 Gov = 1 for government programs; Gov = 0 for commercial programs 

 Findings: with 51 data points, all the coefficients are significant at the 
5% level; factors for the dummy variables are also reasonable 

 Statistical measures: SE = 0.34; MUPE’s R2 = 74%; r2 = 76%. 

 As shown by the data set, there are four categories in this CER: 

 Gov = 0, EHF = 0; Gov = 1, EHF = 0; Gov = 0, EHF = 1; Gov = 1, EHF = 1 

 Bad practice: a factor 2.85 (1.46*1.953) is applied when Gov = 1 and 
EHF = 1; we should let the model decide the factor of this category 

Example – Receiver CER (1/7) 

T1 = 80.69 * X
(0.8153) 

* 1.46
(EHF)

 * 1.953
(Gov)

 

Note: Three (not two) dummy variables should be used 
to identify these four categories 

The MUPE method is used 
to generate this CER 
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 Derive four CERs by their individual categories:  

 Gov = 1, EHF = 1: T1 = 620.2 * X(0.6616) (SE = 0.23; R2= 90%, N = 9) 

 Gov = 0, EHF = 1: T1 = 258.5 * X(0.6718) (SE = 0.15; R2= 87%, N = 11) 

 Gov = 1, EHF = 0: T1 = 64.39 * X(0.9620) (SE = 0.31; R2= 86%, N = 13) 

 Gov = 0, EHF = 0: T1 = 42.12 * X(0.9262) (SE = 0.31; R2= 70%, N = 18) 

 Two different levels of the weight exponent are found in these four 
categories: one is at 0.66; the other at around 0.94 
 Dummy variable t-test shows these two weight exponents are significantly different 

 Caution: The weight exponent 0.8153 in the dummy variable equation 
above behaves like an average of these weight exponents 

 Group the data set by the EHF dummy variable: EHF = 0 vs. EHF = 1 
(Gov only affects the intercept; it does not change the weight exponent) 

 EHF = 1: T1 = 273.7 * X(0.6633) * (2.245)Gov (SE = 0.18; R2 = 90%) 

 EHF = 0: T1 = 34.48 * X(0.9559) * (1.926)Gov (SE = 0.30; R2 = 82%) 

Example – Receiver CER (2/7) 

T1 = 80.69 * X
(0.8153) 

* 1.46
(EHF)

 * 1.953
(Gov)

 

Tip: Analyze the data by their separate groups first 

The MUPE method is used 
to generate these CERs 
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 Two unrestricted CERs for the government programs: 

 EHF = 1: T1 = 608.9 * X(0.660) (USSE1 = 0.5395, SE = 0.28, n1 = 9)   

 EHF = 0: T1 = 69.43 * X(0.938) (USSE2 = 1.2177, SE = 0.33, n2 = 13) 

 Combine these two CERs into a restricted model: 

 T1 = 131.79 * X(0.868)  (RSSE = 5.002, SE = 0.5, r2 = 0.8) 

 Combine these two CERs using the EHF dummy variable: 

 T1 = 129.23 * X(0.813) * (2.079)EHF (SSE = 2.23, SE = 0.34, r2 = 0.9) 

 All fit statistics are significant; EHF factor (2.079) also seems reasonable 

 Caution: the weight exponents (0.868 & 0.813) in the combined equations 
behave like an average of individual weight exponents 

 Calculate F-Statistic for Chow: 

 Since FChowTest > F(0.01,2,18) = 6.0, we conclude for government programs, 
Groups “EHF = 1” and “EHF = 0” are significantly different at the 1% level 

 Build a full model for further test: T1 = 69.43*X(0.938)*(X)(-0.278*EHF)*(8.77)EHF 

Example – Receiver CER (3/7) 

Chow Test for Gov  = 1 

62.16
)2*222/()2177.15395.0(

2/)2177.15395.0002.5(

)2/(

)/()(












pnUSSE

pUSSERSSE
FChowTest

Use LOLS CERs to 
illustrate Chow test 
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 CO$TAT output for T1 = 69.43 * X(0.938) * (X)(-0.278*EHF) * (8.77)EHF: 

 

 

 

 

