
1

Software Resource Data Report (SRDR) Analysis

August 2013 Dataset

Presented by: Nicholas Lanham

June 10-13, 2014

Naval Center for Cost Analysis

2

Purpose

• To analyze software productivity and growth relationships when

compared to several variables included within DoD Software

Resource Data Reports (SRDR)

• Discuss what SRDR variables should be considered when developing

software cost estimates

• Develop analysis that informs future SRDR Data Item Description

(DID) updates

3

Table of Contents

• What is an SRDR?

• What Effort is Covered in SRDR Effort?

• SRDR Data Overview and Progression

• Productivity Analysis

– Physical Versus Logical Code Count

– Experience Level

– Development Process – Waterfall, Spiral, Incremental, Iterative

– New Versus Upgrade Influence

– Productivity by Language Type

– Radar Programs

• Software Change/Growth From Initial to Final Reports

– Percent Change to Initial ESLOC Relationship Analysis

– CMMI Level Impacts

– Requirements Volatility

• Analysis Summary

• SRDR Data Implementation and Usage

• Future Analytical Efforts

4

What is an SRDR?

• As described on the Defense Cost Analysis Resource Centers’

(DCARC) web portal, SRDR data reports are required for contracts

meeting the following criteria:

– All contracts greater than $20 million

– High-risk or high-technical interest contracts below $20 million

– SRDR requirements apply to all ACAT IAM, IAC, IC, and ID programs, as

outlined below, regardless of contract type

• SRDRs include several performance and reporting variables that

enable Government cost agencies to better estimate program

software costs

• Examples of reported data variables include:

– Software Lines of Code (SLOC)

– Equivalent SLOC (ESLOC) conversion

– Development hours by IEEE productivity elements

– Team experience, and so much more!

5

What Effort is Covered in Reported Hours?

OUT OF
PRODUCTIVITY

5.3.4
Software

Requirements
Analysis

5.3.5
Software

Architectural
Analysis

5.3.6
Software
Detailed
Design

5.3.7
Software

Coding and
Testing

5.3.8
Software

Integration

5.3.10
System

Integration

5.3.11
System

Qualification
Testing

5.3.12
Software

Installation

5.3.13
Software

Acceptance
Support

5.3.1
Process

Implementation

5.3.9
Software

Qualification
Testing

5.3.2
System

Requirements
Analysis

5.3.3
System

Architectural
Analysis

CAPTURED
BY SRDR

SW QA
SW CM
SW PM

6

• SRDR data used in this analysis is through August 2013

- Routinely updated to include the latest SRDR data submissions accepted within DCARC’s Defense
Automated Cost Information Management System (DACIMS)

• The SRDR database is available to Government analysts with access to the DCARC data portal

• Database includes the following SRDR data:

• NAVAIR is the primary reviewer of the SRDR database and conducts routine updates to the
existing dataset

• Reasons NAVAIR may choose to reject an actual when updating database

- Roll-up of lower level data (Did not want to double count effect)

- Significant missing content in hours, productivity, and/or SLOC data missing

- Interim build actual that is not stand alone

- Inconsistencies or oddities in the submit

• ESLOC is calculated within the database using the NAVAIR derived values for new, modified,
reuse, and autocode

Data Segments Dec-07 Dec-08 Oct-10 Oct -11 Aug-13

CSCI Records 688 964 1473 1890 2546

CSCI with hrs/ESLOC N/A 896 1216 1548 2158

Completed program or
actual build

88 191 412 545 790

Actuals considered for
analysis, “2630-3” & “Good”

N/A 119 206 279 400

Paired Initial and Final N/A NA 78 142 212

Language
Data Points in

Analysis

Ada 68

C/C++ 257

C# 21

Java 46

Other 8

7

Physical vs. Logical Productivity Analysis

• Analysis focused on weighted productivity values for logical and physical/non-comment counting

conventions

– “Not Weighted” productivity values include an average of individual CSCI productivity rates, “Weighted”

values (preferred method) include total hours divided by total ESLOC

– Productivity rates were also compared against the existing C/C++ dataset in order to scale against the

largest available subset of C/C++ data

N
ot

 W
ei

gh
te

d

W
ei

gh
te

d

221
Data

Points

164
Data

Points

57
Data

Points

• Results indicate that the data

includes a slight difference in overall

productivity due to counting

convention

– However, various counting tools

and inconsistent code counting

methods make this method

somewhat unreliable as a holistic

productivity rate estimating metric

– Analysts should consider the

impact of counting convention as

well as what tool(s) has, or will, be

used within their given program

• Includes only C/C++ data, excluding “Radar” designations

8

Experience Level Productivity Analysis

• “Experience level” analysis used historical, three-level experience breakout (i.e. High,

