Estimating Hardware Storage Costs

Jenny Woolley William Black

ICEAA 2014 - Denver, CO

Overview

- RAID storage deflation research became a priority when data was provided for estimates in terms of storage volume, rather than a bill of materials (BOM)
 - Needed way to translate volume into cost to support future estimates
 - Past research across multiple agencies has provided conflicting results on cost and how it changes over time

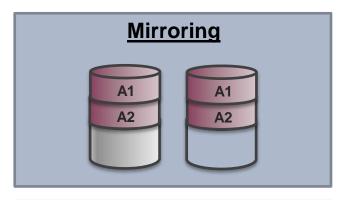
Agenda

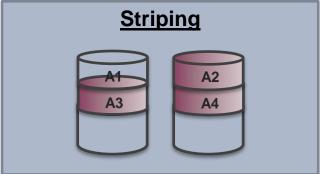
- Storage Background
- RAID Details
- Storage Deflation
- Data Analysis
- Conclusions
- Next Steps

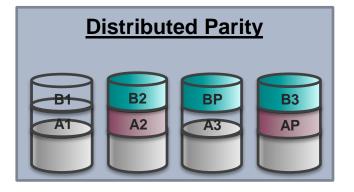
Types of Storage

Types of storage typically seen in government programs to be estimated:

- Tape storage
 - Utilizes tape drives and tape libraries
 - Still used for long-term storage, but has become less prevalent as costs for disk storage have decreased
- Disk storage
 - Current standard for short to mid-term storage and often used for long-term archival purposes
 - Most commonly seen type of storage in recent cost estimates
- Solid-state storage
 - High-performance plug-and-play storage device that contains no moving mechanical components
 - Likely to see expanded use in the next several years, but pricing is currently prohibitive for many government programs


RAID = Redundant Array of Independent Disks


- Combines two or more physical drives into a logical unit presented as a single hard drive to the operating system
- Different configurations (called "levels") of RAID utilize multiple techniques to provide varying degrees of reliability (ability to withstand drive failure) and availability (speed of Input/Output)


RAID Terms

- Mirroring: Duplicating data to more than one disk
 - Can speed read times because the system can read data from more than one disk
 - Can slow write times if the system must confirm that data is correctly written to each disk
- Striping: Writing data across a number of disks in parallel
 - Speeds read/write performance
- Parity: Redundancy information is calculated for each piece of data stored
 - If a drive fails, the missing data can be reconstructed from the remaining data and parity data

RAID Levels

Level	Striping	Mirroring	Parity	Notes	Storage for ~1 TB	
RAID 0	X			Provides no fault tolerance	1 TB	
RAID 1		Х		Provides fault tolerance, but can cause a slight drag on performance	2 TB	
RAID 2	X			Striping at bit (rather than block) level; not currently used	Not Used	
RAID 3	X		X	Byte level striping with a dedicated parity disk; rare in practice	Not Used	
RAID 4	X		X	Block level striping with a dedicated parity disk; rare in practice	Not Used	
RAID 5	X		X	Block level striping with parity data distributed across all member disks; fault tolerance against one drive failure	1.5 TB	
RAID 6	X		X	Block level striping with two parity blocks distributed across all member disks; fault tolerance against two drive failures	2 TB	
RAID 10	X	X		Stripe set composed of two or more mirrored sets; can operate as long as drives on both mirror sets do not fail	2 TB	
RAID 0+1	X	X		Mirror set composed of two or more stripe sets; low level of scalability	2 TB	
RAID 50	X		X	Striping data across multiple RAID 5 sets; can sustain up to 4 drive failures	1.5 TB	

Calculating Storage Volume

Typically estimate storage costs in one of two ways:

- Include cost of BOM
 - Other individuals determine hardware needs and obtain vendor quotes
- Estimate storage based on the amount of data to be received, which requires consideration of
 - Downlink limitations
 - Amount of data compression that will occur
 - Removal of data that is not usable
 - Products, reports, and metadata that must be stored (in addition to the original data)
 - Storage policies (i.e., requirements for duration of storage)
 - Chosen RAID level
 - Standard 15-20% additional open storage recommended to ensure the system does not slow down

Storage Deflation

Storage Deflation

- As technology has advanced over time, the cost of storage has decreased
 - Change largely driven by decreasing cost of disk drives
 - While other types of HW have also evolved, they have not demonstrated the same consistent decrease in cost
 - Ex: Capability of servers increase while price stays about the same
- Groups estimate the changing cost of storage differently
 - Some estimate a consistent annual decrease in storage costs (X% each year), leading to a lower total cost of storage over time
 - Others have indicated that while storage deflation does occur, a group may just purchase additional storage to compensate for the cost of deflation (results in no cost change over time, but expanded storage capability)

