

2014 ICEAA Professional Development & Training Workshop

Meet the Overlapping Coefficient:

A Measure for Elevator Speeches

Brent Larson larson@infinity.aero

The Overlapping Coefficient

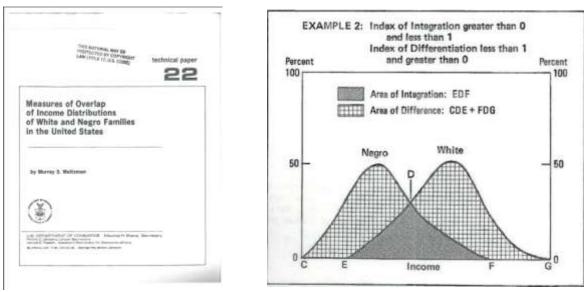
- What is it?
- Where did it come from?
- How might a cost analyst use it?
- How does one get the OVL?
- We want it now! I want it yesterday!¹

What is this coefficient?

 The overlapping coefficient (OVL) refers to the area under two probability density functions simultaneously.²

For continuous distributions:

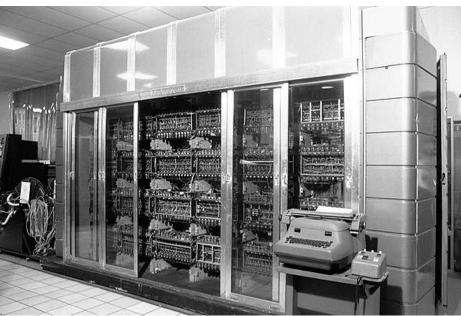
$$OVL = \int_{R_n} \min[f_1(\mathbf{x}), f_2(\mathbf{x})] d\mathbf{x}$$


In discrete cases:

$$OVL = \sum_{\mathbf{x}} \min[f_1(\mathbf{x}), f_2(\mathbf{x})]$$

- The word "coefficient" means a measure of something
- Thus OVL is a measure of agreement or similarity³

- In different form, OVL dates to the early days of Karl Pearson, ~ 1895
- Reportedly, explicit use begins in 1970³ by economist Murray Weitzman to compare income distributions⁴

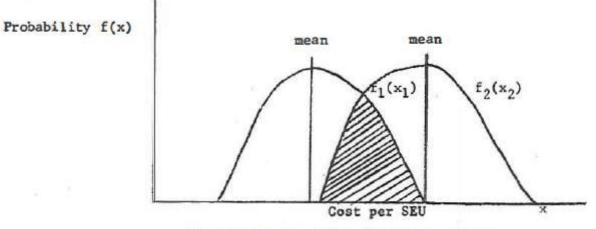


- Graphics from: Weitzman, M. S. (1970). Measures of overlap of income distributions of white and Negro families in the United States. Washington: U.S. Bureau of the Census; [for sale by the Supt. of Docs., U.S. Govt. Print. Off.

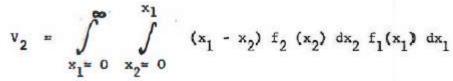
13560 Northgate Estates Drive, Colorado Springs, CO 80921-7654 ∞ www.infinity.aero ∞ 719.548.9712

- Biostatisticians at UAB Huntsville develop & define OVL as currently used^{3,6,7,8} ~ 1980's -1990's
- However. . . story is much richer Guess who's involved?
- Here's a clue:
- Johnniac?

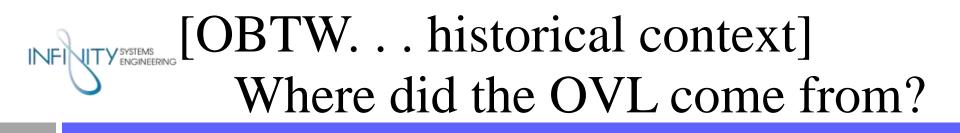
http://ed-thelen.org/comp-hist/Shustek/ShustekTour-02.html



- Yep. . . RAND Corporation!
- Modern, explicit use of the OVL in the continuous case may be found earlier – at the birthplace of Weapon Systems Analysis & Cost Analysis
- 1958 Ed Berman, RAND consultant & Harvard trained economist uses overlapping distributions to compare weapon system alternatives⁹

