NATIONAL RECONNAISSANCE OFFICE

Weibull Analysis Method

Presented to the ICEAA Annual Symposium Denver, CO June 2014

SUPRA ET ULTRA

Erik Burgess, Burgess Consulting James Smirnoff, Wyle Brianne Wong, Booz Allen Hamilton

- Analytical Basis
- Accuracy
- Application

Weibull Analysis Method (WAM)

- Uses a program's actual history to estimate future budgets
 - Expenditures ٠
 - Outlay rates ۲
 - Government liability ۲
- Improves accuracy over NRO's baseline parametric phasing model
 - For programs already underway •
 - Especially in the near term
 - 2-years out (budget year) •
 - FYDP
- Quantifies and reports error bounds based on historical data ۲
 - Annual error vs. historical data
 - Departure from baseline model
- Builds on LMI¹ and CNA² research

¹ Dukovich, John et al., "The Rayleigh Analyzer." Logistics Management Institute AT902C1. October, 1999. ² Davis, Dan et al. "Using the Rayleigh Model to Assess Future Acquisition Contract Performance and Overall Contract Risk." Center for Naval Analysis CRM D0019289.A2. January 2009.

- Adjusts front/back-loading based on "phasing drivers"
- Starting point for all space-segment estimates
- Phases expenditures, converts to budget authority

Weibull plus a constant-rate term 38 NRO & DoD Programs 387 time-cost pooled data points

$$E(t) = d \left[Rt + 1 - e^{-\alpha t^{\beta}} \right]$$
$$d = \frac{\text{total cost}}{R + 1 - e^{-\alpha}}$$
$$0 \le t \le 1.0$$
$$R = .002945 \cdot \text{ duration (mos.}$$
$$\alpha = 0.10 + \sum X_i \cdot \text{driver}_i$$
$$\beta = 1.539 + \sum Y_i \cdot \text{driver}_i$$

<u>Driver</u>	Coefficient (X)
GFE (1,0)	1.84E+00
% Subs	2.73E-02
BY07\$M	9.57E-04
Duration (mos)	2.79E-02

<u>Driver</u>	Coefficient (Y)			
Competitive (1,0)	1.71E-01			
GFE (1,0)	3.62E-01			
% Subs	4.47E-03			
BY07\$M	7.03E-05			
Duration (mos)	-1.62E-03			

BPO/CAAG

200%

150%

100%

50%

05

-50%

-100%

-150%

-200%

 $\frac{CUMULATIVE-COST ERROR}{10\%}$

Time

ANNUAL-COST ERROR

BPO/CAAG

-30%

% of Annual Cost

Baseline model establishes solid historical reference

- Cumulative accuracy through early years is quantified
- Powerful tool to link budget profile to schedule

But ...

- Mid and late-program assessments now occur every year
 - Comparing government estimate at complete (GEAC) to program-office plan
 - Search for margin
 - Re-phasing the ICE
- Better method needed for evaluating annual budgets
 - Baseline model not very accurate for annual costs, especially in later years
 - Unclear how to apply baseline model when prior-year actuals are different
 - Need a method based on actuals, not plans

- Functional form: Weibull plus constant-rate term
 - Same as baseline phasing model
 - Empirical and theoretical basis for satellite acquisitions⁴

$$E(t) = d \left[Rt + 1 - e^{-\alpha t^{\beta}} \right]$$
$$d = \frac{\text{total cost}}{R + 1 - e^{-\alpha}}, 0 \le t \le 1$$

Use actual program performance to estimate
Weibull parameters

BPO/CAAG

- <u>Input</u>: Actual expenditures for each year to date, BY\$
- <u>Constraints</u>:
 - Total cost in BY\$ (set to match ICE)
 - Schedule (set to match ICE)
 - Cumulative expenditures to date
 - Constant-rate term from baseline model: *R* = .002945 * duration
- Optimization:
 - For each year *i* of actual data: $E(t_i) = d \left[Rt_i + 1 e^{-\alpha t_i^{\beta}} \right], d = \frac{\text{total cost}}{R + 1 e^{-\alpha}}$
 - Excel Solver[©] estimates Weibull parameters α , β by minimization:

$$\min\sum_{i} \left(E(t_i) - \hat{E}(t_i) \right)^2$$

- Forecasting:
 - Apply α , β to project expenditures in remaining years
 - Convert to TY\$ and compare to funding plans

