cobec

QUANTIFYING THE FUTURE

An Update to the Use of Function Points in Earned Value Management for Software Development

Cobec Consulting Mike Thompson, Director Dan French, Principal

Background

- In FY 2012 a DOT software program was behind schedule, over-budget, and at high-risk
- Program Management had low confidence in the development team's cost/schedule estimates
 - The Development team was being held to an early ROM estimate and the program office was suspicious of the numerous assumptions and qualifiers
 - A realistic, defensible, and repeatable way of reporting software development status was needed to assuage both parties concerns

Implemented Solution

- The EVM solution utilized an objective software size reporting metric, IFPUG Function Points
- Available data was used, so reporting could begin quickly
- Reporting was simplified so that it was understood by all levels of management and provided an accurate gauge of program progress
- The process produced performance metrics that was used with the existing EVM tool

Function Point Background

- Developed by Allan Albrecht of IBM in 1979
- Created as an alternative to Source Lines of Code (SLOC) for measuring software size
- Counting Rules are established by the International Function Point Users Group (IFPUG)
- Current version is 4.3.1, Released in January 2010
- International Standards Organization (ISO) Standard for software functional sizing (ISO/IEC 20926 SOFTWARE ENGINEERING - FUNCTION POINT COUNTING PRACTICES MANUAL)

Identify Function Point Based EVM Advantages

- When a customer purchases a software development product, they are purchasing functionality, not "Lines of Code."
- Able to establish and measure progress well in advance of full EVMS planning and implementation
- Function Points will not ebb and flow, as SLOC does functionality earned will continue to increase with time
- <u>Can implement without large investment in EVM</u> processes, tools or personnel
 - Can be rapidly established during program start-up
- Can easily compare and track estimated size vs. actual size delivered

FP based EVM Challenges

- Increased productivity resulting from software reuse must be accounted for:
 - Original size estimate based on the user requirements was roughly 1,400 function points – unadjusted for software reuse
 - Estimate was downgraded to 760 "effective" function points after development team identified requirements addressed by pre-existing code (COTS, open-source, reused)
- Need to account for activities not directly associated with code development (Systems Engineering, System Integration)

Software Performance Methodology

Use Function Points

- Function points measure how much software functionality is delivered
- Function points became an indicator of the effort required to complete the project
- Function points represent effort in software documentation, code & unit test, and functional lab test

Map FPs to CSCIs

- Function points are counted by requirement
- Requirements were used to map to Computer Software Configuration Items (CSCIs)
- Result: Function points by CSCI, which provides a relative weighting of each CSCI

Code Reuse & how you go from Function Point to SLOC

• Reused code is taken into account, reducing gross function point/SLOC count to an "effective" FP/SLOC count. Effective Function Points/SLOC are denoted eFP/eSLOC

- Conversion factors enable the translation of function points to SLOC (Source Lines of Code)
- 117.8 SLOC/function point was derived after discussions with Development Team and referencing standard translation tables

Software Performance Methodology

Earned Progress

•Credit is given for completing intermediate milestones in the software process, CSCI Milestones, which include System Engineering and Software Engineering Milestones, this holistic approach to determining progress goes beyond relying solely on Function Points or SLOC as a means of measurement.

•Which means CSCI Milestones can be "earned" before code is created

Implications & Summary

- Value is earned in a way that is results oriented rather than by counting code/function points
- "Heavy hitter" CSCIs that require the most effort are identified early, in a systematic way not just by gut feel
- •Schedule progress is weighted by a factor (FPs) representing effort, presenting a clearer picture of true progress

SW Metrics Flow Chart Summary

How Milestones were Weighted

- An initial attempt at establishing weighting for program milestones was done by the metrics team
- The metrics team then conferred with the development team and refined the level-of-effort percentages to the following:

