

1

ICEAA 2014 Professional Development & Training Workshop

ι	Literature Review					
	Research A study on developing a parametric R&D cost estimating model for missile System(Lee Yong bok, 2011)	Contents Formula development based on actual domestic				
		originals. R&D cost estimation using ROC cost drivers				
	A study on developing a life cycle cost estimation model for military aircraft(Kim Dong gyu, 2012)	Developing models for R&D, mass production, and O&S costs (Partially including foreign data)				
•	 Regression memors are used in boin papers to derive CER(Cost Estimating Relationship) Not considered to resolve the problems caused by Multicollinearity and Outliers 					
KNE	U Operation Research	4				

Deriving Cost Drivers					
Cost Drivers: Factors as independent variables for each factor in level 3.					
Select cost drivers based on ROC and technical manual.					
Characteristic variables(17)	Dummy variables(10)				
Length, total weight, caliber/gun	Suspension shape, automatic				
barrel, effective range, engine weight,	detection and tracking equipment,				
engine output, maximum speed,	automatic navigator, reactive armor,				
maximum torque, cruising range, fuel	loading ammunition shape, laser				
tank capacity, road wheel, engine	ranger, ballistic computer efficiency,				
shape, hole pass ability, obstacle	CBR equipment, C4I system				
pass, telescope sight detectable	interworking, Active protection driver				
range, fire control computer weight,					
laser ranger range	* Dummy variables are represented by 0 or 1.				
KNDU Operation Research 10					

Process of Developing R&D CER				
Ex. R&D CER for protection structure:				
Step 1. Selecting variables: stepwise selection				
	Result	total weight, maximum speed, engine output, maximum torque, presence of reactive armor		ximum
R ² selection(determinate an optimal combination of variables)				
	Model	Variables	R ²	R² _{adj}
	Model 1	maximum speed, engine output, maximum torque, presence of reactive armor	0.9889	0.9779
	Model 2	total weight, maximum speed, maximum torque, presence of reactive armor	0.9567	0.9134
	Model 3	total weight, maximum speed, engine output, presence of reactive armor	0.9565	0.9130
	Model 4	total weight, maximum speed, maximum torque, presence of reactive armor	0.9507	0.9014
※ mean VIF >1, max VIF >10 → Principal Component Regression(PCR)				
KNDU Operation Research 11				

Developing R&D CER					
Step	Step 2. Establishing CER				
٨	Nodel	Variable	R ²	R ² adj	
M	lodel 1	Y = - 505.8566 + 5.6519(maximum speed) - 0.1296(engine output) + 1.0135(maximum torque) + 108.627(presence of reactive armor)	0.9292	0.9056	
м	odel 2	Y = - 261.194 - 0.4475(Total weight) + 2.8817(maximum speed) + 0.4548(maximum torque) + 139.661(presence of reactive armor)	0.9227	0.8970	
M	odel 3	Y = - 279.4858 + 2.8558(Total weight) + 3.4547(maximum speed) - 0.0149(engine output) + 164.936(presence of reactive armor)	0.9297	0.9063	
м	odel 4	Y = 221.027 - 21.672(Total weight) + 0.3159(engine output) - 4.330(maximum torque) + 510.697(164.936(presence of reactive armor)	0.9019	0.8692	
KNDU Operation Research 12					

Developing R&D CER					
Step 5. Integrating R&D CER					
Dep. Var.	Result of CER development				
Protection structure	WC1: Y ^{1/2} = - 8.891 + 0.1716(total weight) + 0.1505(maximum speed) - 0.00154(engine output) + 7.795(presence of reactive armor)				
Power equipment	WC2: Y ^{1/2} = - 23.6445 + 0.2905(total weight) + 0.00282(fuel tank capacity) + 3.3968(kind of engine) - 0.0378(maximum torque)				
Suspension equipment	WC ₃ : Y = 583.947 + 4.0898(total weight) + 0.07518(cruising range) - 132.666(Number of road wheel) + 165.947(kind of suspension)				
Assistant equipment	WC4 : Y ^{1/2} = 4.5426 - 0.9634(length) + 0.1346(total weight) + 0.9641(obstacle pass) + 5.762(C4Isystem interworking)				
Turret	WC5 : Y = - 641.428 + 14.429(total weight) + 564.197(active protection driver)				
Fire control system	WC ₆ : Y ^{1/2} = - 96.70713 + 0.00117(telescope sight detectable range) + 4.78319(fire control computer weight)				
Estimated R&D Cost: WC _T = WC ₁ + WC ₂ + WC ₃ + WC ₄ + WC ₅ + WC ₆					
KNDU Operation Research 15					

Developing Mass Production Cost CER				
Results of Mass Production Cost CERs				
	Level 3	CER		
	Protection structure	Y = {7.4939 + 0.10722(total weight) - 0.0132(cruising range) - 0.0058(maximum torque) + 3.9546(reactive armor)} × (mass production quantity) ^b		
	Power equipment	Y = {- 23.6445 + 0.2905(total weight) + 0.00282(fuel tank capacity) + 3.3968(engine shape) - 0.0378(maximum torque)} × (mass production quantity) ^b		
	Suspension equipment	Y = {583.947 + 4.0898(total weight) + 0.07518(cruising range) - 132.666(road wheel) + 165.947(suspension shape)} × (mass production quantity) ^b		
	Assistant equipment	Y ^{1/4} = {4.5426 - 0.9634(length) + 0.1346(total weight) + 0.9641(hole pass ability) + 5.762(C4I system interworking)} × (mass production quantity) ^b		
	Turret	$ Y^{-2} = \{-641.428 + 14.429(total weight) + 564.197(active protection driver) \} $ × (mass production quantity) ^b		
	Fire control system	Y = {- 96.70713 + 0.00117(telescope sight detectable range) + 4.78319(fire control computer weight)} × (mass production quantity) ^b		
KNDU Operation Research 18				

ICEAA 2014 Professional Development & Training Workshop