 

 

 

 

 

 

 Dummy variable t-test shows coefficients -0.278 & 8.77 are significant 

 We should analyze “EHF = 1” and “EHF = 0” using separate CERs 

 

Example – Receiver CER (4/7) 

Dummy Variable t-Test for Gov  = 1 

I. Model Form and Equation Table

Model Form: Unweighted Log-Linear model

Number of Observations Used: 22

Equation in Unit Space: T1 = 69.43 * X  ̂0.938 * (XD)  ̂(-0.2779) * 8.77  ̂EHF

II. Fit Measures (in Fit Space)

Coefficient Statistics Summary

Variable Coefficient Std Dev of Coef Beta Value
T-Statistic 
(Coef/SD) P-Value Prob Not Zero

Intercept 4.2403 0.4303 9.8540 0.0000 1.0000

X 0.9380 0.0846 0.9624 11.0908 0.0000 1.0000

XD -0.2779 0.1263 -0.7215 -2.2008 0.0410 0.9590

EXP_EHF 2.1713 0.6684 1.0189 3.2485 0.0045 0.9955

Goodness-of-Fit Statistics

Std Error (SE) R-Squared
R-Squared 

(Adj)
Pearson's Corr 

Coef
0.3124 92.72% 91.51% 0.9629

Analysis of Variance

Due To DF
Sum of Sqr 

(SS)
Mean SQ = 

SS/DF F-Stat P-Value Prob Not Zero

Regression 3 22.3937 7.4646 76.4660 0.0000 1.0000

Residual (Error) 18 1.7572 0.0976

Total 21 24.1509

XD = X(EHF) 

Use LOLS CERs 
to illustrate t-test 
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 Two unrestricted CERs for receivers operating at ka-band or higher:  

 Gov = 1: T1 = 608.93 * X(0.66) (USSE1 = 0.5395, SE = 0.28, n1 = 9)   

 Gov = 0: T1 = 245.30 * X(0.678) (USSE2 = 0.1953, SE = 0.15, n2 = 11) 

 Combine these two CERs into a restricted model: 

 T1 = 1642.54 * X(0.4275)  (RSSE = 2.5145, SE = 0.37, r2 = .43) 

 Combine these two CERs using the Gov dummy variable: 

 T1 = 271.16 * X(0.663) * (2.206)Gov (SSE = 0.7355; SE = 0.21; r2 = .91) 

 All fit statistics are significant; EHF factor (2.206) also seems reasonable 

 Calculate F-Statistic for Chow: 

 FChowTest > F(0.01,2,16) = 6.23 

 Given the Chow test result, we can conclude “Gov = 1” and “Gov = 0” are 

significantly different at the 1% level, but we do not know which parameters 
(slope, scale, or both) are significantly different between these two groups 

 Build a full model for further test: T1 = 245.3*X(0.678)*(X)(-0.018*Gov)*(2.482)Gov  

Example – Receiver CER (5/7) 

Chow Test for EHF  = 1 

4.19
)2*220/()1953.05395.0(

2/)1953.05395.05145.2(

)2/(

)/()(












pnUSSE

pUSSERSSE
FChowTest

Use LOLS CERs to 
illustrate Chow test 

PRT- 168  10 June 2014 22 Approved for Public Release 

 CO$TAT output for T1 = 245.3 * X(0.678) * (X)(-0.018*Gov) * (2.482)Gov : 

 

 

 

 

 

 

 

 

 

 

 Dummy variable t-test shows the exponent, -0.018, in the full model is 
not significant, so we can use the Gov dummy variable to combine the 
CERs  

 

Example – Receiver CER (6/7) 

Dummy Variable t-Test for EHF  = 1 

XD = X(Gov) 

Use LOLS CERs 
to illustrate t-test 

I. Model Form and Equation Table
Model Form: Unweighted Log-Linear model
Number of Observations Used: 20
Equation in Unit Space: T1 = 245.3 * X  ̂0.6782 * XD  ̂(-0.01814) * 2.482  ̂Gov