Nominal, and Low)

– Data points that included “Very High” and/or “Entry” level experience values were added to their

respective “High” or “Low” experience percentages

– Majority of SRDR data points Do Not include experience levels within the “Very High” and/or “Entry”

categories (Due to recently revised SRDR content requirements)

• Each category weighted to illustrate cumulative frequency distributions by calculating

Equivalent Experience (EEXP) levels for each data point

– EEXP = (High * 1.0) + (Nominal * .5) + (Low * .1)

– Data points with large portions of staffing categorized as “High” will be closer to 1.0

• Based on this analysis, “experience level” does not represent a valid estimating variable

for productivity rates

– Staff turnover during lengthy development forces a guess on skill mix

– Most contractors will default to “standard” reporting percent allocations

– Programs (Contractors) tend to report similar mix of high, nominal, and low skill mix

– Requires guessing by the cost analyst to “predict” experience level of team

9

Experience Level Impacts on Productivity

• Data indicates No clear relationship between experience level and productivity-rate (Hours/ESLOC)

- “Highly” experienced staffing levels resulted in similar productivity rates when compared to “low” and “intermediate” staffing

• Includes all language types and “Radar” data

• C/C++ dataset illustrates a very similar trend

396
Data Points

Over 45
Programs

10

Development Process Productivity Analysis

• Analysis examined Incremental, Spiral, Waterfall, and Iterative development

processes to determine whether they influenced productivity

– Other process did not have enough data to evaluate

– Weighted productivity used to represent total hours per individual development process divided by

total derived ESLOC

• Data indicates that developmental

process does impact software

development productivity

– Consider development process

productivity impacts when using

language-focused SRDR-derived

C/C++ estimating relationships

78
 Data
Points

37
 Data
Points

93
 Data
Points

16
 Data
Points

W
ei

gh
te

d

• Includes only C/C++ data, excluding “Radar” designations

11

W
ei

gh
te

d

W
ei

gh
te

d

152
 Data
Points

61
 Data
Points

15
 Data
Points

43
 Data
Points

New and Upgrade Productivity Analysis

• Analysis examined productivity behaviors resulting from “New” and “Upgrade”

development efforts

• C/C++ provides adequate data to conclude that productivities differ for new efforts vice

upgrade efforts

• ADA illustrates a similar trend

• Includes only C/C++ and Ada data, excludes “Radar” designations

• JAVA includes a larger amount

of “New” SLOC vice “Upgrade”

• C# did not provide adequate

data to quantify impacts specific

to “New” or “Upgrade” efforts

– Illustrates the importance for

analysts to request detail regarding

the development type, especially if

developers plan on leveraging

C/C++ or Ada

12

Productivity by Language Type Analysis

• Productivity by language type analysis focused on linear regression(s) with an

intercept at 2000 hours

– Equates to approximately one FTE

• Productivity by language-type results included within the table below, and

highlighted within the following slides

 Language
Type:

Productivity
Hours / ESLOC:

C# 0.26

Java 0.84

Ada New 1.17

Ada Upgrade 1.12

C/C++ New 0.70

C/C++ Upgrade 0.90

Radar W/ Outlier 1.29

Radar W/O Outlier 1.50

• Even though Radar programs are not

considered a “language type”, Radar efforts

do represent a distinct productivity behavior

within the SRDR data

– Combined all data regardless of language

– Looked at results with and without two

“outlier” data points

• In addition, radar CSCI’s resulted in less

efficient productivity rates than compared to

other CSCI records
• Values refer to regression relationships illustrated on the following slide(s)

13

Productivity By Language Type

New:

Upgrade:

Both:
Both:

• Includes Final (2630-3) and “Good” data points

14

Radar Productivity Analysis

Without "Outliers"

Strong Influence

With "Outliers"