Measuring the Accuracy of WAM

- Gather and normalize historical phased expenditure data from 38 completed contracts
- Use WAM to generate estimates of "future" time phased program expenditures starting from progressively further points in each program
- Compare the WAM predicted time phased expenditures to the actual time phased expenditures and measure the error of the prediction
- Create a model to characterize WAM accuracy
- Compare the accuracy of WAM to the accuracy of the baseline phasing model

Generating Error Measurements

Each program generated 20-40 measurements for a total of 1328 "Error Points"

Time of Estimate

Results for One Contract

Time of Actuals	20%	30%	40%	50%	60%	70%	80%	90%	100%
20%	N/A	-34%	-34%	1%	59%	86%	86%	223%	92%
30%	N/A	N/A	-11%	W	AM Perc	ent Erro	or %	108	52%
40%	N/A	N/A	N/A	-1%	-12%	-27%	-20%	36 "Erro	
50%	N/A			/A	-11%	-27%	-210	Points"	9%
60%	N/A	Sun	Sunk Costs N/A		N/A	-28%	-25%		20%
70%	N/A				N/A	N/A	-31%	39%	-2%
80%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	19%	-21%
90%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0%
100% 💙	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

• <u>Time of Actuals</u>: Data at and before this time is used for WAM best fit

• <u>Time of Estimate</u>: Time in contract for which WAM is estimating the expenditure level

Each program generated 20-40 measurements for a total of 1328 "Error Points"

BPO/CAAG

Error Source 1

Error increases when projecting farther into the future

Error Source 2

Error is greater when there are fewer years of data

Program Percent Time

• All 1328 points used in OLS regression to estimate absolute % error

• Both T_A and T_F are statistically significantly correlated with |% Error|

ANOVA					
	df	SS	MS	F	Significance F
Regression	2	58.60	29.30	129.40	0.000
Residual	1325	300.01	0.23		
Total	1327	358.61			

	Coefficients	Standard Error	t Stat	P-value
Intercept	0.05	0.05	1.02	0.308
TA	-0.12	0.07	-1.67	0.094
TF	0.97	0.07	12.92	0.000

• Since the coefficient modifying T_F is much larger and the variable ranges are similar, T_F has much more impact on WAM error

WAM Error is better when (1) the contract is father along, and (2) projecting near-term spending.

Absolute Error of Baseline Model is lower in the middle of a program when expenditures are high

Comparison to Baseline Model

WAM is a lot better at estimating program budgets in the near term and not as good at estimating far into the future

Weibull Analysis Tool (WAT)

Implements WAM for NRO Estimators

- Tool for NRO estimators
 - Apply WAM as repeatable part of estimating process
 - Excel-based, easy to integrate and modify
- Accepts and forecasts all relevant contract data
 - Expenditures
 - Government liability
 - Budget authority
 - Carry-forward
 - Actual program outlay rates
- Compare WAM result to:
 - Existing budget line
 - Program plan (CFSR)
 - Baseline phasing model

Are they within WAM error bounds? Is there excess margin in any year?

Overview of WAT Mechanics

- Solve for α , β to fit liability curve through current year
 - Apply constraints, including budget already programmed
- Project future liabilities
 - 1. Hold excess carry-forward as margin
 - 2. Assume excess carry-forward eliminated in next budget year

BPO/CAAG

*Based on budget authority needed to cover liabilities through 1 additional month, per NRO policy CBP 20, 30 June 2010

Application Example

- WAM is a useful addition to NRO's estimating toolkit
- Serves as alternative to baseline phasing model
 - More accurate in near years
 - Calibrated to program-specific outlay patterns
- WAT integrates analysis of several key metrics
 - Expenditures
 - Outlay rates
 - Government liability
 - Budget authority
 - Carry forward

NATIONAL RECONNAISSANCE OFFICE

SUPRA ET ULTRA

Backup

Cost and time are normalized so profiles can be compared

BPO/CAAG