II. Fit Measures (in Fit Space)
Coefficient Statistics Summary

Variable Coefficient
Std Dev of 

Coef Beta Value
T-Statistic 
(Coef/SD) P-Value

Prob Not 
Zero

Intercept 5.5025 0.9190 5.9878 0.0000 1.0000
X 0.6782 0.1354 1.2619 5.0072 0.0001 0.9999
XD -0.0181 0.1499 -0.0856 -0.1210 0.9052 0.0948
EXP_Gov 0.9091 0.9836 0.7732 0.9242 0.3690 0.6310

Goodness-of-Fit Statistics

Std Error (SE) R-Squared
R-Squared 

(Adj)
Pearson's 
Corr Coef

0.2143 89.26% 87.25% 0.9448

Analysis of Variance

Due To DF
Sum of Sqr 

(SS)
Mean SQ = 

SS/DF F-Stat P-Value
Prob Not 

Zero
Regression 3 6.1088 2.0363 44.3376 0.0000 1.0000
Residual (Error) 16 0.7348 0.0459
Total 19 6.8437
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Example – Receiver CER (7/7) 

Scatter Plot for EHF Receivers 
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T1 = 271.16 * Weight(0.663) * (2.206)Gov   
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Actual (Gov=1) 
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Chow test is an F-test.  

 

When the Chow test result is significant, 

it does not indicate which parameters 

(scale, slope, or both) are significantly 

different between the groups. 

 

We can modify Chow test to verify the 

significance of specific parameters. 
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 A hypothetical data set to generate a solid rocket motor CER: 

Example – Solid Rocket Motor CER (1/3)
 

Data Point CAC$K  Quantity Nozzle 
Weight 

Number 
of Nozzles 

D1 D2 

Obs 1  1,411.7   2,249   948.0  4 0 0 
Obs 2  951.7   925   390.0  4 0 0 
Obs 3  1,025.4   1,324   350.0  4 0 1 
Obs 4  670.7   1,547   169.0  4 0 1 
Obs 5  520.0   698   227.0  1 0 1 
Obs 6  1,241.8   350   604.0  4 0 0 
Obs 7  1,077.5   350   309.0  4 0 1 
Obs 8  1,802.6   667   1,440.0  4 0 1 
Obs 9  901.9   667   172.0  4 0 1 
Obs 10  993.6   547   761.0  1 0 1 
Obs 11  957.4   547   424.0  1 0 1 
Obs 12  4,248.1   71   1,535.0  1 1 0 
Obs 13  5,084.4   103   1,485.0  2 1 0 
Obs 14  3,693.8   71   479.0  2 1 0 
Obs 15  635.6   85   176.0  1 0 1 
Obs 16  209.4   524   92.5  1 0 0 
Obs 17  286.2   546   114.0  1 0 0 
Obs 18  733.7   184   157.2  1 1 0 
Obs 19  603.0   184   151.0  1 1 0 
Obs 20  734.1   1500  520.0  2 0 0 
Obs 21 1,112.5 1230 750.0 3 0 0 
Obs 22 536.6 1680 256.0 2 0 0 

 


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 A log-linear CER to predict the cum avg cost for a solid rocket motor 

 CAC(Q) = cumulative average cost of Q units in FY13$K, no fee 

 NZ_Wt = weight of nozzles and thrust vector control hardware 

 NNZ = number of nozzles 

 D1 & D2 are for motor case material 

 Cost Improvement Slope (or rate slope) = 2^(-0.191) = 87.6% 

 Findings: All the coefficients are significant at the 5% level; factors for 
the dummy variables are also reasonable  

 Statistical measures: SE = 0.19; RMS %Errors = 17%; r2 = 0.94 

 As shown by the data set, there are three categories in this CER: 

 Kevlar: D1 = 1, D2 = 0 (n = 5) 

 Glass: D1 = 0, D2 = 1 (n = 9) 

 Steel: D1 = 0, D2 = 0 (n = 8) 

Example – Solid Rocket Motor CER (2/3) 

CAC (Q) = 53.3*Q
(-0.191)

*NZ_Wt
(0.598)

*NNZ
(0.414)

*2.09
D1

*1.26
D2 

Note: The LOLS method is 
used to generate this CER, so 
analysts can easily replicate 
the regression results in Excel 
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 Derive three separate CERs by their individual material types: 