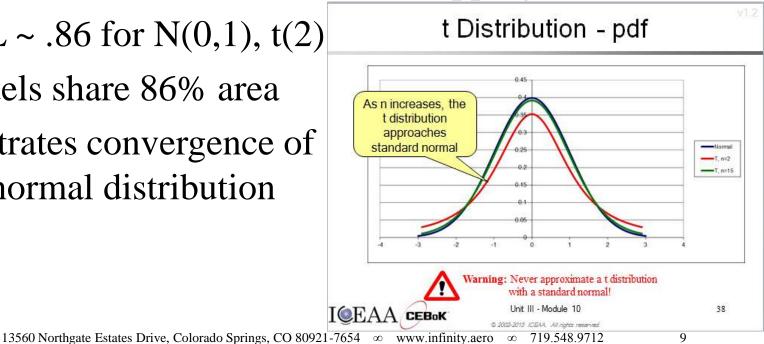


• Here's the evidence. . .



Overlapping Cost-Probability Functions

• Here's Dr Berman's calculus. . .

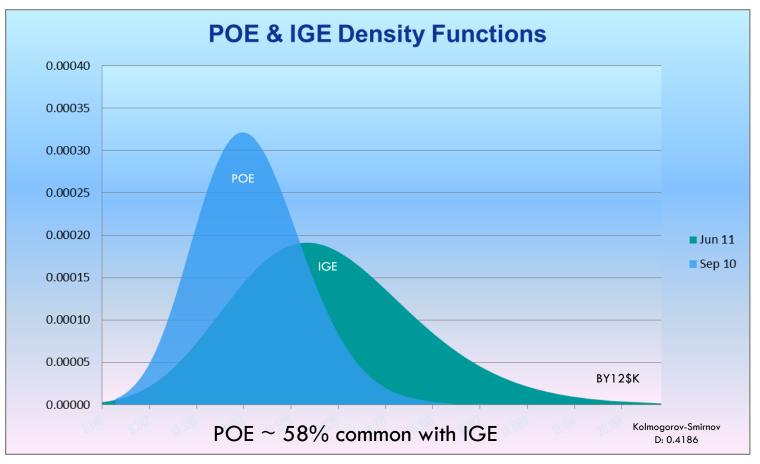

- Graphics from: Berman, E. B. (1958). Toward a new weapon system analysis. Santa Monica, Calif: Rand Corp.

- Berman's paper, written for David Novick¹⁰ (the "father of cost analysis¹¹"), is an earlier use of probability theory to model cost uncertainty than is commonly known
 - Berman modeled conceptually and at the total system cost level
- Appears to be lay groundwork for later developments in cost uncertainty analysis
 - Method of Moments Steven Sobel, MITRE, 1965¹²
 - Monte Carlo simulation Paul F. Dienemann, RAND 1966¹³
- Dr Paul Garvey credits Sobel for pioneering the method of moments technique to create a probability distribution of total system cost¹⁴
- Sobel worked for Berman at MITRE¹⁵
- . . . and Sobel cites Berman's work in his 1965 paper!

- What's the OVL good for?
- Comparing theoretical weapon system models, etc.
- Also good for comparing probability models of different form - note these 3 overlapping distributions
- OVL ~ .86 for N(0,1), t(2)
- Models share 86% area
- Illustrates convergence of t to normal distribution

More context. . .

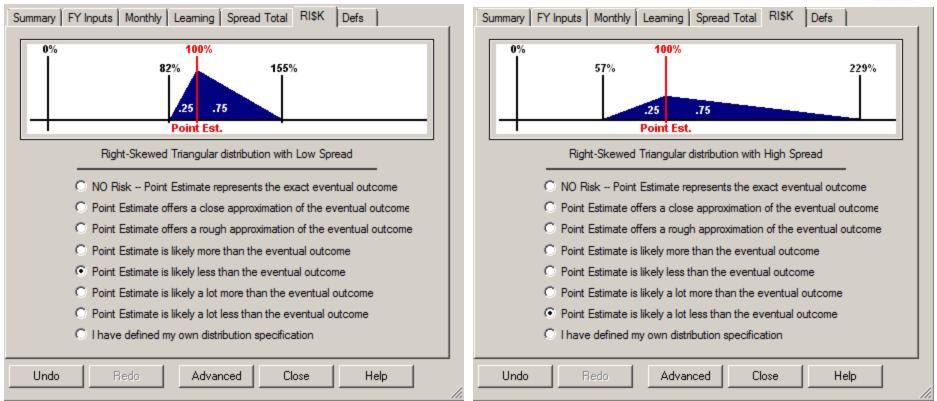
- Look familiar? Ur case of previous graphic
- Would you believe that simulation was used?


