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Purpose 

• To analyze software productivity and growth relationships when 

compared to several variables included within DoD Software 

Resource Data Reports (SRDR)  

 

• Discuss what SRDR variables should be considered when developing 

software cost estimates 

 

• Develop analysis that informs future SRDR Data Item Description 

(DID) updates   
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What is an SRDR? 

• As described on the Defense Cost Analysis Resource Centers’ 

(DCARC) web portal, SRDR data reports are required for contracts 

meeting the following criteria: 

– All contracts greater than $20 million 

– High-risk or high-technical interest contracts below $20 million 

– SRDR requirements apply to all ACAT IAM, IAC, IC, and ID programs, as 

outlined below, regardless of contract type 

• SRDRs include several performance and reporting variables that 

enable Government cost agencies to better estimate program 

software costs 

• Examples of reported data variables include: 

– Software Lines of Code (SLOC) 

– Equivalent SLOC (ESLOC) conversion  

– Development hours by IEEE productivity elements 

– Team experience, and so much more! 
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What Effort is Covered in Reported Hours? 
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• SRDR data used in this analysis is through August 2013 

- Routinely updated to include the latest SRDR data submissions accepted within DCARC’s Defense 
Automated Cost Information Management System (DACIMS) 

• The SRDR database is available to Government analysts with access to the DCARC data portal 

• Database includes the following SRDR data: 

 

 

 

 

 
 

• NAVAIR is the primary reviewer of the SRDR database and conducts routine updates to the 
existing dataset 

• Reasons NAVAIR may choose to reject an actual when updating database 

- Roll-up of lower level data (Did not want to double count effect) 

- Significant missing content in hours, productivity, and/or SLOC data missing 

- Interim build actual that is not stand alone 

- Inconsistencies or oddities in the submit 

• ESLOC is calculated within the database using the NAVAIR derived values for new, modified, 
reuse, and autocode 

 

Data Segments Dec-07 Dec-08 Oct-10 Oct -11 Aug-13 

CSCI Records 688 964 1473 1890 2546 

CSCI with hrs/ESLOC N/A 896 1216 1548 2158 

Completed program or   
actual build 

88 191 412 545 790 

Actuals considered for 
analysis, “2630-3” & “Good” 

N/A 119 206 279 400 

Paired Initial and Final N/A NA 78  142 212 

Language 
Data Points in 

Analysis 

Ada 68 

C/C++ 257 

C# 21 

Java 46 

Other 8 
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Physical vs. Logical Productivity Analysis 

• Analysis focused on weighted productivity values for logical and physical/non-comment counting 

conventions 

– “Not Weighted” productivity values include an average of individual CSCI productivity rates, “Weighted” 

values (preferred method)  include total hours divided by total ESLOC 

– Productivity rates were also compared against the existing C/C++ dataset in order to scale against the 

largest available subset of C/C++ data 
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221 
Data 

Points 

164 
Data 

Points 

57 
Data 

Points 

• Results indicate that the data 

includes a slight difference in overall 

productivity due to counting 

convention 

– However, various counting tools 

and inconsistent code counting 

methods make this method 

somewhat unreliable as a holistic 

productivity rate estimating metric 

– Analysts should consider the 

impact of counting convention as 

well as what tool(s) has, or will, be 

used within their given program 

 

• Includes only C/C++ data, excluding “Radar” designations  
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Experience Level Productivity Analysis 

• “Experience level” analysis used historical, three-level experience breakout (i.e. High, 

Nominal, and Low) 

– Data points that included “Very High” and/or “Entry” level experience values were added to their 

respective “High” or “Low” experience percentages  

– Majority of SRDR data points Do Not include experience levels within the “Very High” and/or “Entry” 

categories (Due to recently revised SRDR content requirements) 

• Each category weighted to illustrate cumulative frequency distributions by calculating 

Equivalent Experience (EEXP) levels for each data point 

– EEXP = (High * 1.0) + (Nominal * .5) + (Low * .1) 

