

Developing R&D and Mass Production Cost Estimating Methodologies for Korean Maneuver Weapon System

Doohyun Lee Suhwan Kim Sung-Jin Kang

본 자료는 저자와의 협의나 허락 없이 회람, 복사, 내용전달 등 행위를 금지합니다.

Contents

- 1. Introduction
 - Background and Objective
 - Literature Review
 - Range and Methodology
 - Meaning of Research
- 2. Development of CER for Maneuver Weapon Systems

3. Conclusion & Future Research

Background and Objective

- Cost analysis method in R.O.K
 - PRICE model developed in the U.S.
- Key variables in PRICE model (Ex)
 - WE: Weight of a Electronic,
 - WS : Weight of a System
 - MCPLXE : Manufacturing Complexity of a Electronic
 - MCPLXS : Manufacturing Complexity of a System

Lack of reliability

Need to develop cost estimating model suitable for R.O.K

DftAU = f(WE, MCPLXE) + f(WS, MCPLXS)

Literature Review

Research	Contents
A study on developing a	Formula development based on actual domestic
parametric R&D cost estimating	originals.
model for missile System(Lee	
Yong bok, 2011)	R&D cost estimation using ROC cost drivers
A study on developing a life cycle	
cost estimation model for military	Developing models for R&D, mass production,
aircraft(Kim Dong gyu, 2012)	and O&S costs (Partially including foreign data)

- Regression methods are used in both papers to derive CER(Cost Estimating Relationship)
- Not considered to resolve the problems caused by Multicollinearity and Outliers

Range and Methodology

Domestic maneuver weapon systems (Tank(4) and armored vehicle(5))

- Developing WBS for the maneuver weapon systems
- Defining cost derivers based on the ROC
- Developing CER of R&D cost and mass production cost

Regression Analysis

Transformation of Dependent Variable

Contributions

Improving suitability of regression models

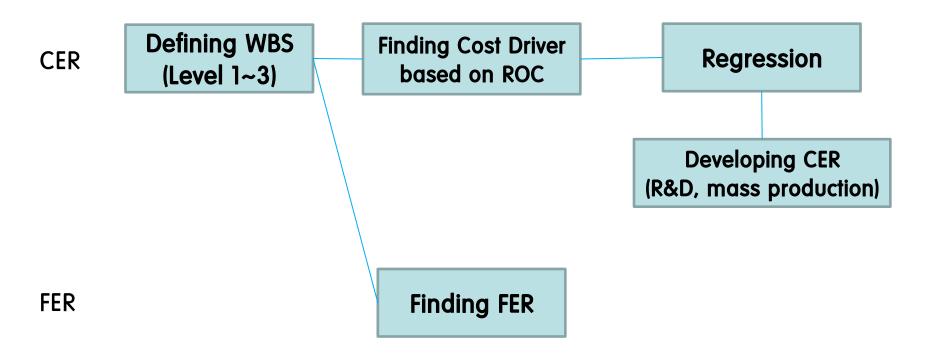
- Box-Cox transformation (Box & Cox, 1964)
 - Improve suitability for regression models without eliminating variables

Improvement in the criteria of multicollinearity

Considered two different VIFs (ex, VIF(max)>10, VIF(mean)>1)

