Improved Method for Predicting Software Effort and Schedule

Wilson Rosa Barry Boehm Ray Madachy Brad Clark Joseph P Dean Cheryl Jones and John McGarry

2014 ICEAA Professional Development & Training Workshop June 11, 2014

- Present a set of effort and schedule estimating relationships for predicting software development projects using empirical data from 317 very recent US DoD programs.
 - Equations are simpler and more viable to use for early estimates than traditional parametric cost models.
 - Provides the statistics and regression models upon which detailed estimates are based.
 - The methods are applicable to all industry sectors.

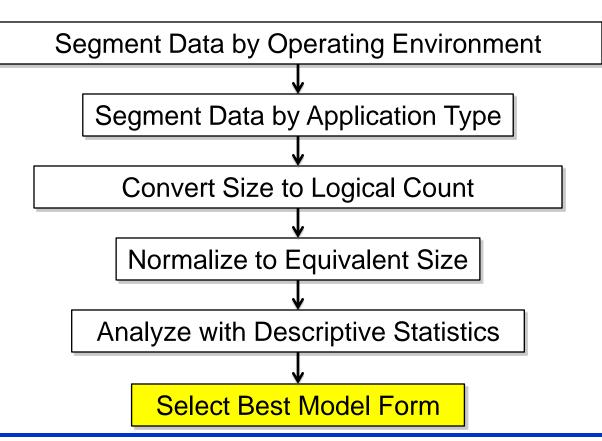
 \checkmark Analysis results will be discussed in this presentation.

- Research Method
- Data Demographics
- Software Productivity Benchmarks
- Effort and Schedule Estimation Models
- Conclusion
- Backup

Research Method

Instrumentation

- Questionnaire:
 - Software Resource Data Report" (SRDR) (DD Form 2630)
- Source:
 - Defense Cost Analysis Resource Center (DCARC) website: <u>http://dcarc.cape.osd.mil/Files/Policy/2011-SRDRFinal.pdf</u> <u>http://dcarc.cape.osd.mil/Files/Policy/Final_Developer_Report.xlsx</u>
- Content:
 - Allows for the collection of project context, company information, requirements, product size, effort, schedule, and quality



Data Collection and Validation

- Initial Dataset
 - 474 records fully reviewed using GAO Best Practices
 - 157 were excluded based on the following limitations:
 - Inadequate information on reused and modified code
 - Projects cancelled or terminated before delivery
 - Inaccurate effort and schedule data
 - Same duration (start and end dates) across software projects/components
 - Missing effort or schedule data on more than 2 activities
 - Duplicate records or submissions
 - Estimates At Completion vice Actual Data
 - Data reported at project level vice CSCI
- Final Dataset
 - 317 projects included in the analysis as these passed quality inspection

 Data was normalized to "account for cost and sizing units, mission or application, technology maturity, and content so they are consistent for comparisons" (source: GAO)

Segment Data by Operating Environment

Operating Environment		Examples			
Ground Site Fixed Mobile		Command Post, Ground Operations Center, Ground Terminal, Test Faculties			
		elligence gathering stations mounted on vehicles, Mobile missile launcher			
Ground Vehicle Manned		anks, Howitzers, Personnel carrier			
Ground Vehicle Unmanned		Robots			
Maritime Vessel		Aircraft carriers, destroyers, supply ships, submarines			
Manume vesser	Unmanned	Mine hunting systems, Towed sonar array			
Aircraft	Manned	Fixed-wing aircraft, Helicopters			
Alloran	Unmanned	Remotely piloted air vehicles			
Ordinance and Missile	Unmanned	Air-to-air missiles, Air-to-ground missiles, Smart bombs, Strategic missiles			
	Manned	Passenger vehicle, Cargo vehicle, Space station			
Space	Unmanned	Orbiting satellites (weather, communications), Exploratory space vehicles			

- Application types are groups of application domains that are environment independent, technology driven, and are characterized by 13 COCOMO product attributes.
- SRDR dataset was segmented into 14 Application Types to increase the accuracy of estimating cost and schedule:
 - 1. Sensor Control and Signal Processing
 - 2. Vehicle Control
 - 3. Real Time Embedded
 - 4. Vehicle Payload
 - 5. Mission Processing
 - 6. System Software
 - 7. Telecommunications

- 8. Process Control
- 9. Scientific Systems
- **10.Mission Planning**
- 11.Training
- 12.Test Software
- 13.Software Tools
- 14.Intelligence & Information Systems

