

An Update to the Use of Function Points in
Earned Value Management for Software
Development

Cobec Consulting
Mike Thompson, Director
Dan French, Principal

Background

• In FY 2012 a DOT software program was behind
schedule, over-budget, and at high-risk

• Program Management had low confidence in the
development team’s cost/schedule estimates

• The Development team was being held to an early
ROM estimate and the program office was suspicious
of the numerous assumptions and qualifiers

• A realistic, defensible, and repeatable way of
reporting software development status was needed to
assuage both parties concerns

2

Implemented Solution

• The EVM solution utilized an objective software
size reporting metric, IFPUG Function Points

• Available data was used, so reporting could begin
quickly

• Reporting was simplified so that it was
understood by all levels of management and
provided an accurate gauge of program progress

• The process produced performance metrics that
was used with the existing EVM tool

3

Function Point Background

• Developed by Allan Albrecht of IBM in 1979

• Created as an alternative to Source Lines of Code
(SLOC) for measuring software size

• Counting Rules are established by the International
Function Point Users Group (IFPUG)

• Current version is 4.3.1, Released in January 2010

• International Standards Organization (ISO) Standard
for software functional sizing (ISO/IEC 20926
SOFTWARE ENGINEERING - FUNCTION POINT
COUNTING PRACTICES MANUAL)

4

Identify Function Point Based EVM Advantages

• When a customer purchases a software development
product, they are purchasing functionality, not “Lines
of Code.”

• Able to establish and measure progress well in advance
of full EVMS planning and implementation

• Function Points will not ebb and flow, as SLOC does –
functionality earned will continue to increase with time

• Can implement without large investment in EVM
processes, tools or personnel
• Can be rapidly established during program start-up

• Can easily compare and track estimated size vs. actual
size delivered

5

FP based EVM Challenges

• Increased productivity resulting from software reuse
must be accounted for:
• Original size estimate based on the user requirements

was roughly 1,400 function points – unadjusted for
software reuse

• Estimate was downgraded to 760 “effective” function
points after development team identified
requirements addressed by pre-existing code (COTS,
open-source, reused)

• Need to account for activities not directly associated
with code development (Systems Engineering, System
Integration)

6

Software Performance Methodology

• Function points measure how much software functionality is delivered

• Function points became an indicator of the effort required to complete the project

• Function points represent effort in software documentation, code & unit test, and functional
lab test

Use Function Points

• Function points are counted by requirement

• Requirements were used to map to Computer Software Configuration Items (CSCIs)

• Result: Function points by CSCI, which provides a relative weighting of each CSCI

Map FPs to CSCIs

• Reused code is taken into account, reducing gross function point/SLOC count to an “effective”
FP/SLOC count. Effective Function Points/SLOC are denoted eFP/eSLOC

• Conversion factors enable the translation of function points to SLOC (Source Lines of Code)

• 117.8 SLOC/function point was derived after discussions with Development Team and
referencing standard translation tables

Code Reuse & how you go from Function Point to
SLOC

7

Software Performance Methodology

8

•Credit is given for completing intermediate milestones in the software process, CSCI
Milestones, which include System Engineering and Software Engineering Milestones, this
holistic approach to determining progress goes beyond relying solely on Function Points or
SLOC as a means of measurement.

•Which means CSCI Milestones can be “earned” before code is created

Earned Progress

•Value is earned in a way that is results oriented rather than by counting code/function points

•“Heavy hitter” CSCIs that require the most effort are identified early, in a systematic way – not
just by gut feel

•Schedule progress is weighted by a factor (FPs) representing effort, presenting a clearer
picture of true progress