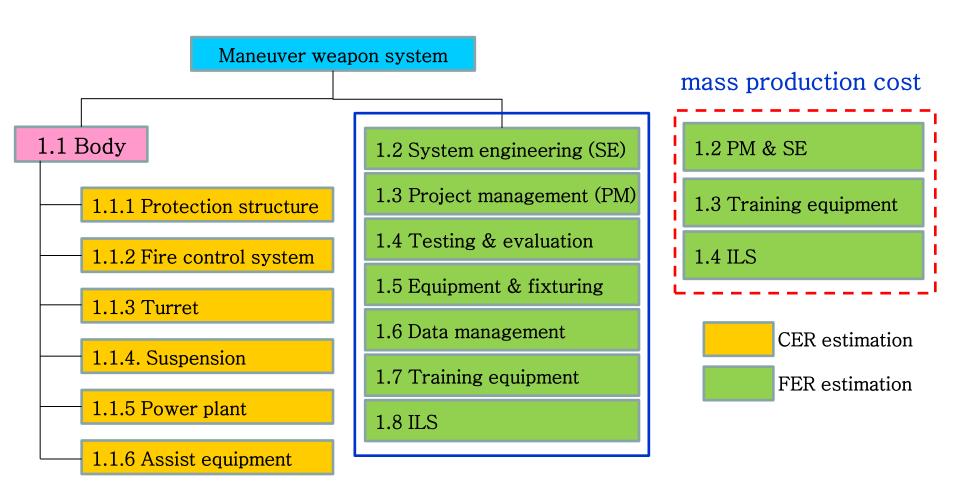
Domestic actual cost Data

- Developed WBS and CER concerning R.O.K army maneuver weapon systems, for the first time
- Collected cost data about R&D and deployed weapon systems


Contents

1. Introduction

- 2. Development of CER for Maneuver Weapon Systems
 - Process of Cost Estimation
 - Defining WBS for Maneuver Weapon System
 - Deriving Cost Drivers
 - Process of Developing R&D Cost CER
 - → Developing Mass Production Cost CER
- 3. Conclusion & Future Research


Process of Cost Estimation

*FER(Factor Estimation Relationship): Unexpressed factors by CERs (ex, costs of project management, testing and evaluation, ILS, etc)

Defining WBS for Maneuver Weapon Systems

Reference: manual MIL-HDBK-88 from DoD

Deriving Cost Drivers

Cost Drivers: Factors as independent variables for each factor in level 3.

Select cost drivers based on ROC and technical manual.

Dummy variables(10) Characteristic variables(17) Length, total weight, caliber/gun Suspension shape, automatic detection and tracking equipment, barrel, effective range, engine weight, engine output, maximum speed, automatic navigator, reactive armor, loading ammunition shape, laser maximum torque, cruising range, fuel tank capacity, road wheel, engine ranger, ballistic computer efficiency, shape, hole pass ability, obstacle CBR equipment, C4I system pass, telescope sight detectable interworking, Active protection driver range, fire control computer weight, * Dummy variables are represented by 0 or 1. laser ranger range

Process of Developing R&D CER

Ex. R&D CER for protection structure:

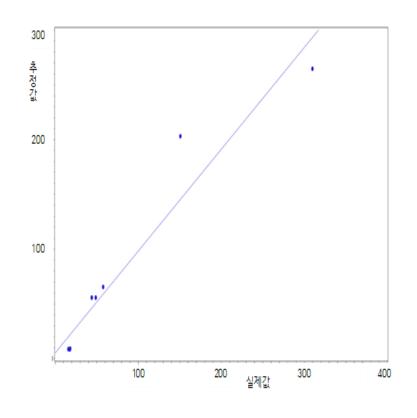
Step 1. Selecting variables: stepwise selection

Result total w	total weight, maximum speed, engine output, maximum
	torque, presence of reactive armor

R² selection(determinate an optimal combination of variables)

Model	Variables	R ²	R ² _{adj}
Model 1	Model 1 maximum speed, engine output, maximum torque, presence of reactive armor		0.9779
Model 2 total weight, maximum speed, maximum torque, presence of reactive armor		0.9567	0.9134
Model 3 total weight, maximum speed, engine output, presence of reactive armor		0.9565	0.9130
Model 4 total weight, maximum speed, maximum torque, presence of reactive armor		0.9507	0.9014

 \gg mean VIF >1, max VIF >10 \longrightarrow Principal Component Regression(PCR)