If you segment your dataset by "Application Type", you have already captured most of the COCOMO Effort Multipliers

Segment Data by Application Type: Taxonomy

 37 SEER-SEM application domains were stratified into 14 general complexity zones called Application Types

SEER-SEM Application Domains

Radar, Signal Processing

Flight Systems (Controls)

Flight Systems (Payload)

Embedded Electronics/Appliance, GUI (cockpit displays), Robotics

Command/Control

Communications, Message Switching

Process Control

Device Driver, System & Device Utilities, OS/Executive

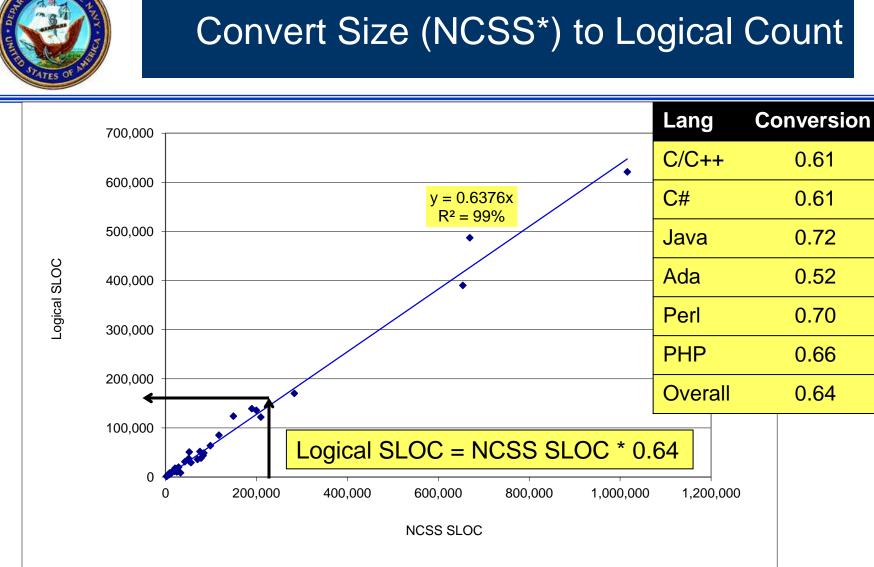
Training / CBT / CAI

Business Analysis Tool, CAD, Software Development Tools

Diagnostics, Testing Software

Expert System, Math & Complex Algorithms, Simulation, Graphics

Mission Planning & Analysis


Database, Data Mining, Data Warehousing, Financial Transactions, GUI, MIS, Multimedia, Relational/Object-Oriented Database, Transaction Processing, Internet Server Applet, *Report Generation*,

Office Automation

Application Type Sensor Control & Signal Processing Vehicle Control Vehicle Payload Real Time Embedded Mission Processing **Telecommunications** Process Control System Software Training Software Tools Test Software Scientific Systems **Mission Planning** Intelligence & Information Systems

See slides 36& 37 for Application Type definitions

Convert Size (NCSS*) to Logical Count

*NCSS = Non-commented source statement

Rosa W., Boehm B., Clark B., and Madachy R. (2012). Domain-Driven Software Cost Estimation. 27th International Forum on COCOMO® and Systems/Software Cost Modeling. University of Southern California.

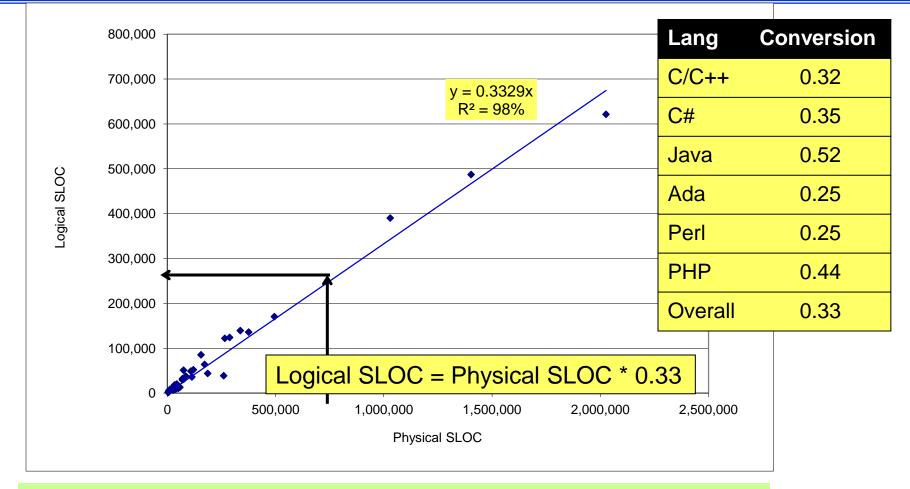
Changing the Culture to Win the War on Cost