DIAGRAM II. Solid curve $y = \frac{N}{S} \times \frac{8}{7} \cdot \frac{6}{5} \cdot \frac{4}{3} \cdot \frac{2}{\pi} \cos^{10}\theta$, $x/s = \tan \theta$. Broken line curve $y = \frac{\sqrt{7} \cdot N}{\sqrt{2\pi}} e^{-\frac{7x^2}{2s^2}}$, the normal curve with the same s.p. 1.2 1.55 1.05 ·5 S 0 5 .58 1.05 1.55 Distance of mean from mean of population

- Student (1908a). The probable error of a mean. Biometrika VI, 1-25. 13560 Northgate Estates Drive, Colorado Springs, CO 80921-7654 ∞ www.infinity.aero ∞ 719.548.9712 10

How might a cost analyst use it?

Summarize change between estimates



How might a cost analyst use it?

• Find degree of similarity between input risk shapes $\widehat{OVL} \sim .60$

How does one get the OVL?

- Compute area using intersecting points of overlapping distributions
 - Most distributions will intersect 0, 1 or 2 times
- Normal versus t example
 - Intersections may be determined analytically or numerically
- Risk shape example
 - Intersecting points found visually
- In the case of data without known distributional form
 - More work is required. . .

How does one get the OVL?

0.3

0.2

0.1

= 0.85786

-1

- For parameterized models, e.g., for N(0,1), t(2)
- Step 1: WolframAlpha
 - Set equations for densities equal to each other
 - Click enter. . . and complex roots?!
- Step 2: Excel
 - Plug the real roots into NORM.S.DIST & T.DIST:

=1-ABS(NORM.S.DIST(1.72511,TRUE)-T.DIST(1.72511,2,TRUE))-ABS(NORM.S.DIST(-1.72511,TRUE)-T.DIST(-1.72511,2,TRUE))

• Symbolically:

 $OVL = 1 - |\Phi(x_2) - F_2(x_2)| - |\Phi(x_1) - F_2(x_1)|$

-2

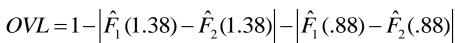
 $x \approx -0.606179 i$

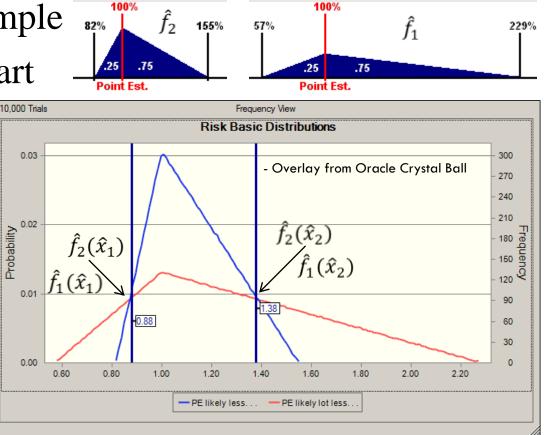
 $x \approx 0.606179 i$

 $x_{1 \approx} -1.72511$

x_{2≈} 1.72511

www.wolframalpha.com


2


Solutions:

How does one get the OVL?

- For risk shape example
- Step 1: Overlay chart
 - Eyeball roots
- Step 2: Excel
 - Calculate
 - No triangular distribution function in Excel
 - See backup

