Measurements in Cyberspace

Arlene Minkiewicz
Chief Scientist, PRICE® Research
Agenda

• Introduction

• Cybersecurity and Information Security
 • History
 • Definitions

• Measurement in Cybersecurity Context
 • Definitions
 • Measurement Framework

• Cybersecurity Metrics

• Next Steps and Conclusions
Introduction

- According to the 2017 State of Cybersecurity Measurement Annual Report more than half of the respondents scored a failing grade when self evaluating their efforts to measure investments and performance [1]

- “Since 1988’s Morris Worm, which infected 10% of the estimated 60,000 computers connected to the internet, cybersecurity has grown into an industry expected to exceed $1 trillion in global spending between 2017 and 2021” [2]

- Cybercrime will cost the global business market an estimated average of $6 trillion annually in the same time frame.

- Industry and government is aware of the perils if ignoring cyber and information security threats, but are asking themselves
 - How much security is enough?
 - How will we know when we get there?
 - How much will it cost?
 - Where is the tipping point where expenditures exceed the value added?
Cybersecurity and Information Security - History
In the middle of twentieth century early model computers were rarely connected to networks.

- Cybersecurity a nonissue
- Information security - user IDs, passwords and app access
- Computers were a tool, not the lifeblood of the organization

In the 80’s

- PCs began to flourish with demands for connectivity.
- Need for firewalls and antivirus software grew
- IT folks need for measurement but what to measure?

In the 90’s

- Virus and hacking incidents prominent in the news
- Data and information needs protection as much as physical

In the 2000’s

- 2008 – Zeus Trojan – hacking banking systems
- 2013 – Target hacking incident
- Since 2013 – almost four billion records lost
Cybersecurity and Information Security – History (cont.)

• Today and Beyond
 • Internet is ubiquitous
 • Cloud computing emergent
 • Internet of Things (IoT) creating all kinds of smart environments (phones, cities, homes, etc.)
 • Information is flowing fast and furious through the ether
 • Cyber and information security are regular features in the C-level executives' nightmares
Cybersecurity vs Information Security

Cybersecurity and information security are often used interchangeably, though they have different meanings.

Information Security

The practice of preventing unauthorized access, use, disclosure, disruption, modification, inspection, recording or destruction of information. The information and data can be electronic or physical. The basic focus is the CIA Triad:

• Confidentiality
• Integrity
• Availability

Cybersecurity

The measures taken to protect a computer or computer system (as on the internet) against unauthorized access or attack. Cybersecurity focuses on protecting cyberspace from any criminal action intended to compromise information or other computer assets.
Overlap Between Cybersecurity and Information Security

• While related, these two concepts are not the same

• There is a **significant and growing overlap** between the two because most cybersecurity breaches are intended to
 • *Obtain confidential information*
 • *Compromise the integrity of information*
 • *Prevent access to information*

• Measurements relative to cybersecurity are also relative to information security
Measurements in Cyberspace
Measurement in Cyberspace

“Without sound metrics, we are in the position of a passerby who encounters a man swinging plucked chickens around his head while he stands on a street corner: asked why he is doing that he answers, ‘To keep the flying elephants away’, ‘But there are no flying elephants’ responded the befuddled observers. He crows triumphantly ‘See? It works!’”

Cybersecurity measurements are problematic because:

• The field is immature
• Every organization has different requirements for cyber and information security
• Metrics consumers have different requirements based on what's important to them
Measurement in Cyberspace - Definitions

Measurements are **objective, concrete parameter values** for something usually in specific units e.g.

- **Length**: inches or feet
- **Weight**: pounds or kilograms
- **Area**: square feet or square meters

Metrics are more subjective and often determined in relations to several points of reference. **Metrics are facts about a process, data item or thing** e.g.

- **Hours per lines of code (LOC)**
- **Dollars per pound**

Metametrics represent **information about metrics** e.g.

- **For a data set** – mean, standard deviation, min, max
- **For a metric** – cost to collect, believability, usefulness, actionability
Measurement in Cyberspace

For any measurement initiative, there are important things to consider:

• Metrics should be selected that address important organizational concerns and create a balance across objectives and that are:
 • Strategic
 • Management focused
 • Operationally focused

• Metrics must provide
 • information important to stakeholder(s)
 • quantifiable and actionable information

• Metric measurements must
 • Be inexpensive, not labor intensive
 • Focus on data that is accessible, available, repeatable
 • Be meaningful and useful to consumers
Cybersecurity Metrics
Framework for Choosing the ‘Right Metrics’

Framework proposed is title PRAGMATIC. For each proposed metric the following metametrics are examined:

- Predictive
- Relevant
- Actionable
- Genuine
- Meaningful
- Accurate
- Timely
- Independent
- Cost Effective

Each proposed metric is given a score for each of these metametrics and the results are averaged to determine the suitability for the organizations security needs, risk aversion, available resources, etc.
Example of Ranked Metrics