0.61

0.61

0.72

0.52


0.70

0.66

0.64

Convert Size (Physical) to Logical Count

Rosa W., Boehm B., Clark B., and Madachy R. (2012). Domain-Driven Software Cost Estimation. 27th International Forum on COCOMO® and Systems/Software Cost Modeling. University of Southern California.

 Logical SLOC normalized to Equivalent SLOC (ESLOC) to reflect the actual degree of work involved:

Formula:

 $ESLOC = New SLOC + Modified SLOC*AAF_{M} + Reused SLOC*AAF_{R}$

+ Generated SLOC*AAF_G + Converted SLOC*AAF_c

Where:

 $AAF_{i} = 0.4*DM + 0.3*CM + 0.3*IM$

And:

AAF	=	Adaptation Adjustment Factor
i	=	Refers to the size type: Modified (M), Reuse (N), Generated (R), Converted (C)
DM	=	Design Modified (DM), also known as re-design
CM	=	Code Modified (CM), also known as re-code
IM	=	Integration Modified (IM), also known as re-test

✓ Formula adapted from COCOMO II Reuse Model

✓ Model Input Parameters (DM, CM, IM) provided by Data Sources (System Developers)

Application Type

Analyze the Data

Data is analyzed using the following taxonomy

Operating Environment

		Ground	•	Maritime	Aircraft	Aircraft	Ordinance	
	Fixed	Vehicle	unmanned	Vessel	Manned	Unmanned	& Missile	Total
Software Tools	1	0	0	0	5	2	0	8
Mission Planning	20	0	0	0	0	0	0] 20
Intel and Information Systems	11	2	0	0	1	0	0	14
Scientific	10	1	0	1	6	0	1] 19
System	13	3	0	3	6	0	0] 25
Telecommunications	22	2	0	22	1	0	0] 47
Test Software	6	0	0	4	1	0	0] 11
Real-Time Embedded	21	3	0	5	20	3	5] 57
Mission Processing	16	0	0	3	9	1	5] 34
Vehicle Control	0	4	0	0	9	1	3	27
Vehicle Payload	0	à	1	1	9	2	5] 18
Sensor Ctrl & Signal Processing	14	1	1	3	3	9	6	37
Total	134	26	2	42	70	18	25	317
			7					

When the dataset is grouped by Application Type and Operating Environment, the impact accounted for by many COCOMO II model drivers are considered

Accuracy of the Models verified using seven different measures:

Measure	Symbol	Description
Standard	SEE	Standard Error of the Estimate is a measure of the difference between the observed and
Error		CER estimated effort. The SEE is to linear models as the standard deviation is to a sample
		mean.
Coefficient of	CV	Percentage expression of the standard error compared to the mean of dependent variable. A
Variation		relative measure allowing direct comparison among models.
Mean Absolute Deviation	MAD	Measures the average percentage by which the regression overestimates or underestimates the observed actual value. Mitigates against the "cancellation" effect from the sign and magnitude of a single % error.
Anderson- Darling test's p-value	AD p- value	Examines whether the dataset follows a normal distribution. The use of non-linear regression is appropriate when AD p-value is greater than 0.05, as there is evidence that the data do not follow a normal distribution.
Variance Inflation Factor	VIF	Indicates whether multicollinearity (correlation among predictors) ispresent in a multi- regression analysis. Multicollinearity is problematic because it can increase the variance of the regression coefficients, making them unstable and difficult to interpret.
Coefficient of Determination	R ²	The Coefficient of Determination shows how much variation in dependent variable is explained by the regression equation. Not applicable for Non-Linear regression.
F-test	F-test	The value of the F test is the square of the equivalent t test; the bigger it is, the smaller the probability that the difference could occur by chance. Not applicable for Non-Linear regression.