Step 2. Establishing CER

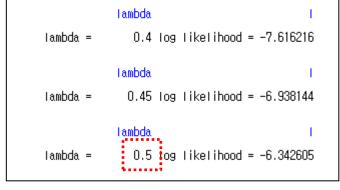
Model	Variable	R ²	R ² adj
Model 1	Y = - 505.8566 + 5.6519(maximum speed) - 0.1296(engine output) + 1.0135(maximum torque) + 108.627(presence of reactive armor)	0.9292	0.9056
Model 2	Y = - 261.194 - 0.4475(Total weight) + 2.8817(maximum speed) + 0.4548(maximum torque) + 139.661(presence of reactive armor)	0.9227	0.8970
Model 3	Y = - 279.4858 + 2.8558(Total weight) + 3.4547(maximum speed) - 0.0149(engine output) + 164.936(presence of reactive armor)	0.9297	0.9063
Y = 221.027 - 21.672(Total weight) + 0.3159(engine output) - 4.330(maximum torque) + 510.697(164.936(presence of reactive armor)		0.9019	0.8692

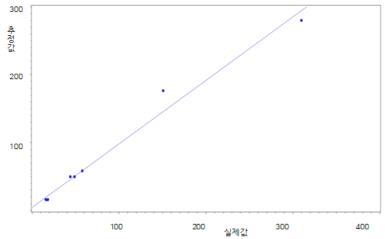
Step 3. Verifying CER (model 3)

Unit: Hundred million won

Weapon System	Real cost	Estimated cost
K-1	44.10	55.85
K-1 Rescue tank	57.87	65.56
KIAI	48.97	55.85
K-2	309.84	264.85
K-200	15.93	8.83
K-200A1	18.26	9.21
K-242	17.35	8.64
K-281	17.67	8.64
K-21	150.79	203.23

MMRE = 0.333 PRED(0.25) = 0.333 RMSE = 0.306


Step 4. Transforming the dependent variable(if necessary)


 $Y^{1/2} = -8.891 + 0.1716$ (total weight) + 0.1505(maximum speed)

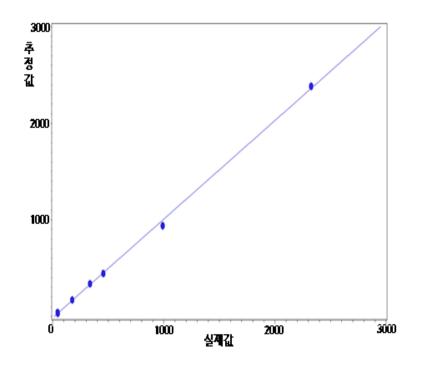
- 0.00154(engine output) + 7.7950(presence of reactive armor)

Unit: Hundred million won

	Offin: Frontare	a milion won
Weapon System	Real cost	Estimated cost
K-1	44.10	49.84
K1 rescue tank	57.87	58.42
KIAI	48.97	49.84
K-2	309.84	280.18
K-200	15.93	16.23
K-200A1	18.26	16.05
K-242	17.35	15.78
K-281	17.67	15.78
K-21	150.79	176.65

MMRE: 0.042 PRED(0.25): 1.00 RMSE: 0.048

Step 5. Integrating R&D CER


Dep. Var.	Result of CER development
Protection structure	WC ₁ : $Y^{1/2}$ = -8.891 + 0.1716(total weight) + 0.1505(maximum speed) - 0.00154(engine output) + 7.795(presence of reactive armor)
Power equipment	WC ₂ : Y ^{1/2} = - 23.6445 + 0.2905(total weight) + 0.00282(fuel tank capacity) + 3.3968(kind of engine) - 0.0378(maximum torque)
Suspension equipment	WC ₃ : Y = 583.947 + 4.0898(total weight) + 0.07518(cruising range) - 132.666(Number of road wheel) + 165.947(kind of suspension)
Assistant equipment	WC ₄ : Y ^{1/2} = 4.5426 - 0.9634(length) + 0.1346(total weight) + 0.9641(obstacle pass) + 5.762(C4lsystem interworking)
Turret	WC ₅ : Y = - 641.428 + 14.429(total weight) + 564.197(active protection driver)
Fire control system	WC ₆ : Y ^{1/2} = - 96.70713 + 0.00117(telescope sight detectable range) + 4.78319(fire control computer weight)

Estimated R&D Cost: WC_T = WC₁ + WC₂ + WC₃ + WC₄ + WC₅ + WC₆

Step 6. Verifying the integrated R&D CER

Unit: Hundred million won

Weapon System	Real cost	Estimated cost
K-1	339.57	336.1
K-1 resque tank	445.58	448.15
KIAI	171.77	187.53
K-2	2385.73	2329.64
K-200	42.85	42.72
K-200A1	49.11	45.9
K-242	46.66	44.27
K-281	47.51	44.27
K-21	940.35	986.13

MMRE: 0.041

Average deviation between real and estimated costs : about 4%

Developing Mass Production Cost CER

Similar to developing R&D CER, but learning effect needs to be considered.