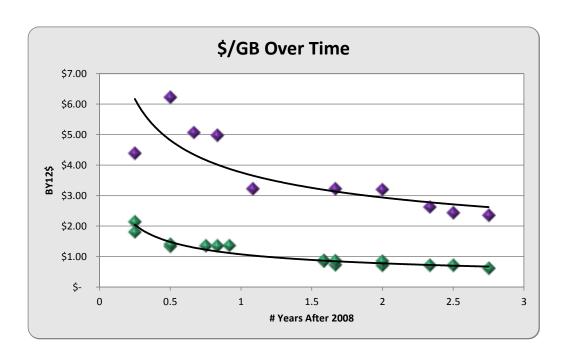
Deflation Estimating Challenges

- Estimating using projected volume and a \$/TB that includes the cost of all peripheral HW/SW may be misleading
 - While storage costs deflate, other associated COTS HW/SW costs may not
 - · Need a full breakout of COTS purchases to apply deflation to only storage
 - Must ensure that the \$/TB used is applicable
 - Avoid double counting or underestimating other COTS HW/SW products
 - Using a \$/TB that includes multiple types of HW makes capturing unique recap costs difficult (e.g., recap the physical rack every 15 years, but replace COTS SW every 3 years)
- Deflation has occurred historically, but previous research does not indicate when/if deflation might slow or cease entirely (i.e., does a floor exist?)*
 - Storage may have already deflated so much that it is only a small portion of the total \$/TB
 - Cost of materials and production may limit how low the cost of storage can become
- Storage deflation does not take into account the possibility of additional technology advances
 - Deflation estimates may not cover a program's transition to a new, more expensive type of storage
 - If a type of storage becomes obsolete, the cost of that storage may actually begin to increase
- Existing burdens (e.g., SEITPM, maintenance) do not take deflation into account
 - Unlikely that it will become less expensive to manage and maintain more complex HW
 - Burdens may be correlated more with volume of storage rather than cost

^{*} Earlier Research: "Cost Deflation vs. Technology Inflation of RAID Storage Systems" Converse, Watkins, SCEA, 2006

Data Collection

General research


- Confirms trend of decreasing cost per TB, but unclear on future impacts
 - How long will cost continue to decrease?
 - How will external factors impact cost?
 - State of economy
 - Transition to Infrastructure as a Service approach
 - Recovery from 2011 Asian tsunami

Data collected from available BOMs

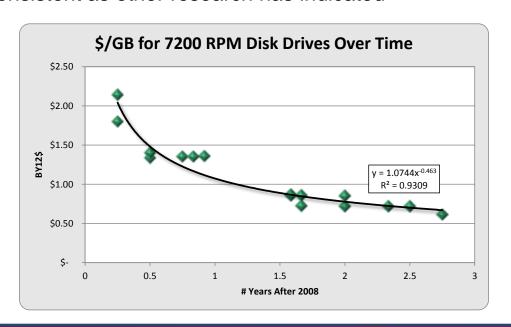
- Searched for commonality within a single BOM and between different BOMs
- Looked for procurement of the same piece of equipment in multiple years
 - Avoided HW with vague descriptions because a piece of HW with the same general name can have multiple configurations
 - Ensured apples-to-apples comparison
 - Did not compare prices that include maintenance with ones that did not
 - Evaluated individual pieces of HW, rather than aggregate \$/TB (based on level of information available)
- Unable to determine whether costs were influenced by purchasing agreements or enterprise licenses

Combined Data View

- All available data points shown
 - Data available from 2008 to 2011
 - Color indicates different disk drive Revolutions Per Minute (RPMs: green = 7200 RPM, purple = 15K RPM)
- Graph indicates that disk drive RPM is a determining factor for cost and rate of deflation

7200 RPM Disk Drive Data

RPM: Revolutions per minute

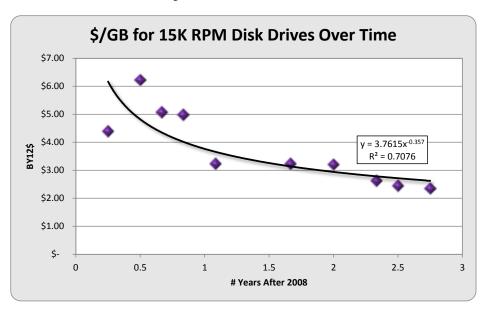

The faster the disk spins, the faster the drive operates

Data used

- Equipment: Disk Drive, 1 TB or 500 GB, 7200 RPM, SATA
- 16 data points available

Strong R² for data set

 Line of best fit indicates that annual change in cost is not as consistent as other research has indicated


Trendline Predictions - 7200 RPM

FY	BY12\$/GB	% Change
2009	\$1.07	
2010	\$0.78	27%
2011	\$0.65	17%
2012	\$0.57	12%
2013	\$0.51	10%
2014	\$0.47	8%
2015	\$0.44	7%
2016	\$0.41	6%
2017	\$0.39	5%
2018	\$0.37	5%
2019	\$0.35	4%
2020	\$0.34	4%
2021	\$0.33	4%
2022	\$0.32	3%
2023	\$0.31	3%
2024	\$0.30	3%
2025	\$0.29	3%
2026	\$0.28	3%
2027	\$0.27	2%
2028	\$0.27	2%
2029	\$0.26	2%
2030	\$0.26	2%