SIM	ENT OF THE	
Teand -	3	NY
UNITED		
	TATES OF	

Three effort model forms were examined for each dataset •

$PM = A*Size^{B}$ $PM = C + A*Size^{B}$ $PM = C + Size^{B}$

Log-l	_inear Mode	el	Non-Linear Model 1	Non-Linear Model 2
	Where			
	PM	=	Software development effort (in Person-r	nonths)
Size = Size in Thousand Equivalent Source Lines of Code (KESLOC			es of Code (KESLOC)	
	А	=	Calibrated Productivity constant (ESLOC	/PM)
	В	=	B-exponent (Normally greater than 1, ind	icating diseconomies of scale)
	С	=	Fixed level of effort support activities (in F	Person-Months)

Rules of Thumb for Selecting Best Model •

Measure	Rules of Thumb
# Observations	> 12
CV	≤40%
MAD	≤40%
R ²	> 60%

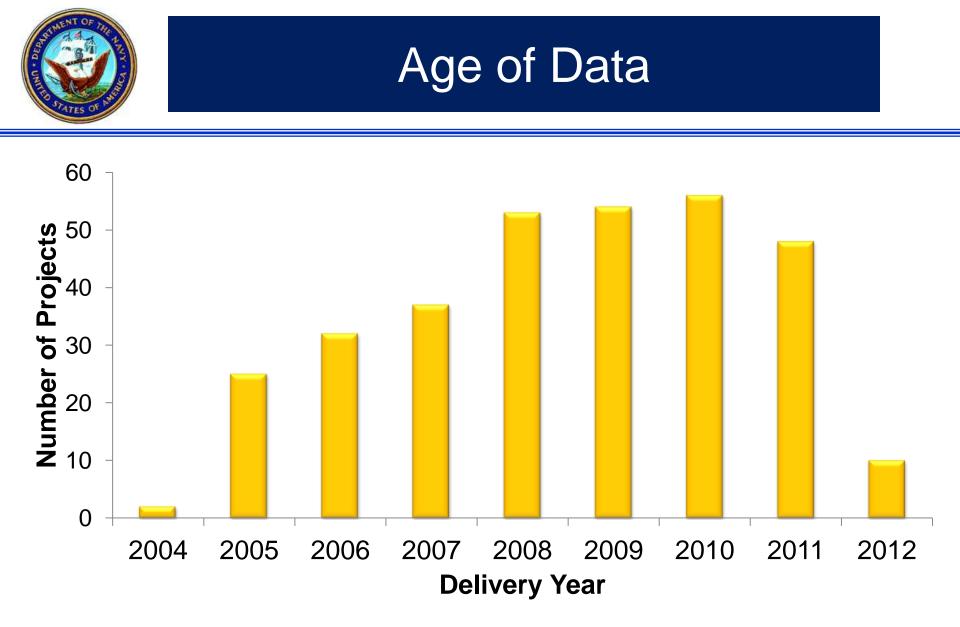
Two schedule model forms were examined for each dataset

