Decision Trees and Cost Estimating

Josh Wilson
Booz Allen Hamilton
Agenda

- **Motivation**
 - Integration of Data Science Methods within Cost Estimating Field

- **Obligatory Data Science slide**

- **Decision Trees**
 - Definition & Explanation
 - Strengths & Weaknesses
 - Extensions

- **Applicability to Cost Estimating**
 - Data Challenges
 - Example - Can we predict installation cost overruns?

- **Conclusions**
Motivation

- Background in cost estimating
- Interest in data science
- Exploring application of data science to cost estimating
Data Science?

Decision Trees
First, a clarification...

- There are two types of “decision trees”
 - Decision trees for decision analysis
 - Model decisions and consequences
 - These types of trees ARE NOT the topic of this presentation
 - Decision trees for prediction
 - Maps observations to outcomes
 - These types of trees ARE the topic of this presentation
Decision Trees
What are they?

- Nonparametric supervised learning method
 - Nonparametric = makes no assumptions about underlying data distributions
 - Supervised = model learns from examples where we know the outcome

- Can be used for classification or regression
 - Classification if we are trying to predict a categorical outcome
 - Regression if we are trying to predict a continuous outcome

- Makes predictions by learning simple “if-then-else” decision rules from data
 - Recursively partition data into subgroups and apply simple prediction models

Example: Predicting passenger survival on Titanic
 - If sex is female, then predict passenger survived, else...
 - If age > 9.5, then predict passenger died, else... (and so on)
Decision Trees

How do they work? (the basic idea)

- At each step, split data to maximize homogeneity of target variable within resulting subgroups
 - i.e. We want to separate out the different outcomes as best we can
 - Algorithm scans all possible splits and chooses the “best”

- Process continues on resulting subgroups until stopping condition reached:
 - Maximum # levels reached
 - All subgroups are smaller than some specified threshold size
 - No possible split improves the result
Decision Trees

How do they work? (good vs. bad splits)

- Good split - Separates classes:
- Bad split - Classes still “impure”
Decision Trees

How do they work? (Titanic example)

- We can predict survival using Titanic passenger demographic info
 - If sex is female, then predict passenger survived, else...
 - If (male) passenger age > 9.5, then predict passenger died, else...
 - If (male, child) passenger is traveling with 3+ family members, predict passenger died, else...
 - Predict passenger survived
- “sibsp” = number of siblings/spouses (i.e. family members) onboard
Decision Trees

Strengths

- Easy to interpret, explain, and visualize
- Little data preparation or cleaning
 - Can handle both numerical and categorical input data
 - Robust to outliers and missing data
 - Handles nonlinear relationships and correlated variables
 - Ignores useless variables
- Automates modeling of variable interactions
 - i.e. Perhaps age is important if you’re male, but not if you’re female
Decision Trees

Weaknesses

- Susceptible to overfitting
 - \textit{Overfitting} = model captures random peculiarities of training data and does not generalize well to new data

- Splitting decisions tend to favor categorical variables with many levels
 - Consider a full name variable in tree to predict Titanic survival...

- “Greedy algorithm” - makes best current decision, possibly bad for long-term
Decision Trees

Extensions

- *Ensemble method* = prediction based on multiple individual models

- Random Forests
 - Ensemble of many individual decision trees, each built from a subset of the data and/or features
 - Generalize to new data better than single trees

- Boosted Trees
 - Ensemble method where new trees are built to improve performance of their sums
 - E.g. by increasing the weight of incorrectly classified data points
 - Overall prediction based on individual trees weighted by accuracy
Decision Trees

Applicability to Cost Estimating

- Another method to predict cost, or things useful for predicting cost
 - Examples:
 - Efforts likely to result in cost over/under runs
 - Categories of SW code growth

- Less impacted by certain types of cost estimating challenges
 - Messy data
 - Mixture of numeric/categorical? Outliers? Missing values? Inconsistent units across different variables?
 - Time constraints
 - Which independent variables are useful? Which are correlated?
Example: Can we predict installation cost overruns?

Data / Background

- Raw installation data is from SPIDER database
 - SPIDER = “SPAWAR PEO C4I Information Data Enterprise Repository”
- Data for >6k install efforts from a single program office
- 141 columns of data - mostly text/categorical, some numeric, some dates
 - Descriptors of effort - Ship type, location, system, type of install, etc.
 - Cost estimates - Includes initial estimate and actual cost if completed
 - Key event dates - Ship availability, planned installation dates, etc.
- Lots of missing data - eliminating rows with missing data results in 0 rows left
Example: Can we predict installation cost overruns?