Implications & Summary

SW Metrics Flow Chart Summary

Planned
FPs

Software
Development

Schedule

CSCI Function
Point Count

Useable Prototype
Code

Backfire
SLOC

Estimate

SLOC Plan

CSCI Milestone
Status Table

Earned FPs
CSCI Function Point

and SLOC
Performance Charts

Planned
Metrics

Earned
Metrics

Final
Product

9

How Milestones were Weighted

SW Effort
Only

Complete
Effort

Incremental

FP % Earned

Incremental

 % Earned

SSS 0.0% 5.0%
SRS 22.0% 20.0%
IER 0.0% 0.5%
Test Procedures 13.0% 11.0%
TVRTM 2.0% 1.0%
FER 1.0% 0.5%
Coding 50% 8.5% 6.5%
Coding 100% 8.5% 6.5%
Unit Test 14.0% 12.0%
Functional Test 50% 15.0% 13.0%
Functional Test 100% 15.0% 13.0%
Functional Test Report 1.0% 1.0%
Regression Test 50% 0.0% 4.5%
Regression Test 100% 0.0% 4.5%
Regression Test Report 0.0% 1.0%

SUM 100.0% 100.0%

Milestone / Activity

 = Systems Engineering
Activities
 = Software Engineering
Activities

• An initial attempt at establishing
weighting for program
milestones was done by the
metrics team

• The metrics team then conferred
with the development team and
refined the level-of-effort
percentages to the following:

10

Earned vs Planned Comparison

• The “Weighted % Earned” value for each
CSCI is multiplied by the total (when
complete) function points for each CSCI
to calculate the Earned or Planned
function points at a point in time.

• The following slides details how the
“earned” and “planned” function points
compared

11

Program Software Metrics – Earned Function Points –
June 2013

• Note: Progress on Systems Engineering activities is not
captured by function points

CSCI
%

Earned
Completed

eFPs
Planned

eFPs

Planned
eFPs for
3/31/2013

eFPs when
Complete

TTCS 100.0% 4 4 4 4
SYS 49.0% 31 29 50 63
TDCL 62.1% 4 3 7 7
FDCS 99.0% 27 27 28 28
Router 57.2% 19 15 32 32
TSYS 52.0% 75 67 111 144
TPGW 100.0% 3 3 3 3
SDB 40.3% 8 8 13 21
TCSP 69.0% 12 12 17 17
DCL 42.5% 77 67 86 182
BCI 38.3% 5 5 7 14
STM 37.0% 6 6 7 15
TMC 42.8% 74 64 77 173
TDLS CHI 42.5% 24 21 23 57
Total 369 332 463 759

12

Program Software Metrics – Earned Function Points –
January 2014

13

CSCI
%

Earned
Completed

eFPs
Planned

eFPs

Planned
eFPs for
3/31/2013

eFPs when
Complete

TTCS 100.0% 4 4 4 4
SYS 100.0% 63 29 50 63
TDCL 100.0% 7 3 7 7
FDCS 100.0% 28 27 28 28
Router 100.0% 32 15 32 32
TSYS 100.0% 144 67 111 144
TPGW 100.0% 3 3 3 3
SDB 100.0% 21 8 13 21
TCSP 100.0% 17 12 17 17
DCL 100.0% 182 67 86 182
BCI 100.0% 14 5 7 14
STM 100.0% 15 6 7 15
TMC 100.0% 173 64 77 173
TDLS CHI 100.0% 57 21 23 57
Total 759 332 463 759

Charting Function Point Progress
• We wanted a more graphical way of displaying progress

against the plan, so we decided to chart the cumulative
planned and earned function point totals each month

• PLANNED PROGRESS CURVE

• For each CSCI, the total function points [when complete] were
weighted by milestones and allocated according to the
Software Development Schedule.

• When the total of all of the planned distributions was charted,
the resulting composite curve looked much like a traditional S-
Curve

• EARNED PROGRESS CURVE

• The earned function points were recorded each month and
the cumulative total was overlaid on the planned progress
curve

 14

CSCI Planned Progress

• To determine the planned values (how much progress should have been
made), we:

• Entered the scheduled Finish Dates for each CSCI milestone into a table

• Created a second table that compared the scheduled finish date to the current
date

• If the scheduled date was earlier than the current date, 100% was assigned for
that task