Formulation for applying learning rate

$$Y_N = AN^b$$

 Y_N : the number of labor hours required to produce Nth unit

A: the number of labor hours required to produce the first unit

N: accumulated product quantity

b : exponent for learning curve $(2^b = learning rate)$

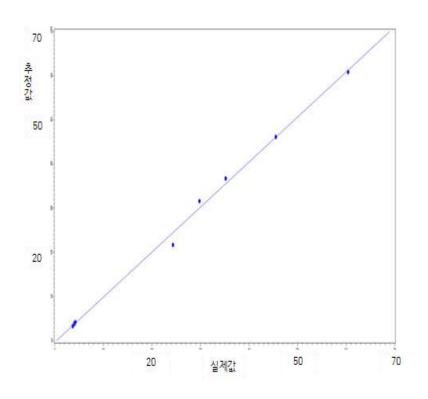
Ex.) Mass production cost 125million won, learning rate 90%, mass production quantity 1000EA

$$b = log(0.9) / log(2) = -0.152$$

 $A = 1.25 / (1000^{-0.152}) = 3.57(cost for the first production)$

Developing Mass Production Cost CER

Results of Mass Production Cost CERs


Level 3	CER	
Protection structure	Y = {7.4939 + 0.10722(total weight) - 0.0132(cruising range) - 0.0058(maximum torque) + 3.9546(reactive armor)} × (mass production quantity) ^b	
Power equipment	Y = {- 23.6445 + 0.2905(total weight) + 0.00282(fuel tank capacity) + 3.3968(engine shape) - 0.0378(maximum torque)} × (mass production quantity) ^b	
Suspension equipment	Y = {583.947 + 4.0898(total weight) + 0.07518(cruising range) - 132.666(road wheel) + 165.947(suspension shape)} × (mass production quantity) ^b	
Assistant equipment	$Y^{1/4} = \{4.5426 - 0.9634(length) + 0.1346(total weight) + 0.9641(hole pass ability) + 5.762(C4I system interworking)\} \times (mass production quantity)^b$	
Turret	$Y^{-2} = \{-641.428 + 14.429(total weight) + 564.197(active protection driver)\}$ × (mass production quantity) ^b	
Fire control system	Y = {- 96.70713 + 0.00117(telescope sight detectable range) + 4.78319(fire control computer weight)} × (mass production quantity) ^b	

Developing Mass Production Cost CER

Total Mass Production CER Verification

Unit: million won

Weapon system	Real value	Estimated value
K-1	46.16	45.52
K-1 rescue tank	31.61	29.8
KIAI	21.68	24.35
K-2	60.85	60.4
K-200	3.27	3.72
K-200A1	4.19	4.28
K-242	3.73	4.05
K-281	3.95	4.05
K-21	36.75	35.2