= Systems Engineering
ACTIMITIES
= Software Engineering
Activities

	SW Effort Only	Complete Effort		
whestone / Activity	Incremental	Incremental		
	FP % Earned	% Earned		
SSS	0.0%	5.0%		
SRS	22.0%	20.0%		
IER	0.0%	0.5%		
Test Procedures	13.0%	11.0%		
TVRTM	2.0%	1.0%		
FER	1.0%	0.5%		
Coding 50%	8.5%	6.5%		
Coding 100%	8.5%	6.5%		
Unit Test	14.0%	12.0%		
Functional Test 50%	15.0%	13.0%		
Functional Test 100%	15.0%	13.0%		
Functional Test Report	1.0%	1.0%		
Regression Test 50%	0.0%	4.5%		
Regression Test 100%	0.0%	4.5%		
Regression Test Report	0.0%	1.0%		
SUM	100.0%	100.0%		

Earned vs Planned Comparison

- The "Weighted % Earned" value for each CSCI is multiplied by the total (when complete) function points for each CSCI to calculate the Earned or Planned function points at a point in time.
- The following slides details how the "earned" and "planned" function points compared

Program Software Metrics – Earned Function Points – June 2013

CSCI	% Earned	Completed eFPs	Planned eFPs	Planned eFPs for 3/31/2013	eFPs when Complete
TTCS	100.0%	4	4	4	4
SYS	49.0%	31	29	50	63
TDCL	62.1%	4	3	7	7
FDCS	99.0%	27	27	28	28
Router	57.2%	19	15	32	32
<u>TSYS</u>	52.0%	75	67	111	144
TPGW	100.0%	3	3	3	3
<u>SDB</u>	40.3%	8	8	13	21
TCSP	69.0%	12	12	17	17
DCL	42.5%	77	67	86	182
BCI	38.3%	5	5	7	14
<u>STM</u>	37.0%	6	6	7	15
TMC	42.8%	74	64	77	173
TDLS CHI	42.5%	24	21	23	57
Total		369	332	463	759

• Note: Progress on Systems Engineering activities is not captured by function points

Program Software Metrics – Earned Function Points – January 2014

	%	Completed	Planned	Planned eFPs for	eFPs when
CSCI	Earned	eFPs	eFPs	3/31/2013	Complete
TTCS	100.0%	4	4	4	4
<u>SYS</u>	100.0%	63	29	50	63
<u>TDCL</u>	100.0%	7	3	7	7
FDCS	100.0%	28	27	28	28
<u>Router</u>	100.0%	32	15	32	32
<u>TSYS</u>	100.0%	144	67	111	144
<u>TPGW</u>	100.0%	3	3	3	3
<u>SDB</u>	100.0%	21	8	13	21
TCSP	100.0%	17	12	17	17
DCL	100.0%	182	67	86	182
BCI	100.0%	14	5	7	14
<u>STM</u>	100.0%	15	6	7	15
TMC	100.0%	173	64	77	173
TDLS CHI	100.0%	57	21	23	57
Total		759	332	463	759

Charting Function Point Progress

- We wanted a more graphical way of displaying progress against the plan, so we decided to chart the cumulative planned and earned function point totals each month
- PLANNED PROGRESS CURVE
 - For each CSCI, the total function points [when complete] were weighted by milestones and allocated according to the Software Development Schedule.
 - When the total of all of the planned distributions was charted, the resulting composite curve looked much like a traditional S-Curve
- EARNED PROGRESS CURVE
 - The earned function points were recorded each month and the cumulative total was overlaid on the planned progress