Milestone / Activity TTCS SYS TDCL FDCS Router TSYS TPGW SDB TCSP DCL BCI STM TMC CHI
SSS 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
SRS 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
IER 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Test Procedures 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
TVRTM 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FER 100% 100% 100% 100% 100% 100% 100% 100% 100% 0% 0% 0% 0% 0%
First Half of Coding 100% 100% 100% 100% 100% 100% 100% 0% 100% 0% 0% 0% 0%
Second Half of Coding 100% 0% 0% 100% 0% 0% 100% 0% 100% 0% 0% 0% 0%
Unit Test 100% 0% 0% 100% 0% 0% 100% 0% 100% 0% 0% 0% 0%
Functional Test 50% 100% 0% 0% 100% 0% 0% 100% 0% 0% 0% 0% 0% 0%
Functional Test 100% 100% 0% 0% 100% 0% 0% 100% 0% 0% 0% 0% 0% 0%
Functional Test Report 100% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
Regression Test 50%
Regression Test 100%
Regression Test Report
Weighted % Earned 90.0% 44.5% 44.5% 89.0% 44.5% 44.5% 90.0% 38.0% 63.0% 37.5% 37.5% 37.5% 37.5% 37.5%

15

CSCI Earned Progress from Development Team

• Table represents current % of milestones achieved, as of 1/30/2013

• Table includes both Systems Engineering (SSS, IER, Regression Test) and
Software Engineering (everything else) milestones

• Cells highlighted in blue have changed since last reporting period

• “Weighted % Earned” is the result of the matrix multiplication of the above table

with the table from the previous slide

• This status is compared to planned progress on the following slide

1/23/2013 Date of Analysis

Actual Progress

Activity / CSCI TTCS SYS TDCL FDCS Router TSYS TPGW SDB TCSP DCL BCI STM TMC CHI
SSS 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
SRS 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
IER 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Test Procedures 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
TVRTM 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FER 100% 100% 100% 100% 100% 100% 100% 100% 100% 0% 0% 0% 0% 0%
First Half of Coding 100% 80% 100% 100% 100% 100% 100% 17% 100% 40% 9% 0% 43% 40%
Second Half of Coding 100% 0% 75% 100% 40% 2% 100% 0% 100% 0% 0% 0% 0% 0%
Unit Test 100% 30% 66% 100% 52% 38% 100% 6% 100% 15% 3% 0% 16% 15%
Functional Test 50% 100% 0% 0% 100% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
Functional Test 100% 100% 0% 0% 100% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
Functional Test Report 100% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
Regression Test 50% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

CSCI

16

Data as of January 2014

17

Actual Progress

Activity / CSCI TTCS SYS TDCL FDCS Router TSYS TPGW SDB TCSP DCL BCI STM TMC TDLS CHI Ave
SSS 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
SRS 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
IER 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Test Procedures 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
TVRTM 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FER 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
First Half of Coding 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Second Half of Coding 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Unit Test 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Functional Test 50% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Functional Test 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Functional Test Report 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Regression Test 50% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 0% 19%
Regression Test 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Regression Test Report 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Weighted % Earned 90.9% 90.9% 90.9% 90.9% 90.9% 90.9% 90.9% 90.9% 90.9% 90.9% 90.9% 90.9% 90.9% 90.0% 90.8%

CSCI

CSCI Milestone Progress

Actual Progress CSCI

Activity / CSCI TTCS SYS TDCL FDCS Router TSYS TPGW SDB TCSP DCL BCI STM TMC TDLS CHI Ave

SSS 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

SRS 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

PDR 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Test Procedures 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

TVRTM 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

CDR 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

First Half of Coding 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% N/A 100%

Second Half of Coding 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% N/A 100%

Unit Test 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% N/A 100%

Functional Test 50% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% N/A 100%

Functional Test 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% N/A 100%

Functional Test Report 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% N/A 100%

Regression Test 50% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% N/A 20%

Regression Test 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% N/A 0%

Regression Test Report 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% N/A 0%

Weighted % Earned 90.9% 90.9% 90.9% 90.9% 90.9% 90.9% 90.9% 90.9% 90.9% 90.9% 90.9% 90.9% 90.9% 100.0% 91.6%