MMRE: 0.058

Average deviation between real and Estimated costs: about 6%

Contents

2. Development of CER for Maneuver Weapon Systems

3. Conclusion & Future Research

Conclusion

Future Research

Conclusion

Introducing Box-Cox transformation

2 Strengthening criteria for multicollinearity

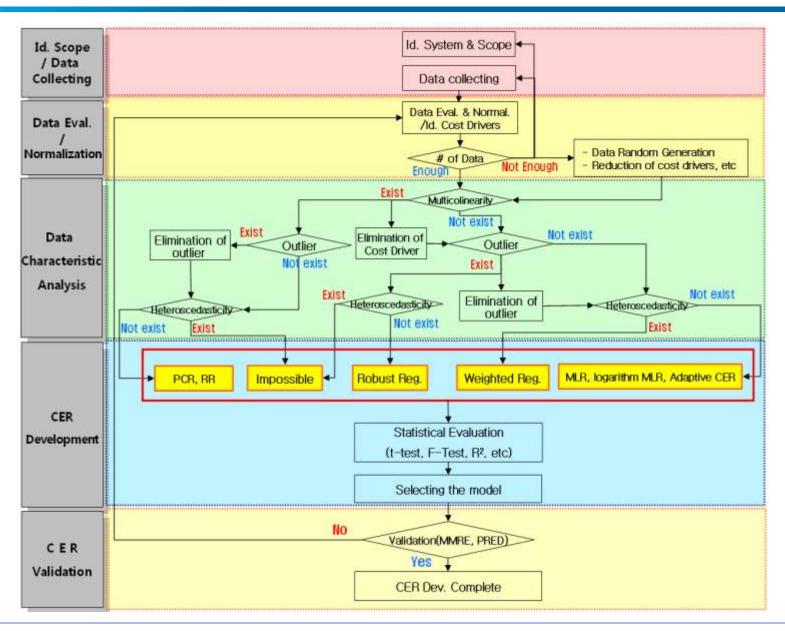
3 First CER developed by domestic data

Improving
accuracy of cost
estimation for
ROK weapon
system

Future Research

Identifying more cost drivers

 Cost is influenced by not only the physical specifications of the materials like weight and range, but also the quality of those materials, so we need to add variables in connection with them.


Need to develop a system to collect accurate data

- It is difficult to collect accurate data because there is no system to collect data
- So we need to make the framework for gathering cost data of WBS.

Thank You!

Appendix

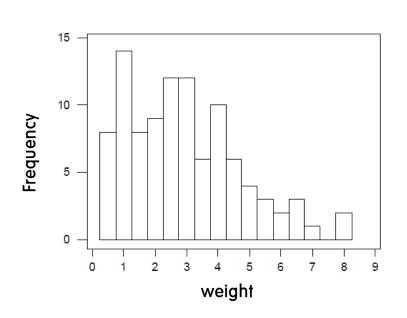
CER Development Methodology

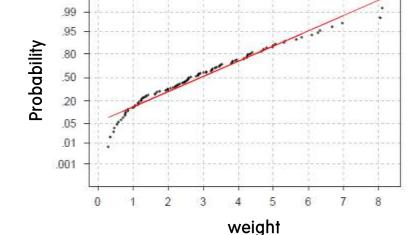
Verification Criteria for CER

$${\rm R^2}_{\rm adj} \ = \ 1 - (1-R^2) \frac{n-1}{n-p-1} \ \ge \ 0.8$$
 (n : No. of data, p : No. of independent variable)

MMRE =
$$\frac{1}{n} \sum_{i=1}^{n} \frac{|y_i - \hat{y_i}|}{y_i} \le 0.25$$

($y_i:$ real value, $\stackrel{\frown}{y_i}:$ estimating value)


$$PRED(0.25) = L / n \ge 0.75$$


(n : No. of data, L : No. of data corresponding MRE \leq 0.25)

Transformation of Dependent Variable(1/2)

Box-Cox Transformation procedure

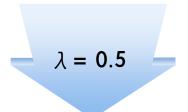
- Select power λ of dependent variable to meet normality of data
- Apply maximum likelihood method to find best λ

Normal Probability Plot

This graph did not meet normality.

Transformation of Dependent Variable(2/2)

Application to CER for R&D cost of protection structure


1. CER before Box-Cox:

$$Y = -279.4858 + 2.8558(total weight) + 3.4547(maximum speed)$$

- 0.0149(engine output) + 164.936(existence of reactive armor)

MMRE: $0.333 \ (\leq 0.25)$

PRED(0.25): 0.333 (<0.75)

2. CER after Box-Cox:

 $Y^{1/2} = -8.891 + 0.1716$ (total weight) + 0.1505(maximum speed)

- 0.00154(engine output) + 7.7950(existence of reactive armor)

MMRE: $0.086 \ (\le 0.25)$ PRED(0.25): $1.00 \ (\ge 0.75)$