Triangular CDF math for Excel

• Got data? – Then historically with density estimation

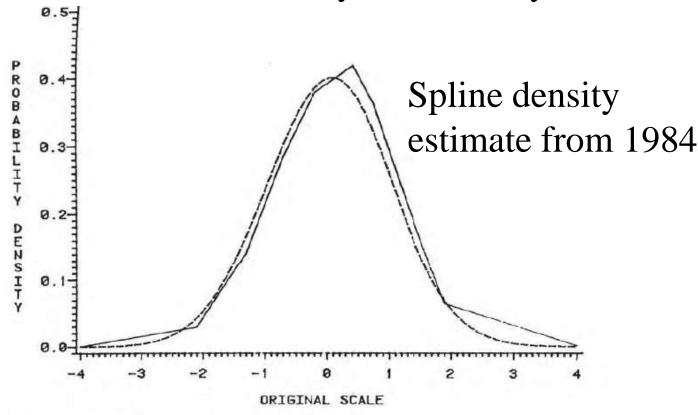
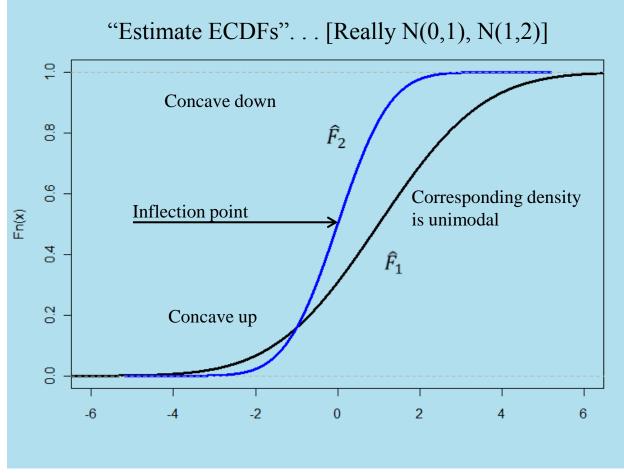
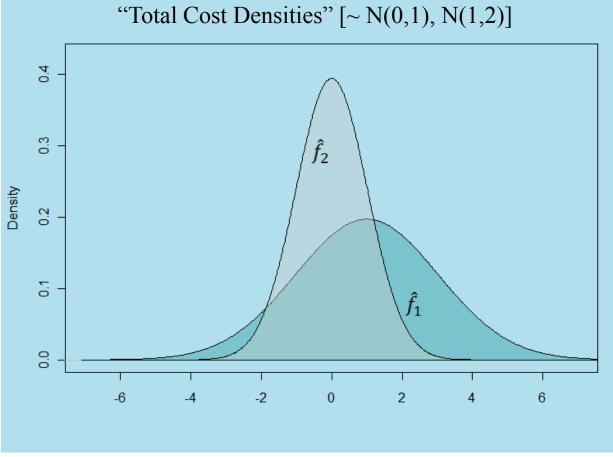
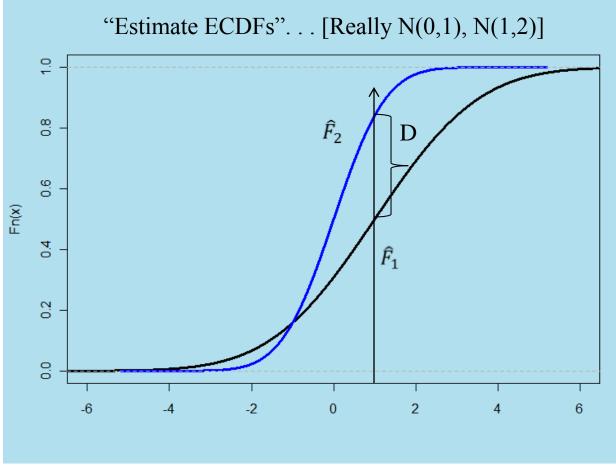



Figure 3.16 Spline density estimation: the spline-estimated density function obtained from a generated sample of 1000 standard-normal deviates. The estimated density is shown by the solid line, and the standard-normal density function is indicated by the broken line.

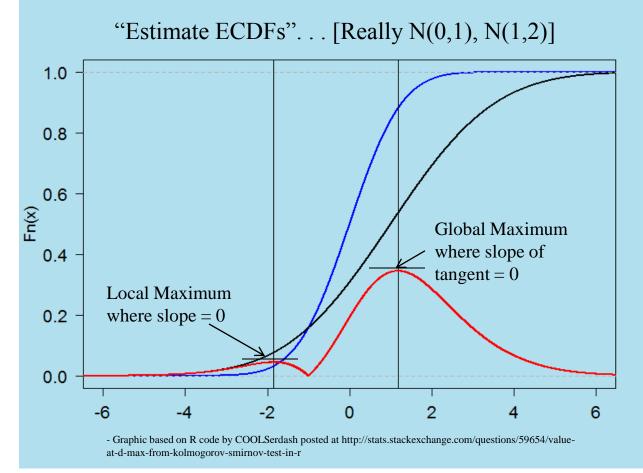
- Graphic From: Inman, H. F. (1984). Behavior and properties of the overlapping coefficient as a measure of agreement between distributions.