CSCI Planned Progress

Milestone / Activity	TTCS	SYS	TDCL	FDCS	Router	TSYS	TPGW	<u>SDB</u>	TCSP	DCL	BCI	<u>STM</u>	TMC	CHI
SSS	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
SRS	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
IER	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Test Procedures	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
TVRTM	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
FER	100%	100%	100%	100%	100%	100%	100%	100%	100%	0%	0%	0%	0%	0%
First Half of Coding	100%	100%	100%	100%	100%	100%	100%	0%	100%	0%	0%	0%	0%	
Second Half of Coding	100%	0%	0%	100%	0%	0%	100%	0%	100%	0%	0%	0%	0%	
Unit Test	100%	0%	0%	100%	0%	0%	100%	0%	100%	0%	0%	0%	0%	
Functional Test 50%	100%	0%	0%	100%	0%	0%	100%	0%	0%	0%	0%	0%	0%	
Functional Test 100%	100%	0%	0%	100%	0%	0%	100%	0%	0%	0%	0%	0%	0%	
Functional Test Report	100%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	
Regression Test 50%														
Regression Test 100%											_			
Regression Test Report														
Weighted % Earned	90.0%	44.5%	44.5%	89.0%	44.5%	44.5%	90.0%	38.0%	63.0%	37.5%	37.5%	37.5%	37.5%	37.5%

- To determine the planned values (how much progress <u>should</u> have been made), we:
 - Entered the <u>scheduled</u> Finish Dates for each CSCI milestone into a table
 - Created a second table that compared the scheduled finish date to the current date
 - If the scheduled date was earlier than the current date, 100% was assigned for that task

CSCI Earned Progress from Development Team

1/23/2013	Date of Ar	nalysis												
Actual Progress								CSCI						
Activity / CSCI	<u>ttcs</u>	<u>SYS</u>	<u>TDCL</u>	FDCS	<u>Router</u>	<u>TSYS</u>	<u>TPGW</u>	<u>SDB</u>	<u>TCSP</u>	DCL	<u>BCI</u>	<u>STM</u>	<u>TMC</u>	<u>СНІ</u>
SSS	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
SRS	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
IER	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Test Procedures	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
TVRTM	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
FER	100%	100%	100%	100%	100%	100%	100%	100%	100%	0%	0%	0%	0%	0%
First Half of Coding	100%	80%	100%	100%	100%	100%	100%	17%	100%	40%	9%	0%	43%	40%
Second Half of Coding	100%	0%	75%	100%	40%	2%	100%	0%	100%	0%	0%	0%	0%	0%
Unit Test	100%	30%	66%	100%	52%	38%	100%	6%	100%	15%	3%	0%	16%	15%
Functional Test 50%	100%	0%	0%	100%	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%
Functional Test 100%	100%	0%	0%	100%	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%
Functional Test Report	100%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%
Regression Test 50%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

- Table represents current % of milestones achieved, as of 1/30/2013
- Table includes both Systems Engineering (SSS, IER, Regression Test) and Software Engineering (everything else) milestones
- Cells highlighted in blue have changed since last reporting period
- "Weighted % Earned" is the result of the matrix multiplication of the above table with the table from the previous slide
- This status is compared to planned progress on the following slide

Data as of January 2014

Actual Progress								CSCI							
Activity / CSCI	TTCS	SYS	TDCL	FDCS	Router	TSYS	TPGW	SDB	TCSP	DCL	BCI	STM	TMC	TDLS CHI	Ave
SSS	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
SRS	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
IER	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Test Procedures	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
TVRTM	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
FER	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
First Half of Coding	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Second Half of Coding	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Unit Test	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Functional Test 50%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Functional Test 100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Functional Test Report	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Regression Test 50%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	0%	19%
Regression Test 100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Regression Test Report	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Weighted % Earned	90.9%	90.9%	90.9%	90.9%	90.9%	90.9%	90.9%	90.9%	90.9%	90.9%	90.9%	90.9%	90.9%	90.0%	90.8%