– Data points with large portions of staffing categorized as “High” will be closer to 1.0 

• Based on this analysis, “experience level” does not represent a valid estimating variable 

for productivity rates 

– Staff turnover during lengthy development forces a guess on skill mix 

– Most contractors will default to “standard” reporting percent allocations 

– Programs (Contractors) tend to report similar mix of high, nominal, and low skill mix 

– Requires guessing by the cost analyst to “predict” experience level of team 
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Experience Level Impacts on Productivity 

• Data indicates No clear relationship between experience level and productivity-rate (Hours/ESLOC) 

- “Highly” experienced staffing levels resulted in similar productivity rates when compared to “low” and “intermediate” staffing 

• Includes all language types and “Radar” data 

• C/C++ dataset illustrates a very similar trend 

396 
Data Points 

Over 45  
Programs 
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Development Process Productivity Analysis 

• Analysis examined Incremental, Spiral, Waterfall, and Iterative development 

processes to determine whether they influenced productivity 

– Other process did not have enough data to evaluate 

– Weighted productivity used to represent total hours per individual development process divided by 

total derived ESLOC 

• Data indicates that developmental 

process does impact software 

development productivity 

– Consider  development process 

productivity impacts when using 

language-focused SRDR-derived     

C/C++ estimating relationships  

78 
 Data 
Points 

37 
 Data 
Points 

93 
 Data 
Points 

16 
 Data 
Points 
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• Includes only C/C++ data, excluding “Radar” designations  
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43 
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New and Upgrade Productivity Analysis  

• Analysis examined productivity behaviors resulting from “New” and “Upgrade” 

development efforts 

• C/C++ provides adequate data to conclude that productivities differ for new efforts vice 

upgrade efforts 

• ADA illustrates a similar trend 

• Includes only C/C++ and Ada data, excludes “Radar” designations 

• JAVA includes a larger amount 

of “New” SLOC vice “Upgrade”  

• C# did not provide adequate 

data to quantify impacts specific 

to “New” or “Upgrade” efforts 

– Illustrates the importance for 

analysts to request detail regarding 

the development type, especially if 

developers plan on leveraging 

C/C++ or Ada 
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Productivity by Language Type Analysis 

• Productivity by language type analysis focused on linear regression(s) with an 

intercept at 2000 hours  

– Equates to approximately one FTE 

• Productivity by language-type results included within the table below, and 

highlighted within the following slides 

 Language  
Type: 

Productivity 
Hours / ESLOC: 

C# 0.26 

Java 0.84 

Ada New 1.17 

Ada Upgrade 1.12 

C/C++ New 0.70 

C/C++ Upgrade 0.90 

Radar W/ Outlier 1.29 

Radar W/O Outlier 1.50 

• Even though Radar programs are not 

considered a “language type”, Radar efforts 

do represent a distinct productivity behavior 

within the SRDR data 

– Combined all data regardless of language 

– Looked at results with and without two 

“outlier” data points 

• In addition, radar CSCI’s resulted in less 

efficient productivity rates than compared to 

other CSCI records 
• Values refer to regression relationships illustrated on the following slide(s) 
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Productivity By Language Type 

New: 

Upgrade: 

Both: 
Both: 

• Includes Final (2630-3) and “Good” data points 
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Radar Productivity Analysis 

Without "Outliers" 

Strong Influence 

With "Outliers" 

• Includes All language types designated as Radar within SRDR database (45 data points) 
• Final (i.e. 2630-3) and “Good” records 
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Software Change From Initial to Final Reports 

• Analysis illustrates that growth/change in hours behaves differently 

than growth in ESLOC 

• However, change in software development hours should represent 

the primary focal point for cost estimating purposes 
– Historically software change has focused on ESLOC variations from initial to final 

reporting events 

• Data indicated that change in hours could be modeled as a function 

of starting ESLOC size  
– Further described on the next slide 
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Percent Change in Hours and ESLOC 