 $TDEV = A * PM^{F}$

COCOMO 81 Model

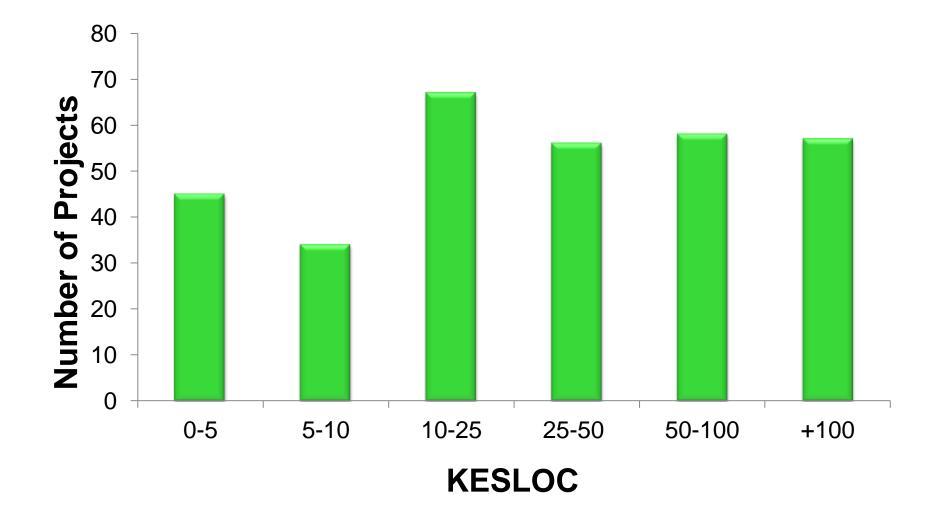
 $TDEV = A * Size^{B} * FTE^{C}$

Non-Linear Model

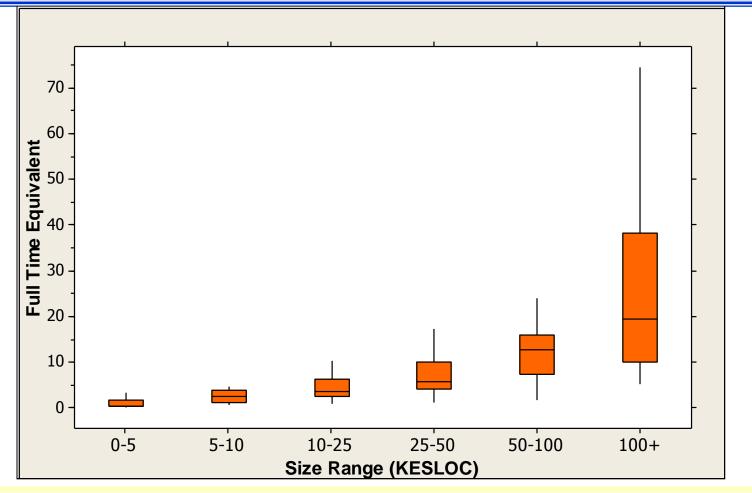

Where

TDEV	=	Time (in months) to develop the Software Product
Size	=	Software Size in Equivalent Source Lines of Code (ESLOC)
FTE	=	Full Time Equivalent (FTE) Staffing Levels
PM	=	Total Estimated Effort in Person-Months (PM)
А	=	is a duration constant
В	=	Scaling factor to account for changing productivity as size increases,
С	=	C-Scaling Factor accounts for the non-linear relationship between increasing staffing levels and shortening development time, TDEV
F	=	Scaling factor for effort changes

• Rules of Thumb for Selecting Best Model

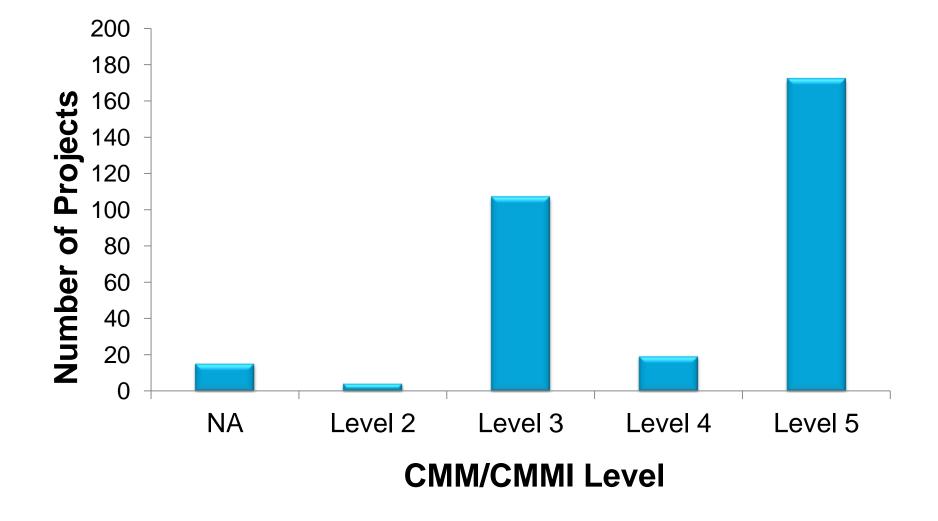

Measure	Rules of Thumb
# Observations	> 10
C-Scaling Factor	< 0.0
MAD	≤40%
CV	≤40%