CSCI Milestone Progress

Actual Progress								CSCI							
Activity / CSCI	TTCS	<u>sys</u>	<u>TDCL</u>	FDCS	<u>Router</u>	<u>tsys</u>	<u>TPGW</u>	<u>SDB</u>	<u>TCSP</u>	DCL	<u>BCI</u>	<u>STM</u>	<u>TMC</u>	TDLS CHI	Ave
SSS	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
SRS	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100% ⁻
PDR	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Test Procedures	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
TVRTM	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
CDR	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
First Half of Coding	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	N/A	100%
Second Half of Coding	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	N/A	100%
Unit Test	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	N/A	100%
Functional Test 50%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	N/A	100%
Functional Test 100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	N/A	100%
Functional Test Report	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	N/A	100%
Regression Test 50%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	N/A	20%
Regression Test 100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	N/A	0%
Regression Test Report	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	N/A	0%
Weighted % Earned	90.9%	90.9%	90.9%	90.9%	90.9%	90.9%	90.9%	90.9%	90.9%	90.9%	90.9%	90.9%	90.9%	100.0%	91.6%

Milestone Progress - % Planned vs % Earned

Earned Function Points vs Planned Function Points

Final Earned Function Points vs Planned Function Points

Final Results

- Performance was ahead of plan
 - 100% complete as of January, 2014 vs. planned completion in May, 2014

Relationship between program office and development team improved greatly

- Program office has increased confidence in the development team's ability to meet schedule and cost
- Set good working relationship for future program releases

Program's Financial Status

thru Dec 2013

Lessons Learned

- Status being reported by the developer, remained subjective, and thus verified by the completion of milestones
 - For providing progress status, the method became a modified "Milestone Complete" EVM method, which was translated into percent complete and entered into an EVM tool
- Methodology does not measure software quality
- System Engineering activities were not in scope
- Provided the basis for providing objective productivity metrics
- Developed a method for allocation of function points that impacted multiple CSCIs
- Ensure that multiple team members are trained in methodology and data collection
- Function Points can be effectively used to accurately measure earned value in software development projects

Contact Information

- Mike Thompson <u>mthompson@cobec.com</u>
- Dan French <u>dfrench@cobec.com</u>

Cobec Consulting 600 Maryland Ave SW Suite 500E Washington, DC 20024

Questions or Comments

Backup

What are Function Points?

- Function Points are a unit of software size measure
- Measure the work product of software development
- Work product is measured in terms of functionality from user perspective
- Functions points do not measure internal architecture, effort, or technological complexity of an application

"Backfiring" - Function Point to SLOC Conversion

- A number of organizations have made "backfiring" tables available to the public.
 - These tables contain factors that convert function points to lines of code for various programming languages
- Some tables are more complete and/or use more data points to come up with their backfiring rates.
 - The QSM table was used for this estimate, because it used the most data points to derive its backfiring rates
- In talking with Development Team, it was determined that the programming language blend could be approximated as follows: 75% C (107 SLOC/fp), 9% Ruby (21 SLOC/fp), 10% SQL (30 SLOC/fp), 6% Java (53 SLOC/fp),
- The resulting composite backfiring rate (BFR) was 88.32 SLOC/function point
- If we use risk ranges on the backfiring rates, the composite backfiring rate becomes 117.8 SLOC/function point

Risk Range on Backfiring Rates

- Backfiring rates are <u>not</u> given as ranges
- However, a risk range could be determined by subtracting the largest published backfiring rate from the smallest published backfiring rate.
- Backfiring rates from Capers Jones, Cost Xpert, and the David Consulting Group have also been collected by Cobec and were used to calculate a variation of 91% around the chosen QSM rates

Benefits of Using Function Points

- Technology and language independent
- Consistent, repeatable, and verifiable
- Measures functionality the customer requests and receives
- Can use to derive metrics for cost, productivity, and quality
- Enables better management of project scope

Advantages of Function Points over SLOC?

- No consistent rules for defining what constitutes a Line of Code (blank lines, comments)
- SLOC are language and platform dependent, older languages and platforms tend to require more LOC to deliver the same functionality
- SLOC is dependent on the experience and coding style of the individual developer
- FP counts can an be developed earlier and more accurately in the project life cycle

Implementation Background

- Our metrics team met with the program office to determine reporting requirements
 - Status updates established at two weeks after the end of each month
- The system for earning value was discussed with the development team and from those discussions a method of tracking CSCI milestone achievement was developed.