• From S-Curves! The story follows. .



• On flip side of the fundamental theorem of calculus. . .



Curves share a distance between them

Plotting every distance between S-Curves reveals. . .

• Large sample size. . . 5,000 LHC trials

Densities ~ N(0,1), N(1,2) $\widehat{OVL} = 1 - \left| \hat{F}_1(\hat{x}_2) - \hat{F}_2(\hat{x}_2) \right| - \left| \hat{F}_1(\hat{x}_1) - \hat{F}_2(\hat{x}_1) \right| = .6094$ <u>4</u>. $n_{lhc} = 5,000$ \hat{f}_2 °. − $\hat{F}_{2}'(\hat{x}_{2}) = \hat{f}_{2}(\hat{x}_{2})$ $\hat{F}_{1}'(\hat{x}_{2}) = \hat{f}_{1}(\hat{x}_{2})$ Density 0.2 $\hat{F}_{2}'(\hat{x}_{1}) = \hat{f}_{2}(\hat{x}_{1})$ $\hat{F}_{0} = \hat{F}_{1}'(\hat{x}_{1}) \quad \hat{f}_{1}(\hat{x}_{1})$ \widehat{OVL} \hat{f}_1 0.0 -6 -4 0 2 6 $x_1 \approx -1.851$ $x_2 \approx 1.174$

How good is this OVL?

itions usea	n niman (i	1984), inma	пъсв	часней (таяа)								
Max	Crit Point	Crit Value	Row	Count Crit Vs	N(1,2)(x1)	N(0,1)x1	N(1,2)(x2)	N(0,1)(x2)				
Global	1.174344	0.3454	7075	4	0.0772	0.0320	0.5346	0.8800				
Local	-1.850897	0.0452	548	5								
OVLhat calculations % Change from actual OVL Actual OVL												
ECDF	Excel CDF	inman (sp	ine)	ECDF Excel CDF Inman (spline)				Excel CDF				
0.609400	0.609940	0.583812)	-0.000875505	9.21885E-06	-0.0427		0.609934)			
N(0,1), N(1,2) KS Test Plot 5K LHC $\hat{OVL} = .609400$												
Difference from actual stimated critical												
	OVL: ~09%											
					1			$\widehat{OVL} = .60$	9940			
0.2500					\			using norm	al CDF			
-									with estimated			
0.2000								critical po	oints			
0.2000												
0.1500												
0.1500												
0.1000								-0VL = .60	0024			
								OVL = .60 using Φv				
	Local Max .0452 at -1.850897								actual roots of			
0.0500	0.0500											
-			V					1.18087	78			
0.0000	00 -4.0	0 -2.0	~	0.00 2.	00 4.00	6.00	8.00					
-0.	.00 -4.0	-2.0	0	0.00 2.0	4.00	0.00	8.00					

We want it now!

- "And if one has a method, its usefulness depends very much on whether it works quickly."
 - The Princeton Companion to Mathematics
- Free CD?
 - Includes Excel file showing how to calculate the KS Two Sample Test and generate an \widehat{OVL} from the data

I want it yesterday!

- Special case for overlap with one intersection!
- Generate a couple hundred samples
- Paste into this web application and execute:
 - http://www.physics.csbsju.edu/stats/KS-test.n.plot_form.html
- Subtract the result from 1 and that's your OVL!
 - Remember the derivative of the max distance is where your probability density functions intersect
- More accuracy? Download the PAST tool for free
 - http://folk.uio.no/ohammer/past/ PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9 pp(May 15, 2014)

Overlap Wrap

- History of the common picture but obscure measure
 - Includes effort from the early days of cost analysis
- Application is wherever practical meaning is needed
 In the context of comparing probability models or data
- Number quantifying OVL & \widehat{OVL} is accessible
- Direct calculation from ECDF is the elegant method
 - But fitting distributions and using parameters could be quick
 - One intersection case yields quick answer with 1- D Statistic