Milestone Progress - % Planned vs % Earned

Earned Function Points vs Planned Function Points

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J

2011 2012 2013 2014

Fu
n

ct
io

n
 P

o
in

ts

Cumulative Function Point Progress

Planned FPs

Earned FPs

1/2013:
327 eFPs planned 43.1%
354 eFPs earned 46.6%

1/31/2014:
759 eFPs at Completion

20

Final Earned Function Points vs Planned Function Points

21

July 2013 – January 2014
data extrapolated from trend
data January 2011 – June
2013

Final Results

• Performance was ahead of plan

• 100% complete as of January, 2014 vs.
planned completion in May, 2014

Relationship between program office and
development team improved greatly

• Program office has increased confidence in
the development team’s ability to meet
schedule and cost

• Set good working relationship for future
program releases

22

Program’s Financial Status
thru Dec 2013

Lessons Learned

• Status being reported by the developer, remained subjective, and
thus verified by the completion of milestones
• For providing progress status, the method became a modified

“Milestone Complete” EVM method, which was translated into
percent complete and entered into an EVM tool

• Methodology does not measure software quality
• System Engineering activities were not in scope
• Provided the basis for providing objective productivity metrics
• Developed a method for allocation of function points that impacted

multiple CSCIs
• Ensure that multiple team members are trained in methodology

and data collection
• Function Points can be effectively used to accurately measure

earned value in software development projects

24

Contact Information

• Mike Thompson – mthompson@cobec.com

• Dan French – dfrench@cobec.com

Cobec Consulting

600 Maryland Ave SW

Suite 500E

Washington, DC 20024

25

mailto:mthompson@cobec.com
mailto:dfrench@cobec.com

Questions or Comments

26

Backup

27

What are Function Points?

• Function Points are a unit of software size
measure

• Measure the work product of software
development

• Work product is measured in terms of
functionality from user perspective

• Functions points do not measure internal
architecture, effort, or technological
complexity of an application

28

“Backfiring” - Function Point to SLOC Conversion

• A number of organizations have made “backfiring” tables available to the
public.

• These tables contain factors that convert function points to lines of code
for various programming languages

• Some tables are more complete and/or use more data points to come up with
their backfiring rates.

• The QSM table was used for this estimate, because it used the most data
points to derive its backfiring rates

• In talking with Development Team, it was determined that the programming
language blend could be approximated as follows: 75% C (107 SLOC/fp), 9%
Ruby (21 SLOC/fp), 10% SQL (30 SLOC/fp), 6% Java (53 SLOC/fp),

• The resulting composite backfiring rate (BFR) was 88.32 SLOC/function point

• If we use risk ranges on the backfiring rates, the composite backfiring rate
becomes 117.8 SLOC/function point

29

Risk Range on Backfiring Rates

• Backfiring rates are not given as ranges

• However, a risk range could be determined by
subtracting the largest published backfiring rate
from the smallest published backfiring rate.

• Backfiring rates from Capers Jones, Cost Xpert, and
the David Consulting Group have also been collected
by Cobec and were used to calculate a variation of
91% around the chosen QSM rates

30

Benefits of Using Function Points

• Technology and language independent

• Consistent, repeatable, and verifiable

• Measures functionality the customer
requests and receives

• Can use to derive metrics for cost,
productivity, and quality

• Enables better management of project
scope

31

Advantages of Function Points over SLOC?

• No consistent rules for defining what constitutes
a Line of Code (blank lines, comments)

• SLOC are language and platform dependent,
older languages and platforms tend to require
more LOC to deliver the same functionality

• SLOC is dependent on the experience and
coding style of the individual developer

• FP counts can an be developed earlier and more
accurately in the project life cycle

32

Implementation Background

• Our metrics team met with the program office
to determine reporting requirements

• Status updates established at two weeks
after the end of each month

• The system for earning value was discussed
with the development team and from those
discussions a method of tracking CSCI
milestone achievement was developed.

33