• 100% equals no change in this graph 

Green Line = Derived upper limit of historical growth 

• Software development hour “growth” behaves in a discernable pattern when related 

to initial ESLOC size 

– Important to note that this analysis focuses on individual CSCIs that result in ESLOC values lower 

than 500K 

– Large programs experienced less growth, potentially due to higher maturity development process 

and increased estimating rigor 
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CMM/CMMI Level Analysis 
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• Includes only C/C++ data, excluding “Radar” designations  

• Data from August 2013 paired data set – all language types 
• Variance in all groupings is so large that there is no statistical difference between the averages 

• Capability Maturity Model Integration (CMMI) 

provides a consistent measurement of 

process improvement across a reporting 

organization’s individual division(s), 

development teams, or cumulative 

development enterprise 
 

• Analysis indicates CMMI “level 5” and “level 

3” organizations result in very similar 

weighted productivity values 
 

• Additional analysis clearly highlights the 

CMMI level impact of future development 

hour growth from initial to final reports 

– Software size (ESLOC) remained 

relatively consistent from “Initial” to 

“Final” reporting events 

– The change in total development 

hours significantly decreased from 

CMMI “level 3” to “level 5” 

organizations 
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108 
 Data 
Points 

91 
 Data 
Points 

16 
 Data 
Points 
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Requirements Volatility 

• Contractors typically provide subjective requirements volatility ratings 

– Volatility ratings based primarily upon estimated/perceived requirements change  

– Possibly related to unclear or inconsistent method of calculating requirements  volatility from 

program to program 

• Largest portion of data points are included under ratings 1 (no change), 3, and 5 

(extreme change)  
– 10% of “paired” reports include no 

requirements rating 

– Scatter plot indicates similar percent 

change in hour groupings between 

individual volatility ratings 

– Largest portion of “paired” data points 

reported as “level 3” volatility 

 

 

• Data from August 2013 Paired data set – all language types 
• 100% = No growth 
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Analysis Summary 

• SRDR analysis results provide cost analysts with several productivity 

variables to consider when developing future software estimates 

• In addition, this analysis also highlights the need for Government 

agencies to collect and utilize SRDR variables that are relevant, and 

routinely tracked by contracting agencies 
– “Experience level” potentially represents a variable that is not consistently reported and/or 

tracked by contracting companies 

– Development process continues to drive slight impacts on overall program productivity rates 

– Radar programs continue to behave less efficiently (in terms of productivity rates) than 

language type analysis 
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Value of SRDR Data 

• SRDR data provides analysts with a set of actual, DoD-specific, software 

productivity metrics 
– Significantly enhances the Government’s understanding and negotiation position for future 

software development efforts 

• SRDR data continues to provide the government with unprecedented 

insight into contractor software development efforts 
– Data supports some historical “benchmarks” while others are not supported 

• Readily accessible to Government organizations with access to DACIMs, 

or FFRDCs 
– Greatly under utilized resource 

– You can use the NAVAIR compiled Excel file or individual SRDRs for deeper analysis 

– Allows analysts to make their own decisions based on the data and provides very flexible 

data tables for your own specific use 
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Future Analytical Efforts 

• SRDR phasing by IEEE productivity element 

• Analyzing and highlighting the need for Government required reporting of VHDL 

development efforts (i.e. Firmware) 

• Additional relationships to software growth/change from initial to final reporting 

• Contract-type relationships and potential impacts to overall productivity rates or total 

development hours 

• Lower-level “Reuse” and “Modified” productivity rate impact analysis 

• COTS integration productivity impacts 

• Agile development process impacts on DoD software development efforts 

• Software development trends further analyzed within 5-7 year ranges 

 

 If you have questions related to this presentation, please feel free to contact: 
 
Nicholas Lanham 
Naval Center for Cost Analysis (NCCA) 
703-604-1525 
Nicholas.lanham@Navy.mil 