DATA DEMOGRAPHICS



Software Size

Staff Level: Full Time Equivalent



Appropriate for crosschecking staff levels prior to contract award

Software Process Maturity

Effort Distribution by Activity by Application Type

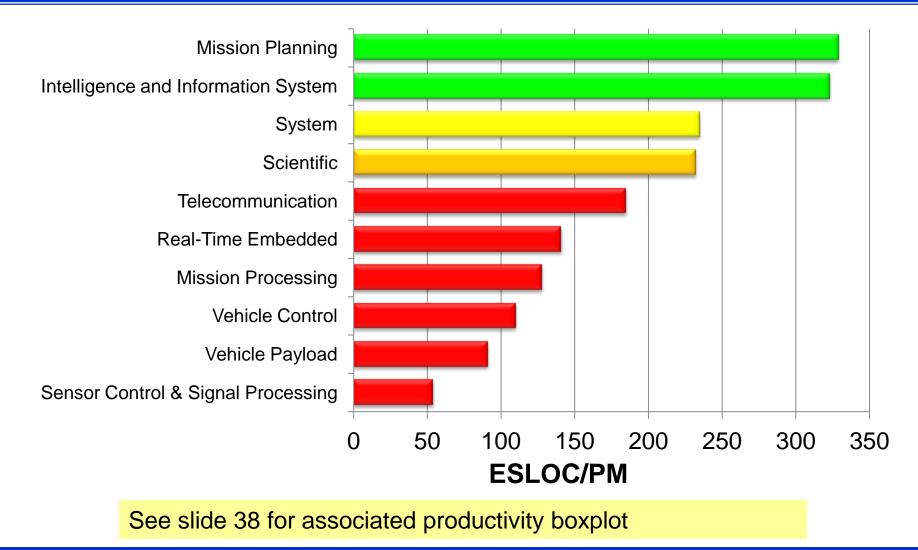
	_						Other
	Req.	Archit. &	Coding &	SW/SYS	Qualification		Develop.
Application Type	Analysis	Design	Testing	Integration	Testing	DT&E	Effort
Mission Planning	9%	12%	30%	6%	5%	10%	28%
Intelligence and Information Systems	6%	18%	29%	6%	5%	9%	26%
Scientific	9%	13%	27%	15%	8%	5%	23%
System	10%	16%	26%	17%	5%	2%	24%
Telecommunications	20%	14%	21%	12%	11%	2%	20%
Real-Time Embedded	10%	15%	27%	18%	6%	4%	20%
Vehicle Control	14%	14%	19%	15%	12%	7%	18%
Mission Processing	9%	12%	29%	13%	11%	4%	21%
Sensor Control and Signal Processing	6%	12%	21%	17%	12%	5%	27%
Composite	10%	14%	25%	13%	8%	5%	23%

Application/Uses

.

- Appropriate for allocating resources across Software Activities
- Appropriate for normalizing inconsistent effort data

SOFTWARE PRODUCTIVITY BENCHMARKS


 Software productivity refers to the ability of an organization to generate outputs using the resources that it currently has as inputs. Inputs typically include facilities, people, experience, processes, equipment, and tools. Outputs generated include software applications and documentation used to describe them.

 $PROD = \frac{ESLOC}{PM}$

 Metric used to express software productivity is equivalent source lines of code (ESLOC) per person-month (PM) of effort. While many other measures exist, ESLOC/PM will be used because most of the data collected by the Department of Defense (DoD) on past projects is captured using these two measures. While controversy exists over whether or not ESLOC/PM is a good measure, consistent use of this metric provides for meaningful comparisons of productivity.

Productivity Comparison (Median)

Productivity Benchmark: All Operating Environments

Productivity (ESLOC/PM) across Operating Environments

	E	ESLOC/PM			Std.		KES	LOC
	1 st		3 rd		Dev.	CV		
Application Type	Quartile	Median	Quartile	Obs.	(%)	(%)	MIN	MAX
Mission Planning	207	329	427	20	153	46	10	570
Information and Intelligence Systems	292	323	407	14	82	23	18	417
System	168	235	260	25	86	38	6	842
Scientific	129	232	260	19	101	48	2	226
Telecommunications	140	185	243	47	74	39	1	532
Real-Time Embedded	84	141	172	57	66	46	2	201
Mission Processing	103	128	178	34	57	40	1	229
Vehicle Control	70	110	126	27	52	45	1	330
Vehicle Payload	43	91	120	18	41	46	1	221
Sensor Control and Signal Processing	40	54	79	37	25	42	1	193

Application/Uses

Applicable for manned aircraft, UAV, ground system, missiles, ordnance, ship and ground vehicle platforms