General Process

- Data preprocessing
 - Filtered data to remove incomplete efforts
 - Removed various ID number columns
 - Converted dates to number of days prior to ship availability

- Defined target variable “Cost Growth Category” as
 - “Over Low” if 0% < Cost Growth % < 40%
 - “Over High” if Cost Growth % > 40%
 - “Under Low” if -40% < Cost Growth % < 0%
 - “Under High” if Cost Growth % < -40%

- Split data into training and test datasets
- Built various models to predict “Cost Growth Category”
Example: *Can we predict installation cost overruns?*

Confusion Matrix for Characterizing Classification Errors

- *Confusion Matrix* = visualization of predicted versus actual outcomes
 - Good if high values along diagonal, low values elsewhere

```
<table>
<thead>
<tr>
<th>Actual</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>TP</td>
</tr>
<tr>
<td>Negative</td>
<td>FP</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Actual</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td>Accurate</td>
</tr>
<tr>
<td>Class 2</td>
<td>Accurate</td>
</tr>
<tr>
<td>Class 3</td>
<td>Accurate</td>
</tr>
<tr>
<td>...</td>
<td>Accurate</td>
</tr>
<tr>
<td>Class n</td>
<td>Accurate</td>
</tr>
</tbody>
</table>
```
Example: *Can we predict installation cost overruns?*

“Naïve” Results - Baseline for Comparison

- What if we predict the most common outcome from our training data?
 - Then we correctly predict that outcome, but miss everything else
- 31% prediction accuracy
Example: *Can we predict installation cost overruns?*

Current Results - Boosted Tree Model

- Almost 60% prediction accuracy
- Highest accuracy for extreme cases (i.e. high underruns and high overruns)
- Most important features = ship avail duration, lead time for ship check, drawings, system test
Example: *Can we predict installation cost overruns?*

Next Steps

- Find other sources of complementary data
 - Performer? Weather/temperature/season?
 - In general, having more/better data is much better than having a better model!

- Feature Engineering
 - Number of concurrent installations?

- Direct prediction of install cost (i.e. regression instead of classification)
Conclusions

- Decision Trees are a viable tool for the cost estimator
 - Easy to interpret and explain
 - Robust to common deficiencies in data quality
 - Little overhead for variable screening
 - Ensemble methods to address weaknesses of single tree models
 - Good method to expose non-technical people to data science approaches
Way Forward

- Learning curve can be a challenge

- Self-study resources are available
 - R - http://www.statmethods.net/advstats/cart.html
 - Titanic tutorials - https://www.kaggle.com/c/titanic#tutorials

- Other methods that may be appropriate when considering decision trees
 - Naïve Bayes
 - k-Nearest Neighbors (k-NN)
 - Logistic Regression / Linear Regression
 - Support Vector Machines (SVM)
Questions?

Josh Wilson
Associate

Booz | Allen | Hamilton

Booz Allen Hamilton Inc.
1615 Murray Canyon Road
Suite 900
San Diego, CA 92108
Tel (619) 278-3855
Mobile (619) 820-6226
wilson_joshua@bah.com
All Model Accuracy Results

- Most Common Occurrence (Naïve Model) = 31%
- Logistic Regression = 38%
- Logistic Regression + PCA Transform = 48%
- Single Decision Tree Classifier = 50%
- Support Vector Classifier = 50%
- Random Forest Classifier = 55%
- Gradient Boosted Tree Classifier = 59%
Decision Trees

Impurity Functions

Various decision tree algorithms have been implemented, and various “impurity” metrics are used to measure node homogeneity

- ID3, C4.5, C5.0 use entropy/information gain:

\[H(T) = H(p_1, p_2, \ldots, p_n) = -\sum_{i=1}^{j} p_i \log_2 p_i \]

\[IG(T, a) = H(T) - H(T|a) \]

- CART uses Gini impurity for classification:

\[I_G(f) = \sum_{i=1}^{j} f_i (1 - f_i) = \sum_{i=1}^{j} (f_i - f_i^2) = \sum_{i=1}^{j} f_i - \sum_{i=1}^{j} f_i^2 = 1 - \sum_{i \neq k} f_i^2 = \sum f_i f_k \]

- CART uses variance reduction for regression:

\[I_V(N) = \frac{1}{|S_i|^2} \sum_{i \neq j} \sum_{x \in S_i, y \in S_j} \frac{1}{2} (x_i - x_j)^2 - \left(\frac{1}{|S_i|^2} \sum_{i \neq j} \sum_{x \in S_i, y \in S_j} \frac{1}{2} (x_i - x_j)^2 + \frac{1}{|S_j|^2} \sum_{i \neq j} \sum_{x \in S_i, y \in S_j} \frac{1}{2} (y_i - y_j)^2 \right) \]

- Any strictly convex function can be used