• Includes All language types designated as Radar within SRDR database (45 data points)
• Final (i.e. 2630-3) and “Good” records

15

Software Change From Initial to Final Reports

• Analysis illustrates that growth/change in hours behaves differently

than growth in ESLOC

• However, change in software development hours should represent

the primary focal point for cost estimating purposes
– Historically software change has focused on ESLOC variations from initial to final

reporting events

• Data indicated that change in hours could be modeled as a function

of starting ESLOC size
– Further described on the next slide

16

Percent Change in Hours and ESLOC

• 100% equals no change in this graph

Green Line = Derived upper limit of historical growth

• Software development hour “growth” behaves in a discernable pattern when related

to initial ESLOC size

– Important to note that this analysis focuses on individual CSCIs that result in ESLOC values lower

than 500K

– Large programs experienced less growth, potentially due to higher maturity development process

and increased estimating rigor

17

CMM/CMMI Level Analysis

N
ot

 W
ei

gh
te

d

W
ei

gh
te

d

• Includes only C/C++ data, excluding “Radar” designations

• Data from August 2013 paired data set – all language types
• Variance in all groupings is so large that there is no statistical difference between the averages

• Capability Maturity Model Integration (CMMI)

provides a consistent measurement of

process improvement across a reporting

organization’s individual division(s),

development teams, or cumulative

development enterprise

• Analysis indicates CMMI “level 5” and “level

3” organizations result in very similar

weighted productivity values

• Additional analysis clearly highlights the

CMMI level impact of future development

hour growth from initial to final reports

– Software size (ESLOC) remained

relatively consistent from “Initial” to

“Final” reporting events

– The change in total development

hours significantly decreased from

CMMI “level 3” to “level 5”

organizations

E
S

LO
C

H
ou

rs

108
 Data
Points

91
 Data
Points

16
 Data
Points

18

Requirements Volatility

• Contractors typically provide subjective requirements volatility ratings

– Volatility ratings based primarily upon estimated/perceived requirements change

– Possibly related to unclear or inconsistent method of calculating requirements volatility from

program to program

• Largest portion of data points are included under ratings 1 (no change), 3, and 5

(extreme change)
– 10% of “paired” reports include no

requirements rating

– Scatter plot indicates similar percent

change in hour groupings between

individual volatility ratings

– Largest portion of “paired” data points

reported as “level 3” volatility

• Data from August 2013 Paired data set – all language types
• 100% = No growth

19

Analysis Summary

• SRDR analysis results provide cost analysts with several productivity

variables to consider when developing future software estimates

• In addition, this analysis also highlights the need for Government

agencies to collect and utilize SRDR variables that are relevant, and

routinely tracked by contracting agencies
– “Experience level” potentially represents a variable that is not consistently reported and/or

tracked by contracting companies

– Development process continues to drive slight impacts on overall program productivity rates

– Radar programs continue to behave less efficiently (in terms of productivity rates) than

language type analysis

20

Value of SRDR Data

• SRDR data provides analysts with a set of actual, DoD-specific, software

productivity metrics
– Significantly enhances the Government’s understanding and negotiation position for future

software development efforts

• SRDR data continues to provide the government with unprecedented

insight into contractor software development efforts
– Data supports some historical “benchmarks” while others are not supported

• Readily accessible to Government organizations with access to DACIMs,

or FFRDCs
– Greatly under utilized resource

– You can use the NAVAIR compiled Excel file or individual SRDRs for deeper analysis

– Allows analysts to make their own decisions based on the data and provides very flexible

data tables for your own specific use

21

Future Analytical Efforts

• SRDR phasing by IEEE productivity element

• Analyzing and highlighting the need for Government required reporting of VHDL

development efforts (i.e. Firmware)

• Additional relationships to software growth/change from initial to final reporting

• Contract-type relationships and potential impacts to overall productivity rates or total

development hours

• Lower-level “Reuse” and “Modified” productivity rate impact analysis

• COTS integration productivity impacts

• Agile development process impacts on DoD software development efforts

• Software development trends further analyzed within 5-7 year ranges

 If you have questions related to this presentation, please feel free to contact:

Nicholas Lanham
Naval Center for Cost Analysis (NCCA)
703-604-1525
Nicholas.lanham@Navy.mil