Effort and Schedule Estimation Models

Effort Estimation Models: All Operating Environments

Effort Models (in Person-Month) across 6 Operating Environments

			MAD	CV	R ²	KES	LOC
Application Type	Model Form	Obs.	(%)	(%)	(%)	MIN	MAX
Mission Planning	47.78 + KESLOC ^ 1.193	20	35	38	**	10	570
Information and Intelligence Systems	2.643 * KESLOC ^ 1.024	14	18	24	97	18	417
System	33.58 + KESLOC ^ 1.276	25	36	43	**	6	842
Scientific	31 + KESLOC ^ 1.334	17	40	39	**	2	226
Telecommunications	7.3 * KESLOC ^ 0.9133	47	35	32	88	1	532
Real-Time Embedded	60.14 + KESLOC ^ 1.44	57	36	39	**	2	201
Mission Processing	6.602 * KESLOC ^ 1.045	33	36	40	88	1	229
Vehicle Control	9.048 * KESLOC ^ 1.018	27	37	35	92	1	330
Vehicle Payload	22.27 * KESLOC ^ 0.804	18	35	15	89	1	221
Sensor Control and Signal Processing	26.43 * KESLOC ^ 0.8668	37	34	29	91	1	193

Schedule Estimation Models: All Operating Environments

Schedule Models (in Months) across all Operating Environments

			SEE	MAD	CV	KES	SLOC
Application Type	Model Form	Obs.	(%)	(%)	(%)	MIN	MAX
Mission Planning	2.657 * KESLOC ^ 0.9995*FTE ^ (-0.9854)	10	0.3	19	19	10	570
Information and Intelligence Systems	6.034 * KESLOC ^ 0.6622 * FTE ^ (-0.6002)	19	0.4	31	31	18	417
System	7.681 * KESLOC ^ 0.8363 * FTE ^ (-0.9489)	14	0.4	27	24	7	764
Scientific	16.87 * KESLOC ^ 0.3082 * FTE ^ (-0.2603)	14	0.4	25	24	2	120
Telecommunications	14.78 * KESLOC ^ 0.4512 * FTE ^ (-0.4881)	42	0.4	28	22	1	312
Real-Time Embedded	18.08 * KESLOC ^ 0.5201 * FTE ^ (-0.5695)	44	0.3	23	23	5	201
Mission Processing	9.934 * KESLOC ^ 0.731 * FTE ^ (-0.5978)	24	0.4	35	34	1	225
Vehicle Control	8.288 * KESLOC ^ 0.8527 * FTE ^ (-0.772)	18	0.4	34	34	1	330
Sensor Control and Signal Processing	30.6 * KESLOC ^ 0.4982 * FTE ^ (-0.4895)	28	0.3	25	21	1	193

Application/Uses

Appropriate for crosschecking schedule, given product size and staff level**

CONCLUSION

- 1. Analysis results indicate that the effect of software size on software development effort shall be interpreted along with Application Type.
- 2. Application Type again was shown as a valid predictor of software development duration when used in combination with staffing levels (full time equivalents) and software size
- 3. Software development duration can be shortened by decreasing software size and/or increasing staffing levels.

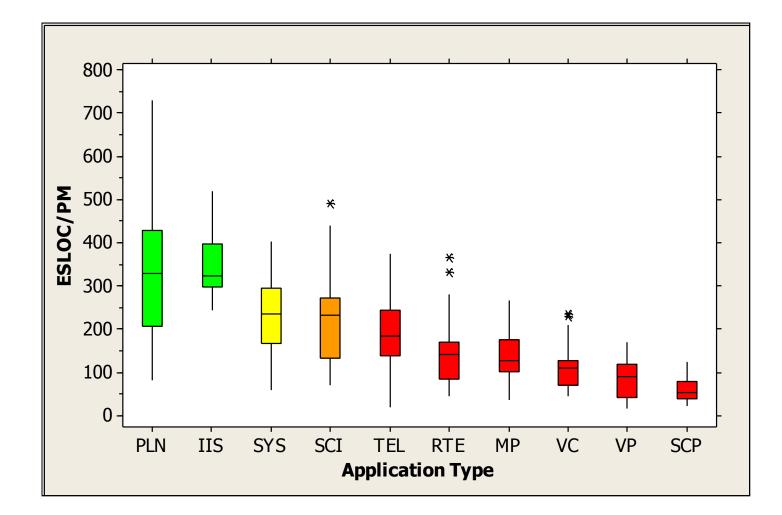
Always have a valid reason for removing outliers Discarding data based on arbitrary grounds is referred to as "Sampling Bias" Data Normalization is a critical step to increase statistical validity and reliability Helps reduce noise in the data Garbage In,

Changing the Culture to Win the War on Cost Estimating: QMT 290 Beta Test", AFIT, 2012.33

Garbage Out

- A valid software cost model should account for the impact of fixed costs and diseconomies of scale.
- The models in this presentation focus on the prime contractor's implementation team, and therefore should be applicable to all sectors.
- Prime contractors can use these models to validate their Implementation Team's cost proposals or estimates.