15K RPM Disk Drive Data

- Higher RPM = higher performance disks
- Data used
 - Equipment: Disk Drive, 300 or 144 GB, 15K RPM, 4 GB, FC
 - 10 data points available
- R² not as strong as for 7200 RPM disk drives
 - Limited number of available data points
- Cost per TB higher than 7200 RPM, but deflation occurs more slowly

Trendline Predictions - 15K RPM

FY	BY12\$/GB	% Change
2009	\$3.76	
2010	\$2.94	22%
2011	\$2.54	13%
2012	\$2.29	10%
2013	\$2.12	8%
2014	\$1.98	6%
2015	\$1.88	5%
2016	\$1.79	5%
2017	\$1.72	4%
2018	\$1.65	4%
2019	\$1.60	3%
2020	\$1.55	3%
2021	\$1.51	3%
2022	\$1.47	3%
2023	\$1.43	2%
2024	\$1.40	2%
2025	\$1.37	2%
2026	\$1.34	2%
2027	\$1.31	2%
2028	\$1.29	2%
2029	\$1.27	2%
2030	\$1.25	2%

Disk Drive Summary

Trendline Predictions - 7200 RPM				Trendline Predictions - 15K RPM		
FY	BY12\$/GB	% Change		FY	BY12\$/GB	% Change
2009	\$1.07 🗲			2009	\$3.76	
2010	\$0.78	27%	Cost per TB	2010	\$2.94	22%
2011	\$0.65	17%	significantly different	2011	\$2.54	13%
2012	\$0.57	12%		2012	\$2.29	10%
2013	\$0.51	10%		2013	\$2.12	8%
2014	\$0.47	8%		2014	\$1.98	6%
2015	\$0.44	7% 🦟		2015	\$1.88	→ 5%
2016	\$0.41	6%	Deflation for 15K	2016	\$1.79	5%
2017	\$0.39	5%		2017	\$1.72	4%
2018	\$0.37	5%	RPM consistently	2018	\$1.65	4%
2019	\$0.35	4%	lower	2019	\$1.60	3%
2020	\$0.34	4%		2020	\$1.55	3%
2021	\$0.33	4%		2021	\$1.51	3%
2022	\$0.32	3%		2022	\$1.47	3%
2023	\$0.31	3%		2023	\$1.43	→ 2%
2024	\$0.30	3%		2024	\$1.40	2%
2025	\$0.29	3%	7200 RPM disk drives	2025	\$1.37	2%
2026	\$0.28	3%	deflate more quickly	2026	\$1.34	2%
2027	\$0.27	2%	denate more quietty	2027	\$1.31	2%
2028	\$0.27	2%		2028	\$1.29	2%
2029	\$0.26	2%		2029	\$1.27	2%
2030	\$0.26	2%		2030	\$1.25	2%

Estimating Applications

- Method described on previous slides is most accurate when storage is provided as a service or shared between multiple programs
 - If storage is a service, a program can be charged for a portion of a rack
 - If storage is purchased by programs individually, a program might have to buy an entire rack when only half of a rack is needed
- To fully estimate storage costs, must capture additional HW needed to support disk drives
 - Includes chassis, servers, networking equipment, etc.
 - May need to include cost of COTS SW licenses if not captured separately
 - Equipment needs appear to change with relative frequency
 - Ex: Rarely buy the same server to support storage when it is time for a recap

Conclusions

General storage conclusions

- Must consider the chosen storage strategy when estimating storage costs
 - RAID level contributes to the volume of storage required
 - RPMs and other attributes of storage impact total cost and rate of cost deflation
- Receipt of detailed BOMs improves costing insight, especially in conjunction with volume data
 - Provides details on storage costs vs. other HW/SW costs
 - Allows for accurate application of RAID deflation and estimation of recaps

Disk drive deflation conclusions

- Cost of disk drives decreases over time, approaching a floor
 - Suggests use of a single factor to estimate deflation may not be sufficient
 - Could be used as a cross check for programs with more detailed storage costs available
- Results of research conflicts with some previous storage deflation studies
 - Research shows deflation rate decreasing, rather than remaining constant
 - Need more detailed data to reconcile varying results

Next Steps

- Evaluate impacts of pricing agreements typically offered to the government
- Investigate life expectancy of disks at different RPMs
 - Also consider different usage (e.g., long or short-term storage)
- Research impacts to factors and CERs
 - Assess changes over time due to variation in storage costs
- Consider impacts of potential shifts in storage needs (e.g., solid state drives)

Back-ups

Contact Information

- William Black: wblack@scitor.com
- Jenny Woolley: jwoolley@scitor.com

Recognition

- Acknowledgments
 - Carrie Gamble
 - Brian Wells