 Kevlar: CAC = 1919*Q(-0.7019) *NZ_Wt (0.5163) *NNZ (0.6622)   (Slope = 61%) 

 Glass: CAC = 122.7*Q(-0.1007) *NZ_Wt (0.4129) *NNZ (0.2897)  (Slope = 93%) 

 Steel: CAC = 32.56*Q(-0.0476) *NZ_Wt (0.5003) *NNZ (0.5141)  (Slope = 97%)  

 Most of the cost improvement (CI) in the overall CER comes from the 
five Kevlar data points, which have a quantity slope of 61% 

 The motors made of glass have a moderate CI, with a slope of 93% 

 There is very little CI for the motors made of steel and their CI slope is 
at the 97% level 

 The slopes between Kevlar and steel/glass motors are significantly 
different 

 The exponents of NNZ between Kevlar and glass motors might be 
statistically different 

 Due to the small sample size, we need additional data points for 
verification  

Example – Solid Rocket Motor CER (3/3) 

CAC (Q) = 53.3*Q
(-0.191)

*NZ_Wt
(0.598)

*NNZ
(0.414)

*2.09
D1

*1.26
D2 
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 Use dummy variables in a CER to conserve DF 

 Follow the general guidelines for using dummy variables in CER 
development 
 Analyze individual groups first before pooling them together in one CER 

 Use the dummy variable t-test to determine whether a reduced model is 
appropriate; t-test is more informative than Chow test 

 Use (m-1) dummy variables to specify m different groups 

 Have at least three points in each category 

 Do not single out specific programs; categories of one point is the same as 
eliminating the point 

 Check whether all groups have the same variance 

 Select dummy variables by engineer’s logic 

 Use dummy variables in splines 
 Dummy variables can be used to model splines in CIC analysis if two distinct 

trends are found in the data set 

Conclusions 
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 Two distinct trends found in the data with a given intersection x0 

 Set up two dummy variables Z1 and Z2 to account for the specifications 
that the intersection of two lines is at x0 where xm < x0 < xm+1  

 

 

 

 

 

 

 

 Consider the following equation: Y = βo + β1Z1 + β2Z2 

 The regressed estimates should have the following properties: 
       = intercept of line 1 

       = slope of line 1;       = slope of line 2 

 

 

Splines (1/2) 

Observations Y X Z1 Z2 
1 y1 x1 x1 0 
2 y2 x2 x2 0 
… . . . . 
m ym xm xm 0 
m+1 ym+1 xm+1 x0 xm+1 – x0 
m+2 ym+2 xm+2 x0 xm+2 – x0 
… . . . . 
n-1 yn-1 xn-1 x0 xn-1 – x0 
n yn xn x0 xn – x0 

 

   xm    x0   xm+1 

 
x1 … 

Y 

xn 

 
0b̂

 
1b̂  

2b̂
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 The intersection of the two lines (denoted by x0) is somewhere 
between xm and xm+1, but the value x0 is unknown 

 Set up three dummy variables Z1, Z2 and D to account for the 
specifications and unknown intersection such that xm < x0 < xm+1  

 

 

 

 

 

 

 
 Consider the following equation: Y = βo + β1Z1 + β2Z2 + β3D 

 The regressed estimates should have the following properties: 
       = intercept of line 1;       = slope of line 1;       = slope of line 2 

       = vertical distance between line 1 and line 2 at the (m+1)th observation 

 The intersection is given by 

 

Splines (2/2) 

   xm    x0   xm+1 

 
x1 … 

Y 

xn 

 
0b̂  

1b̂  
2b̂

Observations Y X Z1 Z2 D 
1 y1 x1 x1 0 0 
2 y2 x2 x2 0 0 
… . . . . . 
m ym xm xm 0 0 
m+1 ym+1 xm+1 xm+1 xm+1 – xm+1 1 
m+2 ym+2 xm+2 xm+1 xm+2 – xm+1 1 
… . . . . 1 
n-1 yn-1 xn-1 xm+1 xn-1 – xm+1 1 
n yn xn xm+1 xn – xm+1 1 
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