Application Type Definitions (1 of 2)


TYPE	DESCRIPTION			
Sensor Control and	Software that requires timing-dependent device coding to enhance, transform, filter, convert,			
Signal Processing (SCP)	or compress data signals. Examples: Beam steering controller, sensor receiver/transmitter			
	control, sensor signal processing, sensor receiver/transmitter test. Examples. of sensors:			
	antennas, lasers, radar, sonar, acoustic, electromagnetic.			
Vehicle Control (VC)	Hardware & software necessary for the control of vehicle primary and secondary mechanical			
	devices and surfaces. Examples: Digital Flight Control, Operational Flight Programs, Fly-By-			
	Wire Flight Control System, Flight Software, Executive.			
Vehicle Payload (VP)	Hardware & software which controls and monitors vehicle payloads and provides			
	communications to other vehicle subsystems and payloads. Examples: Weapons delivery			
	and control, Fire Control, Airborne Electronic Attack subsystem controller, Stores and Self-			
	Defense program, Mine Warfare Mission Package.			
Real Time Embedded	Real-time data processing unit responsible for directing and processing sensor input/output.			
(RTE)	Examples: Devices such as Radio, Navigation, Guidance, Identification, Communication,			
	Controls And Displays, Data Links, Safety, Target Data Extractor, Digital Measurement			
	Receiver, Sensor Analysis, Flight Termination, Surveillance, Electronic Countermeasures,			
	Terrain Awareness And Warning, Telemetry, Remote Control.			
Mission Processing (MP)	Vehicle onboard master data processing unit(s) responsible for coordinating and directing the			
	major mission systems. Examples: Mission Computer Processing, Avionics, Data Formatting,			
	Air Vehicle Software, Launcher Software, Tactical Data Systems, Data Control And			
	Distribution, Mission Processing, Emergency Systems, Launch and Recovery System,			
	Environmental Control System, Anchoring, Mooring and Towing.			
Process Control (PC)	Software that manages the planning, scheduling and execution of a system based on inputs,			
	generally sensor driven.			
System Software (SYS)	Layers of software that sit between the computing platform and applications.			
	Examples: Health Management, Link 16, Information Assurance, Framework, Operating			
	System Augmentation, Middleware, Operating Systems			

Application Type Definitions (2 of 2)

TYPE	DESCRIPTION		
Training (TRN)	Hardware and software that are used for educational and training purposes. Examples: Onboard or Deliverable Training Equipment & Software, Computer-Based Training		
Telecommunications (TEL)	The transmission of information, e.g. voice, data, commands, images, and video across different mediums and distances. Primarily software systems that control or manage transmitters, receivers and communications channels. Examples: switches, routers, integrated circuits, multiplexing, encryption, broadcasting, protocols, transfer modes, etc.		
Software Tools (TOOL)	Software that is used for analysis, design, construction, or testing of computer programs. Examples: Integrated collection of tools for most development phases of the life cycle, e.g. Rational development environment		
Test Software (TST)	Hardware & Software necessary to operate and maintain systems and subsystems which are not consumed during the testing phase and are not allocated to a specific phase of testing. Examples: Onboard or Deliverable Test Equipment & Software		
Intelligence & Information Systems (IIS)	An assembly of software applications that allows a properly designated authority to exercise control over the accomplishment of the mission. Humans manage a dynamic situation and respond to user-input in real time to facilitate coordination and cooperation. Software that manipulates, transports and stores information. Examples: Database, Data Distribution, Information Processing, Internet, Entertainment, Enterprise Services*, Enterprise Information**		
Scientific Systems (SCI)	Non real time software that involves significant computations and scientific analysis. Examples: Environment Simulations, Offline Data Analysis, Vehicle Control Simulators		
Training (TRN)	Hardware and software that are used for educational and training purposes. Examples: Onboard or Deliverable Training Equipment & Software, Computer-Based Training		

Software Productivity Boxplot