<table>
<thead>
<tr>
<th>Proposed Metric</th>
<th>Predictive</th>
<th>Relevant</th>
<th>Actionable</th>
<th>Genuine</th>
<th>Meaningful</th>
<th>Accurate</th>
<th>Timeliness</th>
<th>Independent</th>
<th>Cost</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of security metrics by category</td>
<td>50</td>
<td>80</td>
<td>80</td>
<td>75</td>
<td>80</td>
<td>80</td>
<td>85</td>
<td>75</td>
<td>90</td>
<td>77</td>
</tr>
<tr>
<td>Percent of people in the organization who are not up to date with their security training</td>
<td>70</td>
<td>75</td>
<td>90</td>
<td>75</td>
<td>90</td>
<td>75</td>
<td>85</td>
<td>55</td>
<td>90</td>
<td>78</td>
</tr>
<tr>
<td>Percent of third party vendors with cyber requirements in contract</td>
<td>80</td>
<td>80</td>
<td>90</td>
<td>60</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>60</td>
<td>90</td>
<td>71</td>
</tr>
<tr>
<td>Maximum tolerable downtime</td>
<td>10</td>
<td>90</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>90</td>
<td>71</td>
</tr>
<tr>
<td>Number of days to DE deactivate former employee credentials</td>
<td>75</td>
<td>75</td>
<td>80</td>
<td>90</td>
<td>90</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>75</td>
<td>71</td>
</tr>
<tr>
<td>Frequency of review of third party access</td>
<td>60</td>
<td>85</td>
<td>80</td>
<td>75</td>
<td>75</td>
<td>80</td>
<td>60</td>
<td>65</td>
<td>55</td>
<td>71</td>
</tr>
<tr>
<td>Percent of business partners with effective cyber and information security policies</td>
<td>75</td>
<td>85</td>
<td>70</td>
<td>65</td>
<td>85</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>60</td>
<td>72</td>
</tr>
<tr>
<td>Mean time between security incidents</td>
<td>85</td>
<td>85</td>
<td>70</td>
<td>85</td>
<td>85</td>
<td>75</td>
<td>45</td>
<td>65</td>
<td>80</td>
<td>75</td>
</tr>
</tbody>
</table>
Cybersecurity Metrics

Impossible and impractical to list all the possible cybersecurity metrics because...

- *The field is constantly evolving*
- *Not all metrics are relevant to any single organization because all have different goals, risk aversions, resources, etc.*

The metrics that follow are not comprehensive but rather are intended to offer breadth and depth to the possibilities

The metrics presented are aligned with the structure of ISO/IEC Standard 27002 – "Information Technology – Code of Practice for Information Security Management”

The metrics presented provide good coverage of the areas of concern from the NIST Special Publication 800-53 - “Security and Privacy Controls for Federal Information Systems and Organizations”
Cybersecurity Metrics

• Cybersecurity Risk Management
 • Number of known risks currently untreated or unresolved
 • Cybersecurity budget variance over time
 • Number of unpatched technical vulnerabilities

• Cybersecurity Policy
 • Percent or number of security artifacts (policies, standards, procedures, metrics, etc.)
 • Traceability of policies, control objectives, standards and procedures
 • Policy coverage of frameworks such as ISO/IEC 27002
Cybersecurity Metrics

Cybersecurity Management and Governance

- Percentage of security controls that may fail silently
- Cybersecurity ascendency (levels of hierarchy between CEO and most senior cybersecurity professional)
- Days since the last serious cybersecurity incident
- Number of security metrics being tracked by category
- Percentage of critical third-party vendors whose contracts include cybersecurity requirements with the organization’s policies

Information Asset Management

- Percent or number of orphaned information assets without an owner
- Proportion of information assets not classified
- Unowned information asset days
Cybersecurity Metrics

Human Resources

- Security awareness level
- Rate of change in employee turnover or frequent absences
- Percent of employees who are not up to date on security training

Physical and Environmental Security

- Discrepancies between physical locations and logical access locations

Information Technology Security

- Proportion of systems checked and fully compliant to technical standards
- Time from change approval to change
- Average number of changes per category received per time period
- Rates of change of emergency change requests
- Proportion of highly/privileged trusted users
- Maximum tolerable down time
Cybersecurity Metrics

Access Control

- Rate of messages received at central access logging/alerting system
- Days since logical access control matrices for application systems were last reviewed
- Number of days to deactivate former employee credentials
- Frequency of review of third-party access
- Percent of business partners with effective cybersecurity policies

Software Security

- Percentage of controls tested realistically
- Software quality assurance (QA) maturity
- Extent to which cybersecurity is incorporated into the software development process
- Security testing coverage
Cybersecurity Metrics

Incident Management

- Time take to remediate security incidents
- Mean time between security incidents

Business Continuity

- Coverage of business impact analysis
- Percentage of business processes having a defined recovery time Objective (RTO) and recovery point objective (RPO)
- Uptime
- Disaster recovery test results

Security Compliance and Assurance

- Breakdown of exceptions and exemptions
- Number and severity of findings in audit reports, reviews, assessments, etc.
- Status of compliance with externally imposed security obligations
Conclusions and Next Steps

Cybersecurity and information security are not easy topics to grapple with

- *Landscape is rapidly changing*
- *Business leaders are constantly challenged with determining the best way to conquer potential evils*

Measurement and metrics need to be part of the solution. Measurement makes metrics possible and metrics make it possible to ...

- *Assess the efficacy of cybersecurity initiatives in place*
- *Understand the cost and value of planned cybersecurity initiatives*
- *Make trade offs between an organization’s cybersecurity needs, goals, risk aversions, and resources*
Conclusions and Next Steps

• First step is to understand the notions of cybersecurity and the activities, processes and practices that are important in the cybersecurity world
• This sets the stage for identifying the important things to measure and assess
• Measurement enables ...
 • Assessment of current state of cyber wellness in an organization
 • Assessment of future cyber investments
• Research underway to continue to study measures and metrics particularly suited to understanding and predicting costs
• Historical values for these measures and metrics will be used to develop cost estimating relationships and rules of thumbs for predictive cost analysis
References

Questions?