References

Most citations pulled from WorldCat

- 1. Connolly, Billy. 1991 [Excerpt from] Live at Hammersmith Odeon. [aka, Business Plan.] http://www.youtube.com/watch?v=ggcZHdq6Jm0 Retrieved 15 May 2014
- 2. Bradley, E. L. 2006. Overlapping Coefficient. Encyclopedia of Statistical Sciences.
- 3. Inman, H. F., & Bradley, E. L. (January 01, 1989). The overlapping coefficient as a measure of agreement between probability distributions and point estimation of the overlap of two normal densities. *Communications in Statistics Theory and Methods, 18,* 10, 3851-3874.
- 4. Weitzman, M. S. (1970). *Measures of overlap of income distributions of white and Negro families in the United States*. Washington: U.S. Bureau of the Census; [for sale by the Supt. of Docs., U.S. Govt. Print. Off.
- 5. Madhuri, S. M., & Satya, N. M. (January 01, 1994). Overlap Coefficients of Two Normal Densities--Equal Means Case. 日本統計学会誌/日本統計学会編, 24, 2.)
- 6. Inman, H. F. (1984). Behavior and properties of the overlapping coefficient as a measure of agreement between distributions.
- 7. Clemons, T. E. (1997). A nonparametric approach to estimating the overlapping coefficient using the kernel estimation technique.
- 8. Clemons, T. E., & Bradley, E. L. (January 01, 2000). A nonparametric measure of the overlapping coefficient. Computational Statistics and Data Analysis, 34, 1, 51-61
- 9. Berman, E. B. (1958). Toward a new weapon system analysis. Santa Monica, Calif: Rand Corp.
- 10. E. B. Berman (personal communication, Sep 30, 2013)
- 11. Hough, P. G., & Rand Corporation. (1989). Birth of a profession: Four decades of Military cost analysis. Santa Monica, CA: Rand Corp.
- 12. Sobel, S. (1965). A computerized technique to express uncertainty in advanced cost estimates. Mitre Corp.
- 13. Dienemann, P. F. (1966). Estimating cost uncertainty using Monte Carlo techniques. Santa Monica, Calif: Rand Corp.
- 14. Garvey, P. R. (2000). Probability methods for cost uncertainty analysis: A systems engineering perspective. New York: M. Dekker.
- 15. E. B. Berman (personal communication, Oct 10, 2013)
- 16. Novick, D., & Rand Corporation. (1988). Beginning of military cost analysis, 1950-1961. Santa Monica, CA: Rand Corp
- 17. Student (1908a). The probable error of a mean. Biometrika VI, 1-25.
- 18. Mulekar, M. S. & Champanerkar, J. (2011). Modeling Sampling Distributions Of Similarity Measures. Section on Statistical Computing JSM 2011
- 19. Conover, W. J. (1999). Practical nonparametric statistics. New York, NY [u.a.]: Wiley.
- 20. Sheskin, D. (2011). Handbook of parametric and nonparametric statistical procedures. Boca Raton, Fla: Chapman & Hall/CRC.

Backup

Contains:

• Excel for Risk Shape Example

Risk Shape Example

	А	В	С	D	E	F	G	Н	1	J	K	L	М	N
1	Calcu	lations for	OVLhat of	ACE Risk S	hapes									
2														
3														
4	Low a	nd High pa	rameters a	are multipl	iers about	the mode	from ACE	help file						
5		Low	Mode	High										
6	f2	0.816	1.000	1.551	0	0	"PE likely	less"						
7	f1	0.571	1.000	2.286	0	0	"PE likely	a lot less"						
8														
9														
10		lly determ		ections										
11	x1	0.88												
12	x2	1.38												
13	<u> </u>		[D] ()		15/544			a) to luna		11 15(544.)	D.C. 4. (D.C.	Dealers III D	c. cc1*/p.c	
14			f2(x1)			36,0,IF(B11								
15			f2(x2)			36,0,IF(B12								
16 17			f1(x1)			37,0,IF(B11	-							
17			f1(x2) OVLhat	0.60053	= IF(B12<6	37,0,IF(B12	<с7,(вт2-в	/)^2/((D/-	в7)*(С7-в7)),IF(B12<	=D7,1-(D7-	B12)^2/((U)/-C/)*(D/-	•в7)),1)))
18			Ovinai	0.00053										
20			f2(x1)	0.020226	-CR GotC	ertaintyFN	(E6 011)/1	00						
20			f2(x1)			ertaintyFN								
21			f1(x1)			ertaintyFN								
22			f1(x2)			ertaintyFN								
24			OVLhat			21-D23)-AB								